A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330205506/https://b...

TECHNICAL BLOG

JULY 1, 2018 BY NSO RESEARCH GROUP

A Tale of Two Mallocs: On Android libc Allocators - Part 1
— dlmalloc

In this series of three posts, we're going to try to cover a deep dive into the pertinent details of the two Android
libc allocators, followed by some thoughts on exploitation in light of those allocators.

All of the information I'll impart is the result of our own research into the allocators in question, including a
thorough code review of the implementations of those allocators. That said, much of the information is available
online in one form or another. I've yet to encounter a concise but in-depth description of both allocators and the

relevant exploitation techniques. Hopefully that’s what this presentation will provide.

It's 2018. The days of trivially exploitable stack buffer overflows are over. Modern exploitable vulnerabilities fall
into a few meager classes, we'll focus on two of these.

Even at this late stage in the game, memory corruption bugs are still a thing. Chief among these is the good old
buffer overflow. Stack cookies have largely neutered the exploitability of stack based memory corruptions, so
most modern memory corruption vulnerabilities are in objects and buffers on the heap.

In addition to these heap-based memory corruption vulnerabilities, we have use-after-free vulnerabilities.
This class of bugs is all about heap objects coupled with bad memory management practices.
Together these two classes make up a very large portion of the exploitable bugs we find in modern software.

What these classes of bugs have in common is that they both occur mostly in heap objects. Understanding how
the heap works is a critical, often overlooked, step in crafting reliable exploits for these kinds of vulnerabilities.

Other prevalent classes of bugs are type confusions and race conditions. We're not going to focus on those here,
because they are not necessarily heap-related.

When we talk about the ‘heap’, what we usually mean is any and all memory objects which are managed using the
libc malloc/free interface. This very simple interface lets us allocate so-called “dynamic memory” for our use, and
free it when we are done using it. When we approach the task of exploiting a heap-overflow or a use-after-free,
it's not enough to know the semantics of this interface. We need to know what is happening under the hood.

Android uses its own libc implementation, called bionic. When the Android developers came to implement these

heap functions, they wisely chose to use an existing, battle tested implementation instead of rolling their own.

dimalloc

1of5 03/08/2024, 17:57

http://web.archive.org/web/20230330205506/https://blog.nsogroup.com/
http://web.archive.org/web/20230330205506/https://blog.nsogroup.com/
http://web.archive.org/web/20230330205506/https://blog.nsogroup.com/a-tale-of-two-mallocs-on-android-libc-allocators-part-1-dlmalloc/
http://web.archive.org/web/20230330205506/https://blog.nsogroup.com/a-tale-of-two-mallocs-on-android-libc-allocators-part-1-dlmalloc/
http://web.archive.org/web/20230330205506/https://blog.nsogroup.com/a-tale-of-two-mallocs-on-android-libc-allocators-part-1-dlmalloc/
http://web.archive.org/web/20230330205506/https://blog.nsogroup.com/author/shmarya-rubenstein/
http://web.archive.org/web/20230330205506/https://blog.nsogroup.com/author/shmarya-rubenstein/

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330205506/https://b...

The dynamic memory allocator implementation they chose is called dimalloc. It's named after its author, Doug
Lea. Doug started writing this allocator way back in 1987. It has received many updates and improvements over
the years, and was last updated in 2012.

When you call malloc, dimalloc does a bunch of stuff behind the scenes, and will eventually return a pointerto a
block of contiguous memory which you can use in your program. This block is called a ‘chunk’, and is guaranteed
to be at least as big as the size you requested.

These chunks don’t come from nowhere. When dimalloc needs memory to use for chunks, it requests an
allocation from the operating system. Each such system allocation is called a ‘segment’.

|—
-

segment footer

Segments are the base unit of allocation from the OS. dimalloc keeps a linked list of segments it has allocated
from the system, with the pointers stored in the segment’s footer. The most recently allocated segment is the
‘current’ segment. When it needs more system memory, dimalloc first tries to extend the current segment using
sbrk, falling back to mmap-ing a new segment if that doesn’t work. Segments can be of different sizes, but are
always a multiple of the page size. Segments are not guaranteed to be adjacent to one another in memory, and, in
fact, are allocated at random addresses when system-wide ASLR is enabled, as it is on Android. If a new segment

happens to be contiguous to an existing segment, the two segments are consolidated into a single larger
segment.

The current segment contains the ‘top chunk’, which is the chunk of free space available for immediate allocation

of chunks. Here’s an example ‘current’ segment, with in use (allocated) chunks in light green and free (unallocated)
chunks in blue.

segment footer

0x30| 0xbO 0x200

When dimalloc needs to allocate a new chunk for a malloc call, it will check if the top chunk is big enough to
contain the new chunk, and will carve the new chunk from within the top chunk by splitting it. The first half of the
top chunk becomes the new chunk to be returned, and the second half becomes the new ‘top chunk'’. If the ‘top
chunk’ is not large enough to contain the new chunk, a new segment is allocated from the operating system, and
the new chunk is allocated from that new segment.

| |
| 1
7}
°
L
‘new’ chunk ‘top’ chunk ‘s‘
£
&
0x30| Oxb0 0x200 0x300 “F

20f5 03/08/2024, 17:57

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330205506/https://b...

Each chunk has two pointers worth of metadata: in 32bit processes this is 8 bytes. This metadata sits directly
before the pointer returned by malloc, i.e. inline before the useable memory. The minimum amount of actual
usable memory returned by malloc is two pointers wide.

*chunk->4------cccmmmm e e +
O9x00|size of previous chunk |

R +

Ox04|size of chunk |C_INUSE|P_INUSE|
*user_mem->+----------------ooooooooooooooo +
ox08 | i @ |

oxoc | : e |
e e e T +

Chunks of different sizes can be allocated one after the other in the segments. Each chunk marks its size and
whether it is in use or not, via the C_INUSE flag. It also marks whether the previous chunk in the segment is in use,
with the P_INUSE flag, and the previous chunk’s size. Because the metadata contains the size of the previous
chunk, we can easily walk backwards through the chunks in a segment.

-

—
-

segment footer

0x30| Oxb0 0x200 0x300

When you call free on a given chunk, the first thing that happens is that dimalloc checks to see if the preceding
chunkisin use. If the preceding chunk is free, dimalloc will consolidate the two chunks into one larger free chunk.

I |

segment footer

0x30 0x300

free(..)

This means that it is impossible for two consecutive chunks in a segment to both be free. The chunks immediately
before and after a free chunk are both guaranteed to be in use.

Simple right? Obviously what we've described is a pretty naive allocator implementation. There’s a little more to it.
Specifically, what we’ve described is a system which never reuses freed memory, as it always allocates from the
‘top chunk’. So how do we efficiently reuse freed memory?

We need some bins.

Bins are used to keep a record of recently freed chunks which can be reused. There are two types of bins: ‘small’
and ‘tree’. Small bins are used for chunks smaller than 0x100 bytes. Each small bin contains chunks of the same
size. Tree bins are used for larger chunks, and contain chunks of a given range of sizes. Small bins are
implemented as simple doubly-linked lists, and tree bins are implemented as bitwise digital trees (aka ‘tries’),

30f5 03/08/2024, 17:57

A Tale of Two Mallocs: On Android libc Allocators - Par...

4 of 5

keyed on chunk size. There are 32 small bins and 32 tree bins.

When a chunk is freed, it undergoes consolidation if needed, and then the consolidated chunk is added to the
appropriate bin for its size. The list and tree node pointers are stored within the actual chunk data, which is safe to
use for metadata as it is ‘free’. This is where the minimum size for a chunk comes from: we need space for
previous and next pointers in the free chunk’s data.

o B oo I]

|0x30]0x90I 0x180

| 0xd0 0x90 I 0x30 0x1700 -
I 0x00 I 0x08 I 0x10 l 0x18 I 0x20 I 0x28 I 0x30 I 0x38 I I 0xd0 I 0xd8 I 0Oxe0 | Oxe8 I 0xfo | 0xf8 ‘

Here's an example showing a few segments with some in use and free chunks. The 0x18 bin points to the first of
the free chunks of size 0x18, and the rest of them are chained together in a doubly-linked-list.

Note that small bins contain chunks of exactly one size. Tree bins contain ranges of chunk sizes.

dimalloc is a best fit allocator. It will always try to find the free chunk with the smallest size greater or equal to the
request size.

During allocation, before looking at the ‘top chunk’, dimalloc will first try to find a free chunk in the bins. It first
tries to find a chunk which matches the exact size of the allocation request, and then moves upwards through the
non-empty bins till it finds the smallest chunk which is larger than the request. If a larger chunk is used, it will be
split, and the remainder will be added to the relevant bin to possibly be used for future allocations. Only if no
chunk exists in the bins to satisfy the allocation request will the ‘top chunk’ be used.

Note that the bins are First In First Out. So chunks are allocated in the order that they were freed. This can be an

important factor in exploitation.

After looking in the bins for an exact size match, but before going to the ‘top chunk’, dimalloc will try to see if the
‘designated victim’ is large enough to contain the allocation request.

The ‘designated victim’ is the preferred chunk for servicing small requests that don’t have an exact fit. It is the
chunk which was most recently split off. It doesn’t sit in any bin. Having the ‘designated victim’ helps to localize
allocations to a given memory segment, which can be useful when considering how CPU caches work. Small
allocations which don’t have an exact fit in the bins will be split off from this chunk.

calc exact fit best fit best fit

ign
des!g .ated from small from tree top chunk
victim

request from small
size bin bins bins

03/08/2024, 17:57

http://web.archive.org/web/20230330205506/https://b...

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330205506/https://b...

So for a small allocation, a request size smaller than 0x100 bytes, this is the flow:

o We first calculate the exact size including metadata and padding
We then look for an exact match in the small bins

If that fails, we next see if the ‘designated victim’ is large enough to allocate from

If the ‘designated victim’ is too small, we then look for a ‘best fit’" in the small bins larger than our request size

If that fails, we look in the tree bins for a ‘best fit’ match

Finally, if all else has failed, we look at the top chunk, potentially causing more memory to be allocated from the

calc request | best fit from designated
size tree bins victim

top chunk

system.

Larger allocations are a little simpler. We just try to allocate from the tree bins before attempting the ‘designated
victim’ and then the top chunk.

There are no bins for so-called very large allocations, which means anything larger than the MMAP_THRESHOLD,
which is 64kb on Android. These allocations don’t come from the segments. Instead, each such allocation is
mmaped directly.

So that’s dimalloc in a nutshell. Hopefully I've covered all the salient points. There are a couple of things we should
note before moving on.

While dimalloc takes some steps to reduce fragmentation of the heap, particularly the reuse of freed chunks
based on bin size, it is still common for smaller free chunks to become trapped between larger consecutive
chunks which often remain in use for longer periods in application flow.

dimalloc is not thread safe. At all. Both malloc and free touch process global data structures and the inline
metadata between chunks and inside free chunks. Remember that dimalloc was designed long before the Age of
Parrellism, before every application was multithreaded, before hyper-threading and multi-core processors. To
make dlmalloc usable in multi-threaded processes, Doug Lee chose the simplest possible fix: the big lock.

Every single malloc or free call locks a global mutex on entry and unlocks at function exit. This makes dimalloc
usable with threads, but has a major performance impact. Essentially all allocator operations are serialized. This is
ok on lightly multi-threaded processes, but can be a significant drag on more complex applications

The poor multithreading performance of dimalloc is one of the main reasons that the bionic developers decided
to switch to a more modern heap implementation.

That wraps up the discussion of dimalloc. Read the next post in this series to find out about jemalloc, the more
modern Android libc allocator.

50f5 03/08/2024, 17:57

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330203311/https://b...

TECHNICAL BLOG

JULY 1, 2018 BY NSO RESEARCH GROUP

A Tale of Two Mallocs: On Android libc Allocators - Part 2
- jemalloc

In the first post of this series, we discussed why it is important to understand the inner workings of the libc heap
allocator, and did a deep dive into the original Android libc allocator: dimalloc. In this post, we’'ll examine the
allocator which replaced dimalloc as Android’s allocator.

The new allocator selected by the bionic developers is called jemalloc. It is named after its implementer Jason
Evans. Jason started implementing jemalloc in 2005. It was then added to FreeBSD’s libc to become that
platform’s default allocator. In 2007, the Firefox Mozilla project adopted the stand-alone version of jemalloc as
their primary allocator. Since 2009, jemalloc has been used extensively in Facebook’s backend servers. It's
currently maintained by a team at Facebook.

During May 2014, jemalloc was added to the bionic source tree for Android 5.0.0. dimalloc continued to be the
default, but it was possible to select this new heap implementation using a board config flag. In July 2014,
jemalloc was made the default.

In an ideal world, every vendor of an Android phone would have made the transition to jemalloc with their Android
5.0.0 ROMS. Unfortunately, many vendors chose to remain with the tried and tested dimalloc heap until later
versions of Android. In fact I've seen dimalloc being used on both lollipop and marshmallow devices. The fact that
there is no clear line in time separating the two implementations means that you cannot really know a priori
whether a given Android 5 or 6 device is using dimalloc or jemalloc.

jemalloc was designed from the ground up to be highly-performant in symmetric-multi-processing environments.
It has many features which are geared towards increasing efficiency and locality in multi-threaded apps, while

reducing overall fragmentation.

The first important concept in jemalloc’s implementation is the arena. Each thread is assigned to a given arena,
and it allocates and frees only from that arena. Each arena is completely separate from other arenas, and most
importantly they have separate mutexs guarding their data structures. This means that you can actually perform
allocator operations in parallel so long as the threads involved are assigned to different arenas.

In general jemalloc usage, there should be slightly more arenas then there are hardware cores. For some reason,
on android, this is not the case. Instead there are exactly two arenas.

Threads are assigned to arenas in a round-robin fashion, which should ensure that the arenas have a more or less

equal number of threads.

1 of 7 03/08/2024, 17:58

http://web.archive.org/web/20230330203311/https://blog.nsogroup.com/
http://web.archive.org/web/20230330203311/https://blog.nsogroup.com/
http://web.archive.org/web/20230330203311/https://blog.nsogroup.com/a-tale-of-two-mallocs-on-android-libc-allocators-part-2-jemalloc/
http://web.archive.org/web/20230330203311/https://blog.nsogroup.com/a-tale-of-two-mallocs-on-android-libc-allocators-part-2-jemalloc/
http://web.archive.org/web/20230330203311/https://blog.nsogroup.com/a-tale-of-two-mallocs-on-android-libc-allocators-part-2-jemalloc/
http://web.archive.org/web/20230330203311/https://blog.nsogroup.com/author/shmarya-rubenstein/
http://web.archive.org/web/20230330203311/https://blog.nsogroup.com/author/shmarya-rubenstein/

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330203311/https://b...

—
—

chunk header

0x40000

In jemalloc, memory is allocated from the operating system using mmap. Each mmap operation allocates a chunk.
jemalloc chunks roughly correlate to dimalloc segments. Chunks are all of the same size, 256k bytes on Android
versions up to 7.0.0. From 7.0.0, chunks are 512kB for 32-bit processes and 2MB for 64-bit processes. Each
chunk belongs to a specific arena. There is a chunk header containing metadata for this chunk, specifically
including a pagemap which defines which pages are associated with which runs.

For any jemalloc managed address, the relevant chunk header can easily be found by simply rounding down the
address to the chunk size. This means that we have 0o(1) lookups of metadata in most situations.

—

—

run

chunk header

0x40000

A runis an area of contiguous memory, located in a chunk. Each run contains a fixed number of regions of a
specific size. Different size classes have different numbers of regions. Runs are always a multiple of the page size.
Run metadata is stored in the chunk header for the chunk which contains them. In other words, the metadata is
out-of-band. Each run has a bitmap which indicates the state of each region in the run. A region can either be in-

use or free.
| |
| [
run
<
U
o
©
[
= [[— = [— c — c
x olelQoe|lel1LelLe)]e
= oo oo (9] oo oo oo oo
>S5 (1] () Q () [(7] [
_: | ™ — . . | ™ 1 v L.
o €

0x40000

Regions are the smallest unit of the jemalloc system. These are analogous to dimalloc chunks, except that regions
do not carry any metadata at all. Instead each region belongs to a run of regions of the same size. The run stores

the metadata for all its regions in the chunk’s header. The region address is the return value from a malloc call, and
should be the argument to free.

jemalloc is, at its core, a bucket allocator. Each arena has a set of logical bins, each of which services a specific size
class. Allocations are made from the bin with the smallest size large enough to fit the allocation request. On
Android, there are 39 bins. By having a carefully selected and limited list of bin sizes, with small steps between
them, fragmentation can be decreased.

Note that on dlmalloc, bins are used only as free lists. On jemalloc, bins are used for ALL allocations.

2 of 7 03/08/2024, 17:58

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330203311/https://b...

runcur

0xb48803e8 0x95f01490
0xb4880490 0x94400968
0xb48806538 0x982c0620
0xb48805e0 0x944414e4
0xb4880688 0x94340b6¢C
0xb4880730 0x94440818
0xb48807d8 Oxadad40cbe
0xb48808860 : 0x9444143c
0xb4880928 0x942c10a0
0xb48809d0 0x944402d8
0xb4880a78 0x96e40b60
0xb48806b26 0x944009bc
0xb4880bc8 0x98c802d8
0xb4880c70 0x94440ff8
0xb48806d18 0x944804d0
0xb4880dco 0x94401538
0xb4880e68 : 0x98c010a0
0xb4880f10 0x96841490
0xb4a880fb8 0xb406801dc
0xb4881060 0x9448071c
0xb4881168 0x96840bb4
0xb48811b6 0x944802d8
0xb4881258 0x95c00cbo
0xb4881300 - -

0xb48813a8 0x942c0134
0xb48814560 0x98ac0134
0xb48814f8 0x98f40818
0xb48815a0 0x944413e8
0xb4881648 0x942c0Oboc
0xb48816f0 0x94480fad
0xb4881798 0x942c0e54
0xb48818460 0x96901538
Oxb48818e8 0x944812ec
0xb48819960 0x1800 0x960011f0
0xb4881a38 - -

0xb4881laed 0x2000 0x96900ff8
0xb4881b88 - -

0xb4881c30 0x3000 0x98acOchbo
0xb4881cd8 0x3800 0x95fcoffs

Bin metadata is stored in the arena structure. Each run is associated with a specific bin. Each bin has a ‘current’
run which points to the non-full run from which it is currently allocating. Here you can see the 39 bins for this
arena, with their metadata addresses, size classes and current run pointers.

If a run becomes full during an allocation, jemalloc will check if there are any non-full runs for this bin in the arena.
If more than one non-full runs exist, the one with the lowest address will be selected and set as the ‘current’ run. If
no non-full runs are available in this bin, a new run will be created in either an existing chunk or in a new chunk, and
that run will be set as the ‘current’ run of the bin.

Arenas keep track of their non-full runs and available chunk space using a set of red-black trees. Finding a non-
full run or available space for a new run is thus at most an O(log(n)) operation.

jemalloc reduces lock contention in a few ways, thereby improving multi-threaded performance. Firstly, each
arena has its own locks, so operations on different arenas do not contend for locks. Secondly, the critical time is
very short. The lock only needs to be held when allocating new runs to a given bin, or when flipping the in-use bit
of aregionin a run. These mechanisms already make jemalloc significantly more thread-friendly than dimalloc.
However, Jason didn’t stop there. He also implemented thread specific caches.

For each thread, for each bin there is a tcache. The tcache is a list of recently freed regions for the specific bin and
thread.

3 of 7 03/08/2024, 17:58

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330203311/https://b...

When allocating, jemalloc first looks to see if there is a region in the tcache for the required size’s bin before going
to the ‘current’ run for that bin. If so, it uses that region.

When freeing a region, jemalloc pushes the region onto the tcache for the relevant bin. The tcache is LIFO.

4 of 7 03/08/2024, 17:58

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330203311/https://b...

Regions which are currently held in tcaches do not have their in-use bit set to free. Instead they are considered by
the greater jemalloc system to be in-use. This saves on locks, as it is only necessary to grab a lock when updating
global data structures. Thread specific data structures are by definition safe from other threads, and thus in many
cases jemalloc allocations will not grab locks at all.

If jemalloc tries to allocate a region of a given size, and the thread’s tcache for that bin size is empty, a pre-fill
event will occur. When prefilling, jemalloc will lock the arena mutex, ‘allocate’ a number of regions for this bin from
the ‘current’ run, marking their bits in the run’s bitmaps as in-use, push these regions onto the thread’s tcache and
release the lock. This ensures that there are always a ‘sane’ number of regions in a tcache, and significantly

improves locality, as a given thread will allocate regions of the same size from mostly contiguous memory.

Each tcache has a maximum number of regions which it can contain. For small bins this is 8, and for larger bins
this is 20. When we reach this maximum a flush event occurs. At a flush event, jemalloc takes the oldest half of
the tcache’s regions and really frees them. l.e. it grabs the lock and marks the region’s bits as free. At this point
they are free to be allocated by other threads.

In addition, jemalloc implements a ‘garbage collection’ mechanism. Essentially, jemalloc counts each allocation
and free event. When that count reaches a certain threshold, a so-called ‘hard event’ occurs. Each ‘hard event’,
jemalloc looks at a specific bin across all threads, and clears out three-quarters of the regions from the tcaches
for that bin. During the next ‘hard event’ the next bin will be targeted for cleanup. This is another way that regions
can be removed from tcaches and returned to general availability.

5o0f7 03/08/2024, 17:58

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330203311/https://b...

non-full

run with
lowest

address

calc

request tcache
bin

So when allocating on jemalloc, we observe the following flow.

We first calculate the bin for our request size
We then look in the tcache of the current thread for the calculated bin

If the tcache is empty, we prefill from the bin’s ‘current’ run

When the current run is exhausted, we prefill from the non-full run with the lowest address

If there are not enough regions in the existing non-full runs, a new run will be allocated in a chunk which has

available space

If no space is available in a chunk, a new chunk is allocated from the system, and a new run is allocated in that
chunk and is used to prefill the tcache.

So now we've covered the essential details of jemalloc.

| dimalioc | jemalloc

allocator type best fit bucket
inline metadata v X
user allocations chunk region
allocation from system segment chunk
fixed size chunks/regions X v

adjacent allocations same size
fine grained mutexes

thread-specific free lists

S N B S

X
X
X
garbage collection X

Let’'s compare some of the important properties of dimalloc and jemalloc.

o dimalloc is a best-fit allocator while jemalloc is a bucket allocator

¢ dimalloc uses in-line metadata

¢ user allocations on dimalloc are called chunks, in jemalloc they're called regions

o dimalloc allocates variable sized segments from the system, while jemalloc allocates fixed-sized chunks
e jemalloc always allocates from fixed size regions. dimalloc chunks can be arbitrary 8-byte aligned sizes,
¢ In dimalloc, adjacent allocations are usually not the same size. In jemalloc they are.

¢ dlmalloc only has the big lock, jemalloc has fine grained mutexes which reduce lock contention

¢ jemalloc has thread specific free lists (aka tcaches) to further increase multithreading performance

¢ jemalloc has a garbage collection mechanism which helps to clean up tcaches.

6 of 7 03/08/2024, 17:58

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230330203311/https://b...

e Recently freed chunks or regions on dimalloc are reused in a FIFO fashion, while on jemalloc they are reused LIFO.

dimalloc
30%

jemalloc
70%

m dimalloc = jemalloc

In our estimation, we believe that the current distribution of devices in use is about 70% jemalloc and 30%
dimalloc. This is largely due to the fact that most people update their phones relatively frequently, skewing the
distribution towards the more modern jemalloc based systems. Even though the bulk of devices are on jemalloc, it
is still necessary to exploit dimalloc devices in order to get good real-world coverage. For example, certain

geographical regions are more likely to have dimalloc based phones.

7 of 7 03/08/2024, 17:58

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230130054421/https://b...

TECHNICAL BLOG

JULY 1, 2018 BY NSO RESEARCH GROUP

A Tale of Two Mallocs: On Android libc Allocators - Part 3
- exploitation

In the two previous posts of this series, we've discussed how the Android libc allocators work. In this last post of
the series, we can try to determine what we need to do in order to exploit a heap memory corruption or use-after-
free, in light of these allocators.

Exploiting these kinds of bugs is all about precise positioning of heap objects. We want to force certain objects to
be allocated in specific locations in the heap, in order to form useful adjacencies for memory corruption, or reuse
of a desired location for a use-after-free.

The operations performed in order to force the allocator to allocate the objects we want in the positions we want
is known as heap shaping or heap ‘feng shui’. We essentially need to take advantage of our understanding of the
inner workings of the allocator in order to allocate desired objects in the locations or with the adjacencies we
desire.

One of the things which can really make a huge difference when implementing heap shaping for an exploit is
having a way to visualize the heap: to see the various allocations in the context of the heap.

For this we need tools. These tools need not be especially complex. We don’t really need a fancy GUI to visualize

regions or chunks. A simple tool which will allow us to inspect the heap state for a target process during exploit
development will make an incredible difference.

1of9 03/08/2024, 18:00

http://web.archive.org/web/20230130054421/https://blog.nsogroup.com/
http://web.archive.org/web/20230130054421/https://blog.nsogroup.com/
http://web.archive.org/web/20230130054421/https://blog.nsogroup.com/a-tale-of-two-mallocs-on-android-libc-allocators-part-3-exploitation/
http://web.archive.org/web/20230130054421/https://blog.nsogroup.com/a-tale-of-two-mallocs-on-android-libc-allocators-part-3-exploitation/
http://web.archive.org/web/20230130054421/https://blog.nsogroup.com/a-tale-of-two-mallocs-on-android-libc-allocators-part-3-exploitation/
http://web.archive.org/web/20230130054421/https://blog.nsogroup.com/author/shmarya-rubenstein/
http://web.archive.org/web/20230130054421/https://blog.nsogroup.com/author/shmarya-rubenstein/

A Tale of Two Mallocs: On Android libc Allocators - Par...

2 0of9

e CENSUS

IT Security Works

The Shadow over Android

Heap exploitation assistance
for Android’s libc allocator

1 TRATE PL%K

VASILIS TSAOUSOGLOU vats@census-labs.com
PATROKLOS ARGYROUDIS argp@census-labs.com
CENSUS S.A. www.census-labs.com

As it happens, argp and vats presented a tool for visualizing the jemalloc heap at last year’s infiltrate. They later
released the tool, which they call shadow, on github with support for both firefox’s standalone jemalloc and
Android’s libc jemalloc. | highly recommend viewing their talk and using their tool. Shadow is a debugger plugin
which allows you to view the various jemalloc structures in a textual table format. It really makes a big difference
in understanding how the heap is behaving during exploit development.

Despite the fact that it is more than 30 years old, we were unable to find a similar visualization tool for dimalloc at

the time we were working on it. So we wrote one.

We've release shade, a dimalloc visualization tool, on github at https://github.com/s1341/shade. The tool has an
interface very similar to that of shadow.

You can request info about a given chunk using its address. This tells you the size of the chunk, its status and the

segment to which it belongs.

) dlinfo 0x7c8ee548
Info about 0x7c8ee548
chunk: 0x7c8ee540
slze: 0x00000020

usable size: 0x00000018
status: 1n use
segment base: 0x7c8e3000

You can get a quick picture of the chunks before and after your chunk using the dlaround command. This shows a
table of chunks centered around your chunk, including their addresses, sizes and statuses.

03/08/2024, 18:00

http://web.archive.org/web/20230130054421/https://b...

http://web.archive.org/web/20230130054421/https://github.com/s1341/shade
http://web.archive.org/web/20230130054421/https://github.com/s1341/shade

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230130054421/https://b...

3 0f9

(gdb) dlaround @x7c8ee548
data address status

Ox7c8ee328
Ox7c8ee348
O0x7c8eed38

Once you know a segment base address, you can use the dlsegment command to view all the chunks in that
segment.

(gdb) dlsegment ©6x7c8e3000
data address status

Ox7c8e3038
3048
3058
3068
30e8
0x7c8e3110
0x7c8e3130
0x7c8e3140
0x7c8e33f0
3408
3420
0x7c8e34a0
0x7c8e34b0
Ox7c8e34c8
Ox7c8e34e0
0x7c8e3790

shade currently works only in gdb with Android’s libc dimalloc in 32bit ARM processes. This is mostly because
that has been what we've needed it for. Pull requests are, of course, more than welcome!

While preparing for this presentation, | found that the excellent ncc group released their own tool for visualizing
dlmalloc heaps about 6 months ago. While | have not used it actively, it seems like a great tool.

Let’s get back to exploitation. For the purposes of this discussion, let’s assume that you have discovered a O-day
heap buffer overflow in application X. It's time to exploit it.

03/08/2024, 18:00

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230130054421/https://b...

4 of 9

Modern exploitation is hard. The Android system is one of the most heavily hardened platforms out there. Android
devices implement a whole host of mitigations to make exploiting vulnerabilities and gaining control of devices
more difficult. Things like Address Space Layout Randomization, selinux and process sandboxing are designed to
make end-to-end exploitation as painful as possible.

We can, however, overcome some of these mitigations by the generous application of persistence, creativity and

luck. We usually end up breaking the exploitation down into a few steps, each of which uses a gadget of some
sort.

Gadgets are specific exploitations of your vulnerability set to achieve one or more functionalities which can be
chained together to create an end-to-end exploit. We usually need one or more gadgets to actually gain
something useful. The gadgets might come from different ways of exploiting a single vulnerability, or from
different vulnerabilities.

We usually need a relative read or write gadget to overcome ASLR, followed by arbitrary read/write or execute
gadgets to gain code execution. Once we have code execution, we can try to escape sandboxing or to evade

selinux.

How do we go about creating a gadget from a heap buffer overflow?

+
c
)
-

overflowable

void gadget_read(gadget* g, char* out){
memcpy(out, g->ptr, g->length);
}

We do this with adjacency. What we want to do is to position the object containing the overflowable buffer just
before another object, which we’ll call the gadget object]. We need to be able to trigger operations on that gadget
object, which will, for example, use a pointer inside the object’s data structure to perform a read operation.

overflowable

void gadget_read(gadget* g, char* out){
memcpy (out, [g->ptr,| g->length);
}

We can then cause the overflow, overwriting the pointer in the gadget object’s data structure with a pointer of our
choice. We then trigger the read operation to read data at our desired pointer.

Using adjacency, we have created an arbitrary read gadget. We can use similar techniques to create write and
execute gadgets. The key is to have a useful operation, which we can repurpose as a gadget by modifying object

data through our overflow.

In order to achieve this adjacency, we need to shape the heap such that our exploitable object is allocated just

03/08/2024, 18:00

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230130054421/https://b...

before our gadget object.

Note that on dimalloc the two objects can be of completely different sizes, as dimalloc allows allocations of
various sizes to be contiguous. For jemalloc, however, the overflow and gadget objects must be of the same size
class, so that they will be allocated from the same bin, in the same run. This can greatly increase the complexity of
exploitation on jemalloc, as it is necessary to find gadget objects which not only provide useful functions, but
which fit in the right bin.

If you find an object which will work for jemalloc, it may work for dimalloc too, but the reverse is not true.

So how do we go about performing the shaping necessary to get our objects allocated as desired? Remember
that our interface to the allocator is very simple. We essentially only have the allocate and free operations. We
need to use those to perform our shaping. What we need are some useful allocation primitives.

We need some way to cause the target application to perform allocations and frees. Usually we’'ll look for some
discrete, easily triggerable, functionality, such as processing of a particular kind of network packet, or usage of a
particular kind of object, which performs allocations or frees as a side-effect of its normal operation.

It's important that the primitive perform the allocation or free operation we want, at the time that we want it, so
we can use it to gain control of the heap. A given exploitation might require more than one primitive.

The ideal primitive will allow us to allocate an arbitrary size, fill it with attacker controlled data and free it at a later

stage with another application trigger.

Although the ideal primitive is the holy grail, we will often have to make do with lesser primitives. For example, a
primitive which only allocates at a specific size, or one which allocates memory we cannot reliably free later. Some

of these lesser primitives are more useful on jemalloc, some on dimalloc.

The primitives you'll find in your target app really depend on the specific details of the target app. They might be
the result of sending certain types of packets to the target, performing operations in a scripting context such as
javascript, or creating and freeing objects through higher level, more abstract, operations.

Finding good primitives is a bit of an art form. It is often necessary to reverse a lot of code before useful primitives
can be found. So what should one look for?

You can start by looking for raw mallocs. These are probably the simplest primitives. A function which performs a
raw malloc, either with a size you can control or of a fixed size can be a useful primitive. Sometimes the allocation

will be for a multiple of a structure size.

Another good source of primitives are c++ classes which are allocated with the new operator. In most cases this
new translates directly to a malloc for the size of the class. If you can easily trigger allocation and freeing of
classes of interesting sizes, you have yourself an allocation primitive. These can also serve as excellent gadget
objects.

Reallocs can also be a good source of primitives. They are often used with zero-length arrays in C structs in order
to create variable length ‘contained’ arrays of sub objects. realloc is essentially the same as malloc.

If your target process uses the C++ standard template library, a good place to look for allocation primitives is in
std:vectors. The growth of those vectors causes a ‘new’ behind the scenes which is essentially just a malloc. As
the vector grows, it might fit into the size bin you are interested in. It may be necessary to add objects iteratively
until the vector grows to the correct size.

50f9 03/08/2024, 18:00

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230130054421/https://b...

std:string also uses malloc to allocate backing stores for the strings it contains. If you can allocate a std:string
from a raw buffer, the size of which you control, you have an excellent primitive. Note however that std::strings are
often passed by value, which causes their data to be copied into new allocations. This could be a source of
‘allocation noise” which you might want to avoid.

In general, it’'s necessary to think creatively about the accessible operations in your target in order to find the
allocation primitives you need.

Let’s walk through an example exploitation with notes on some issues you might encounter on each of the
allocators.

y = malloc(x)
free(y)

overflowable
0x4e0

I char buf[10]

First, let’'s define our asssumptions:

o Let’s say we have discovered a buffer overflow in an object of size 0x4e0. We are able to overflow an arbitrary
number of bytes with controlled data, starting from the overflowable buffer.

o Let’s also say that we have discovered a useful gadget object, with size 0x450. This means this object will be in
the same size class as the overflowable object.

e Let’s also assume that we have discovered an allocation primitive which allows us to allocate at an arbitrary size

¢ We've also got the ability to free any of the allocations we make with the allocation primitive

¢ Finally, by performing an operation on the gadget object, we are able to determine if it has been overflowed or not.

overflowable

We need to cause the overflowable object to be allocated immediately before the gadget object, using the
allocation and free primitives to shape the heap.

The assumptions we've made are good assumptions. Without a gadget object in the same size class as the
overflowable object, it is almost impossible to exploit a buffer overflow on jemalloc. Without an arbitrary size

allocation primitive, it is very difficult to exploit on dimalloc.

One technique for heap shaping that I've found particularly successful is called the placeholder technique.

6 of 9 03/08/2024, 18:00

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230130054421/https://b...

2 92 2
® - ® o ® o
2 8 2 & 3 &
o © o © o ES)
@ .0 o oo [} 0
3 3 3

{
{
{

The idea is simple. Using our arbitrary allocation primitive, we allocate a bunch of placeholder sets for our target
objects, at the sizes of those objects. Each set of placeholders has a placeholder for the overflowable object and a
placeholder for the gadget object. We hope that at least one set of placeholders is allocated such that the
overflowable placeholder is directly before the gadget placeholder.

K~
ey
©
=
o
&=
e
[}
>
°

|:overflowable

[overflowable
@

Next, we iterate over all of our placeholder sets, and for each set, we free the gadget placeholder and cause a
gadget object to be allocated. Hopefully this gadget object will fall into the freed placeholder slot.

overflowable]

overflowable]

overflowablel
F

Then we once more iterate over each of our placeholder sets, this time freeing the overflowable placeholder,
allocating our overflowable object and performing the overflow. We then activate the gadget for each instance of
the gadget object, and use the result to determine if we have overflowed this instance or not. Hopefully at least
one set of placeholders will have been turned into a working gadget.

This idea is the basis for the placeholder heap shaping technique. This technique can be used on both jemalloc
and dimalloc, but there are various things to look out for on each of the respective allocators.

One thing that can help increase the probability that one or more placeholder sets will have contiguous
overflowable and gadget objects is to spray a large number of allocations of the relevant size class at the very
beginning of the exploit. This will hopefully cause any best-fit chunks in the dimalloc free lists or partially used
runs in the relevant jemalloc bin to be used up, filling the holes. The placeholder allocations will then most

probably be from new dimalloc segments or new jemalloc runs, with successive allocations for the same size
class falling after one another.

One problem you may encounter is that the allocation of the overflowable object, the gadget object or even the
allocation primitives performs more than just the target allocation. In fact, it is very common for one or more of
these to perform a bunch of smaller or bigger allocations around the actual target allocation we're interested in.

These unwanted allocations shouldn’t make any difference when using jemalloc, as there we are concerned only
with allocations in our bin.

7 of 9 03/08/2024, 18:00

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230130054421/https://b...

On dimalloc, these allocations might fall between the overflowable object and the gadget object, messing with
our heap shaping.

for 1 in range(100):
small filter_allocs[i] = prim_alloc(0x100)

placeholder_sets = allocate_placeholders()

0 =20
for ps in placeholder_sets:
prim_free(ps.gadget)
for 1 in range(o, o + 10):
prim_free(small_filter_allocs[i])
o += 10
allocate_gadget()

Assuming the gadget object is the one which allocates the unwanted allocations, one way to deal with this issue is
to do the following:

First, at the beginning of the exploit, we allocate a bunch of smaller blocks, let’s say 100 blocks of 0x100 bytes
each

We then allocate all the placeholder sets

Then, for each placeholder set, we first free the gadget placeholder.
Then we free a few of the small filter allocations. These will be added to the free bins

Then we allocate the gadget itself, the smaller unwanted allocations will use the filter allocations we just freed,
and the gadget itself will fall on the placeholder.

On dimalloc, freeing a placeholder can cause it to be consolidated with an adjacent free chunk, resulting in it being
placedin alarger bin’s free list. It then might not be used for the next allocation of the placeholder size. In other
words, the placeholder will not be used to service the gadget or overflowable object allocation.

We can solve this quite easily using pinner allocations. The idea is that you simply allocate objects before your
first placeholder and after your last placeholder. You never free these. As these pinners are always in use, and as
we only ever free one placeholder in a set at a time, the placeholders will not be consolidated when freed.

Once you finally get your objects to be one after the other, there is an additional gotcha on dimalloc. The metadata
for the gadget chunk will be between your overflowable object and the gadget data. You need to overwrite this
metadata with the sizes of the first and second objects respectively. Otherwise the allocator will fail when it
comes time to free your chunks.

On jemalloc, the metadata is out-of-band, so this is not necessary.

Another thing to watch out for is that your primitive candidates may cause allocations or frees on threads other
than the one which allocates your overflowable and gadget objects. In fact, the overflowable and gadget objects
might not be allocated on the same thread at all. So your placeholders might be allocated (and freed) by one
thread, but the gadget or overflowable object will be allocated on another.

8 of 9 03/08/2024, 18:00

A Tale of Two Mallocs: On Android libc Allocators - Par... http://web.archive.org/web/20230130054421/https://b...

This shouldn’t present a problem for dimalloc, but can be a significant pain on jemalloc.
The basic question is how can we move an allocation from one thread’s tcache to another thread.
One way to do this is to use flush events.

We free our desired placeholder region, r15. We then free up to 20 more regions on that same thread. This will fill
up the tcache, resulting in a flush. The flush removes the oldest half of the tcache and marks those regions as
free, making them available for other threads to allocate. We then allocate on our desired thread to get the region
we want with the object content we need.

Note that the desired region might not be first in line on the thread which allocates the desired object. You might
need to spray a bunch of allocations on that thread in order to catch the freed placeholder. Filling holes before
allocating the placeholders can help prevent this issue.

Getting this right can be really complicated and is going to be very specific to your target, your vulnerability and
the gadgets and primitives you find.

One thing to remember is that on jemalloc, the regions for your overflowable and gadget objects will be of the
same size - the maximum size of this particular bin. This might be larger than the objects themselves, so when
you overflow from your overflowable buffer, you need to pad that overflow with the difference between the
overflowable object’s size and the bin size before you overflow any gadget object data.

On dimalloc, the objects are directly after one another, except for the metadata between them.

On jemalloc it is possible that the threads that are involved in your exploitation are not assigned to the same
arena. This can be problematic if, for example, you need to allocate contiguous regions in different threads.

Arena selection is supposed to use a round-robin approach, but in reality it will always allocate a new thread to the
arena with the least threads assigned. If you can create and destroy threads somehow, before your overflow, you

can do the following:

First add a whole bunch of threads to the system, say 30 threads. They will be spread evenly across the two
arenas. Now destroy every second thread you created, causing one arena to have 15 threads and the other O. Now
allocate your exploitation threads. Up to 15 of them will be allocated in the same arena.

That’s about all I've got for you guys. | hope that I've given you a foundation in understanding how the Android libc
allocators work, and that you’'ve heard some tips regarding how to successfully exploit heap vulnerabilities on
Android.

9 of 9 03/08/2024, 18:00

