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A Tale of Two Mallocs: On Android libc Allocators – Part 1

– dlmalloc

In this series of three posts, we’re going to try to cover a deep dive into the pertinent details of the two Android

libc allocators, followed by some thoughts on exploitation in light of those allocators.

All of the information I’ll impart is the result of our own research into the allocators in question, including a

thorough code review of the implementations of those allocators. That said, much of the information is available

online in one form or another. I’ve yet to encounter a concise but in-depth description of both allocators and the

relevant exploitation techniques. Hopefully that’s what this presentation will provide.

It’s 2018. The days of trivially exploitable stack buffer over�ows are over. Modern exploitable vulnerabilities fall

into a few meager classes, we’ll focus on two of these.

Even at this late stage in the game, memory corruption bugs are still a thing. Chief among these is the good old

buffer over�ow. Stack cookies have largely neutered the exploitability of stack based memory corruptions, so

most modern memory corruption vulnerabilities are in objects and buffers on the heap.

In addition to these heap-based memory corruption vulnerabilities, we have use-after-free vulnerabilities.

This class of bugs is all about heap objects coupled with bad memory management practices.

Together these two classes make up a very large portion of the exploitable bugs we �nd in modern software.

What these classes of bugs have in common is that they both occur mostly in heap objects. Understanding how

the heap works is a critical, often overlooked, step in crafting reliable exploits for these kinds of vulnerabilities.

Other prevalent classes of bugs are type confusions and race conditions. We’re not going to focus on those here,

because they are not necessarily heap-related.

When we talk about the ‘heap’, what we usually mean is any and all memory objects which are managed using the

libc malloc/free interface. This very simple interface lets us allocate so-called “dynamic memory” for our use, and

free it when we are done using it. When we approach the task of exploiting a heap-over�ow or a use-after-free,

it’s not enough to know the semantics of this interface. We need to know what is happening under the hood.

Android uses its own libc implementation, called bionic. When the Android developers came to implement these

heap functions, they wisely chose to use an existing, battle tested implementation instead of rolling their own.

dlmalloc
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The dynamic memory allocator implementation they chose is called dlmalloc. It’s named after its author, Doug

Lea. Doug started writing this allocator way back in 1987. It has received many updates and improvements over

the years, and was last updated in 2012.

When you call malloc, dlmalloc does a bunch of stuff behind the scenes, and will eventually return a pointer to a

block of contiguous memory which you can use in your program. This block is called a ‘chunk’, and is guaranteed

to be at least as big as the size you requested.

These chunks don’t come from nowhere. When dlmalloc needs memory to use for chunks, it requests an

allocation from the operating system. Each such system allocation is called a ‘segment’.

Segments are the base unit of allocation from the OS. dlmalloc keeps a linked list of segments it has allocated

from the system, with the pointers stored in the segment’s footer. The most recently allocated segment is the

‘current’ segment. When it needs more system memory, dlmalloc �rst tries to extend the current segment using

sbrk, falling back to mmap-ing a new segment if that doesn’t work. Segments can be of different sizes, but are

always a multiple of the page size. Segments are not guaranteed to be adjacent to one another in memory, and, in

fact, are allocated at random addresses when system-wide ASLR is enabled, as it is on Android. If a new segment

happens to be contiguous to an existing segment, the two segments are consolidated into a single larger

segment.

The current segment contains the ‘top chunk’, which is the chunk of free space available for immediate allocation

of chunks. Here’s an example ‘current’ segment, with in use (allocated) chunks in light green and free (unallocated)

chunks in blue.

When dlmalloc needs to allocate a new chunk for a malloc call, it will check if the top chunk is big enough to

contain the new chunk, and will carve the new chunk from within the top chunk by splitting it. The �rst half of the

top chunk becomes the new chunk to be returned, and the second half becomes the new ‘top chunk’. If the ‘top

chunk’ is not large enough to contain the new chunk, a new segment is allocated from the operating system, and

the new chunk is allocated from that new segment.
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Each chunk has two pointers worth of metadata: in 32bit processes this is 8 bytes. This metadata sits directly

before the pointer returned by malloc, i.e. inline before the useable memory. The minimum amount of actual

usable memory returned by malloc is two pointers wide.

Chunks of different sizes can be allocated one after the other in the segments. Each chunk marks its size and

whether it is in use or not, via the C_INUSE �ag. It also marks whether the previous chunk in the segment is in use,

with the P_INUSE �ag, and the previous chunk’s size. Because the metadata contains the size of the previous

chunk, we can easily walk backwards through the chunks in a segment.

When you call free on a given chunk, the �rst thing that happens is that dlmalloc checks to see if the preceding

chunk is in use. If the preceding chunk is free, dlmalloc will consolidate the two chunks into one larger free chunk.

This means that it is impossible for two consecutive chunks in a segment to both be free. The chunks immediately

before and after a free chunk are both guaranteed to be in use.

Simple right? Obviously what we’ve described is a pretty naïve allocator implementation. There’s a little more to it.

Speci�cally, what we’ve described is a system which never reuses freed memory, as it always allocates from the

‘top chunk’. So how do we ef�ciently reuse freed memory?

We need some bins.

Bins are used to keep a record of recently freed chunks which can be reused. There are two types of bins: ‘small’

and ‘tree’. Small bins are used for chunks smaller than 0x100 bytes. Each small bin contains chunks of the same

size. Tree bins are used for larger chunks, and contain chunks of a given range of sizes. Small bins are

implemented as simple doubly-linked lists, and tree bins are implemented as bitwise digital trees (aka ‘tries’),
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keyed on chunk size. There are 32 small bins and 32 tree bins.

When a chunk is freed, it undergoes consolidation if needed, and then the consolidated chunk is added to the

appropriate bin for its size. The list and tree node pointers are stored within the actual chunk data, which is safe to

use for metadata as it is ‘free’. This is where the minimum size for a chunk comes from: we need space for

previous and next pointers in the free chunk’s data.

Here’s an example showing a few segments with some in use and free chunks. The 0x18 bin points to the �rst of

the free chunks of size 0x18, and the rest of them are chained together in a doubly-linked-list.

Note that small bins contain chunks of exactly one size. Tree bins contain ranges of chunk sizes.

dlmalloc is a best �t allocator. It will always try to �nd the free chunk with the smallest size greater or equal to the

request size.

During allocation, before looking at the ‘top chunk’, dlmalloc will �rst try to �nd a free chunk in the bins. It �rst

tries to �nd a chunk which matches the exact size of the allocation request, and then moves upwards through the

non-empty bins till it �nds the smallest chunk which is larger than the request. If a larger chunk is used, it will be

split, and the remainder will be added to the relevant bin to possibly be used for future allocations. Only if no

chunk exists in the bins to satisfy the allocation request will the ‘top chunk’ be used.

Note that the bins are First In First Out. So chunks are allocated in the order that they were freed. This can be an

important factor in exploitation.

After looking in the bins for an exact size match, but before going to the ‘top chunk’, dlmalloc will try to see if the

‘designated victim’ is large enough to contain the allocation request.

The ‘designated victim’ is the preferred chunk for servicing small requests that don’t have an exact �t. It is the

chunk which was most recently split off. It doesn’t sit in any bin. Having the ‘designated victim’ helps to localize

allocations to a given memory segment, which can be useful when considering how CPU caches work. Small

allocations which don’t have an exact �t in the bins will be split off from this chunk.
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So for a small allocation, a request size smaller than 0x100 bytes, this is the �ow:

• We �rst calculate the exact size including metadata and padding

• We then look for an exact match in the small bins

• If that fails, we next see if the ‘designated victim’ is large enough to allocate from

• If the ‘designated victim’ is too small, we then look for a ‘best �t’ in the small bins larger than our request size

• If that fails, we look in the tree bins for a ‘best �t’ match

• Finally, if all else has failed, we look at the top chunk, potentially causing more memory to be allocated from the

system.

Larger allocations are a little simpler. We just try to allocate from the tree bins before attempting the ‘designated

victim’ and then the top chunk.

There are no bins for so-called very large allocations, which means anything larger than the MMAP_THRESHOLD,

which is 64kb on Android. These allocations don’t come from the segments. Instead, each such allocation is

mmaped directly.

So that’s dlmalloc in a nutshell. Hopefully I’ve covered all the salient points. There are a couple of things we should

note before moving on.

While dlmalloc takes some steps to reduce fragmentation of the heap, particularly the reuse of freed chunks

based on bin size, it is still common for smaller free chunks to become trapped between larger consecutive

chunks which often remain in use for longer periods in application �ow.

dlmalloc is not thread safe. At all. Both malloc and free touch process global data structures and the inline

metadata between chunks and inside free chunks. Remember that dlmalloc was designed long before the Age of

Parrellism, before every application was multithreaded, before hyper-threading and multi-core processors. To

make dlmalloc usable in multi-threaded processes, Doug Lee chose the simplest possible �x: the big lock.

Every single malloc or free call locks a global mutex on entry and unlocks at function exit. This makes dlmalloc

usable with threads, but has a major performance impact. Essentially all allocator operations are serialized. This is

ok on lightly multi-threaded processes, but can be a signi�cant drag on more complex applications

The poor multithreading performance of dlmalloc is one of the main reasons that the bionic developers decided

to switch to a more modern heap implementation.

That wraps up the discussion of dlmalloc. Read the next post in this series to �nd out about jemalloc, the more

modern Android libc allocator.
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A Tale of Two Mallocs: On Android libc Allocators – Part 2

– jemalloc

In the �rst post of this series, we discussed why it is important to understand the inner workings of the libc heap

allocator, and did a deep dive into the original Android libc allocator: dlmalloc. In this post, we’ll examine the

allocator which replaced dlmalloc as Android’s allocator.

The new allocator selected by the bionic developers is called jemalloc. It is named after its implementer Jason

Evans. Jason started implementing jemalloc in 2005. It was then added to FreeBSD’s libc to become that

platform’s default allocator. In 2007, the Firefox Mozilla project adopted the stand-alone version of jemalloc as

their primary allocator. Since 2009, jemalloc has been used extensively in Facebook’s backend servers. It’s

currently maintained by a team at Facebook.

During May 2014, jemalloc was added to the bionic source tree for Android 5.0.0. dlmalloc continued to be the

default, but it was possible to select this new heap implementation using a board con�g �ag. In July 2014,

jemalloc was made the default.

In an ideal world, every vendor of an Android phone would have made the transition to jemalloc with their Android

5.0.0 ROMS. Unfortunately, many vendors chose to remain with the tried and tested dlmalloc heap until later

versions of Android. In fact I’ve seen dlmalloc being used on both lollipop and marshmallow devices. The fact that

there is no clear line in time separating the two implementations means that you cannot really know a priori

whether a given Android 5 or 6 device is using dlmalloc or jemalloc.

jemalloc was designed from the ground up to be highly-performant in symmetric-multi-processing environments.

It has many features which are geared towards increasing ef�ciency and locality in multi-threaded apps, while

reducing overall fragmentation.

The �rst important concept in jemalloc’s implementation is the arena. Each thread is assigned to a given arena,

and it allocates and frees only from that arena. Each arena is completely separate from other arenas, and most

importantly they have separate mutexs guarding their data structures. This means that you can actually perform

allocator operations in parallel so long as the threads involved are assigned to different arenas.

In general jemalloc usage, there should be slightly more arenas then there are hardware cores. For some reason,

on android, this is not the case. Instead there are exactly two arenas.

Threads are assigned to arenas in a round-robin fashion, which should ensure that the arenas have a more or less

equal number of threads.
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In jemalloc, memory is allocated from the operating system using mmap. Each mmap operation allocates a chunk.

jemalloc chunks roughly correlate to dlmalloc segments. Chunks are all of the same size, 256k bytes on Android

versions up to 7.0.0. From 7.0.0, chunks are 512kB for 32-bit processes and 2MB for 64-bit processes. Each

chunk belongs to a speci�c arena. There is a chunk header containing metadata for this chunk, speci�cally

including a pagemap which de�nes which pages are associated with which runs.

For any jemalloc managed address, the relevant chunk header can easily be found by simply rounding down the

address to the chunk size. This means that we have o(1) lookups of metadata in most situations.

A run is an area of contiguous memory, located in a chunk. Each run contains a �xed number of regions of a

speci�c size. Different size classes have different numbers of regions. Runs are always a multiple of the page size.

Run metadata is stored in the chunk header for the chunk which contains them. In other words, the metadata is

out-of-band. Each run has a bitmap which indicates the state of each region in the run. A region can either be in-

use or free.

Regions are the smallest unit of the jemalloc system. These are analogous to dlmalloc chunks, except that regions

do not carry any metadata at all. Instead each region belongs to a run of regions of the same size. The run stores

the metadata for all its regions in the chunk’s header. The region address is the return value from a malloc call, and

should be the argument to free.

jemalloc is, at its core, a bucket allocator. Each arena has a set of logical bins, each of which services a speci�c size

class. Allocations are made from the bin with the smallest size large enough to �t the allocation request. On

Android, there are 39 bins. By having a carefully selected and limited list of bin sizes, with small steps between

them, fragmentation can be decreased.

Note that on dlmalloc, bins are used only as free lists. On jemalloc, bins are used for ALL allocations.
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Bin metadata is stored in the arena structure. Each run is associated with a speci�c bin. Each bin has a ‘current’

run which points to the non-full run from which it is currently allocating. Here you can see the 39 bins for this

arena, with their metadata addresses, size classes and current run pointers.

If a run becomes full during an allocation, jemalloc will check if there are any non-full runs for this bin in the arena.

If more than one non-full runs exist, the one with the lowest address will be selected and set as the ‘current’ run. If

no non-full runs are available in this bin, a new run will be created in either an existing chunk or in a new chunk, and

that run will be set as the ‘current’ run of the bin.

Arenas keep track of their non-full runs and available chunk space using a set of red-black trees. Finding a non-

full run or available space for a new run is thus at most an O(log(n)) operation.

jemalloc reduces lock contention in a few ways, thereby improving multi-threaded performance. Firstly, each

arena has its own locks, so operations on different arenas do not contend for locks. Secondly, the critical time is

very short. The lock only needs to be held when allocating new runs to a given bin, or when �ipping the in-use bit

of a region in a run. These mechanisms already make jemalloc signi�cantly more thread-friendly than dlmalloc.

However, Jason didn’t stop there. He also implemented thread speci�c caches.

For each thread, for each bin there is a tcache. The tcache is a list of recently freed regions for the speci�c bin and

thread.
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When allocating, jemalloc �rst looks to see if there is a region in the tcache for the required size’s bin before going

to the ‘current’ run for that bin. If so, it uses that region.

When freeing a region, jemalloc pushes the region onto the tcache for the relevant bin. The tcache is LIFO.
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Regions which are currently held in tcaches do not have their in-use bit set to free. Instead they are considered by

the greater jemalloc system to be in-use. This saves on locks, as it is only necessary to grab a lock when updating

global data structures. Thread speci�c data structures are by de�nition safe from other threads, and thus in many

cases jemalloc allocations will not grab locks at all.

If jemalloc tries to allocate a region of a given size, and the thread’s tcache for that bin size is empty, a pre-�ll

event will occur. When pre�lling, jemalloc will lock the arena mutex, ‘allocate’ a number of regions for this bin from

the ‘current’ run, marking their bits in the run’s bitmaps as in-use, push these regions onto the thread’s tcache and

release the lock. This ensures that there are always a ‘sane’ number of regions in a tcache, and signi�cantly

improves locality, as a given thread will allocate regions of the same size from mostly contiguous memory.

Each tcache has a maximum number of regions which it can contain. For small bins this is 8, and for larger bins

this is 20. When we reach this maximum a �ush event occurs. At a �ush event, jemalloc takes the oldest half of

the tcache’s regions and really frees them. I.e. it grabs the lock and marks the region’s bits as free. At this point

they are free to be allocated by other threads.

In addition, jemalloc implements a ‘garbage collection’ mechanism. Essentially, jemalloc counts each allocation

and free event. When that count reaches a certain threshold, a so-called ‘hard event’ occurs. Each ‘hard event’,

jemalloc looks at a speci�c bin across all threads, and clears out three-quarters of the regions from the tcaches

for that bin. During the next ‘hard event’ the next bin will be targeted for cleanup. This is another way that regions

can be removed from tcaches and returned to general availability.
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So when allocating on jemalloc, we observe the following �ow.

• We �rst calculate the bin for our request size

• We then look in the tcache of the current thread for the calculated bin

• If the tcache is empty, we pre�ll from the bin’s ‘current’ run

• When the current run is exhausted, we pre�ll from the non-full run with the lowest address

• If there are not enough regions in the existing non-full runs, a new run will be allocated in a chunk which has

available space

• If no space is available in a chunk, a new chunk is allocated from the system, and a new run is allocated in that

chunk and is used to pre�ll the tcache.

So now we’ve covered the essential details of jemalloc.

Let’s compare some of the important properties of dlmalloc and jemalloc.

• dlmalloc is a best-�t allocator while jemalloc is a bucket allocator

• dlmalloc uses in-line metadata

• user allocations on dlmalloc are called chunks, in jemalloc they’re called regions

• dlmalloc allocates variable sized segments from the system, while jemalloc allocates �xed-sized chunks

• jemalloc always allocates from �xed size regions. dlmalloc chunks can be arbitrary 8-byte aligned sizes,

• In dlmalloc, adjacent allocations are usually not the same size. In jemalloc they are.

• dlmalloc only has the big lock, jemalloc has �ne grained mutexes which reduce lock contention

• jemalloc has thread speci�c free lists (aka tcaches) to further increase multithreading performance

• jemalloc has a garbage collection mechanism which helps to clean up tcaches.
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• Recently freed chunks or regions on dlmalloc are reused in a FIFO fashion, while on jemalloc they are reused LIFO.

In our estimation, we believe that the current distribution of devices in use is about 70% jemalloc and 30%

dlmalloc. This is largely due to the fact that most people update their phones relatively frequently, skewing the

distribution towards the more modern jemalloc based systems. Even though the bulk of devices are on jemalloc, it

is still necessary to exploit dlmalloc devices in order to get good real-world coverage. For example, certain

geographical regions are more likely to have dlmalloc based phones.
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