
The Linux-PAM System
Administrators' Guide

Andrew G. Morgan <morgan@kernel.org>
Thorsten Kukuk <kukuk@thkukuk.de>

The Linux-PAM System Administrators' Guide
by Andrew G. Morgan and Thorsten Kukuk

Version 0.99.7.0, 16. January 2007

Abstract

This manual documents what a system-administrator needs to know about the Linux-PAM library. It covers the correct
syntax of the PAM configuration file and discusses strategies for maintaining a secure system.

iv

1. Introduction ... 1
2. Some comments on the text .. 2
3. Overview ... 3
4. The Linux-PAM configuration file ... 5

4.1. Configuration file syntax ... 5
4.2. Directory based configuration ... 8
4.3. Example configuration file entries ... 8

5. Security issues .. 10
5.1. If something goes wrong .. 10
5.2. Avoid having a weak `other' configuration .. 10

6. A reference guide for available modules .. 11
6.1. pam_access - logdaemon style login access control ... 11
6.2. pam_cracklib - checks the password against dictionary words 14
6.3. pam_debug - debug the PAM stack .. 18
6.4. pam_deny - locking-out PAM module .. 19
6.5. pam_echo - print text messages ... 20
6.6. pam_env - set/unset environment variables .. 21
6.7. pam_exec - call an external command .. 23
6.8. pam_faildelay - change the delay on failure per-application .. 24
6.9. pam_filter - filter module ... 25
6.10. pam_ftp - module for anonymous access ... 26
6.11. pam_group - module to modify group access .. 27
6.12. pam_issue - add issue file to user prompt .. 29
6.13. pam_keyinit - display the keyinit file .. 30
6.14. pam_lastlog - display date of last login ... 32
6.15. pam_limits - limit resources .. 33
6.16. pam_listfile - deny or allow services based on an arbitrary file 36
6.17. pam_localuser - require users to be listed in /etc/passwd ... 38
6.18. pam_loginuid - record user's login uid to the process attribute 38
6.19. pam_mail - inform about available mail .. 39
6.20. pam_mkhomedir - create users home directory ... 41
6.21. pam_motd - display the motd file ... 42
6.22. pam_namespace - setup a private namespace .. 42
6.23. pam_nologin - prevent non-root users from login .. 46
6.24. pam_permit - the promiscuous module .. 47
6.25. pam_rhosts - grant access using .rhosts file .. 48
6.26. pam_rootok - gain only root access .. 49
6.27. pam_securetty - limit root login to special devices ... 50
6.28. pam_selinux - set the default security context ... 51
6.29. pam_shells - check for valid login shell ... 52
6.30. pam_succeed_if - test account characteristics .. 52
6.31. pam_tally - login counter (tallying) module .. 54
6.32. pam_time - time controled access ... 57
6.33. pam_umask - set the file mode creation mask ... 59
6.34. pam_unix - traditional password authentication ... 60
6.35. pam_userdb - authenticate against a db database ... 63
6.36. pam_warn - logs all PAM items .. 64
6.37. pam_wheel - only permit root access to members of group wheel 65
6.38. pam_xauth - forward xauth keys between users .. 66

7. See also ... 69
8. Author/acknowledgments .. 70
9. Copyright information for this document ... 71

1

Chapter 1. Introduction
Linux-PAM (Pluggable Authentication Modules for Linux) is a suite of shared libraries that enable the
local system administrator to choose how applications authenticate users.

In other words, without (rewriting and) recompiling a PAM-aware application, it is possible to switch
between the authentication mechanism(s) it uses. Indeed, one may entirely upgrade the local authentication
system without touching the applications themselves.

Historically an application that has required a given user to be authenticated, has had to be compiled to use
a specific authentication mechanism. For example, in the case of traditional UN*X systems, the identity
of the user is verified by the user entering a correct password. This password, after being prefixed by a two
character ``salt'', is encrypted (with crypt(3)). The user is then authenticated if this encrypted password
is identical to the second field of the user's entry in the system password database (the /etc/passwd
file). On such systems, most if not all forms of privileges are granted based on this single authentication
scheme. Privilege comes in the form of a personal user-identifier (UID) and membership of various groups.
Services and applications are available based on the personal and group identity of the user. Traditionally,
group membership has been assigned based on entries in the /etc/group file.

It is the purpose of the Linux-PAM project to separate the development of privilege granting software from
the development of secure and appropriate authentication schemes. This is accomplished by providing a
library of functions that an application may use to request that a user be authenticated. This PAM library
is configured locally with a system file, /etc/pam.conf (or a series of configuration files located
in /etc/pam.d/) to authenticate a user request via the locally available authentication modules. The
modules themselves will usually be located in the directory /lib/security or /lib64/security
and take the form of dynamically loadable object files (see dlopen(3)).

2

Chapter 2. Some comments on the text
Before proceeding to read the rest of this document, it should be noted that the text assumes that certain
files are placed in certain directories. Where they have been specified, the conventions we adopt here
for locating these files are those of the relevant RFC (RFC-86.0, see bibliography"). If you are using a
distribution of Linux (or some other operating system) that supports PAM but chooses to distribute these
files in a diferent way you should be careful when copying examples directly from the text.

As an example of the above, where it is explicit, the text assumes that PAM loadable object files (the
modules) are to be located in the following directory: /lib/security/ or /lib64/security
depending on the architecture. This is generally the location that seems to be compatible with the
Filesystem Hierarchy Standard (FHS). On Solaris, which has its own licensed version of PAM, and some
other implementations of UN*X, these files can be found in /usr/lib/security. Please be careful
to perform the necessary transcription when using the examples from the text.

3

Chapter 3. Overview
For the uninitiated, we begin by considering an example. We take an application that grants some service
to users; login is one such program. Login does two things, it first establishes that the requesting user
is whom they claim to be and second provides them with the requested service: in the case of login the
service is a command shell (bash, tcsh, zsh, etc.) running with the identity of the user.

Traditionally, the former step is achieved by the login application prompting the user for a password and
then verifying that it agrees with that located on the system; hence verifying that as far as the system is
concerned the user is who they claim to be. This is the task that is delegated to Linux-PAM.

From the perspective of the application programmer (in this case the person that wrote the login
application), Linux-PAM takes care of this authentication task -- verifying the identity of the user.

The flexibility of Linux-PAM is that you, the system administrator, have the freedom to stipulate which
authentication scheme is to be used. You have the freedom to set the scheme for any/all PAM-aware
applications on your Linux system. That is, you can authenticate from anything as naive as simple trust
(pam_permit) to something as paranoid as a combination of a retinal scan, a voice print and a one-time
password!

To illustrate the flexibility you face, consider the following situation: a system administrator (parent)
wishes to improve the mathematical ability of her users (children). She can configure their favorite ̀ `Shoot
'em up game'' (PAM-aware of course) to authenticate them with a request for the product of a couple of
random numbers less than 12. It is clear that if the game is any good they will soon learn their multiplication
tables. As they mature, the authentication can be upgraded to include (long) division!

Linux-PAM deals with four separate types of (management) task. These are: authentication management;
account management; session management; and password management. The association of the preferred
management scheme with the behavior of an application is made with entries in the relevant Linux-PAM
configuration file. The management functions are performed by modules specified in the configuration
file. The syntax for this file is discussed in the section below.

Here is a figure that describes the overall organization of Linux-PAM:

 +----------------+
 | application: X |
 +----------------+ / +----------+ +================+
authentication-[---->--\--] Linux-	--<--	PAM config file	
+ [----<--/--] PAM		================	
[conversation()][--+ \			X auth .. a.so
+----------------+	/ +-n--n-----+	X auth .. b.so	
		__	
service user	A		
		V A	
 +----------------+ +------|-----|---------+ -----+------+
 +---u-----u----+ | | |
 | auth.... |--[a]--[b]--[c]
 +--------------+
 | acct.... |--[b]--[d]
 +--------------+
 | password |--[b]--[c]
 +--------------+
 | session |--[e]--[c]

Overview

4

 +--------------+

By way of explanation, the left of the figure represents the application; application X. Such an application
interfaces with the Linux-PAM library and knows none of the specifics of its configured authentication
method. The Linux-PAM library (in the center) consults the contents of the PAM configuration file
and loads the modules that are appropriate for application-X. These modules fall into one of four
management groups (lower-center) and are stacked in the order they appear in the configuration file. These
modules, when called by Linux-PAM, perform the various authentication tasks for the application. Textual
information, required from/or offered to the user, can be exchanged through the use of the application-
supplied conversation function.

If a program is going to use PAM, then it has to have PAM functions explicitly coded into the program.
If you have access to the source code you can add the appropriate PAM functions. If you do not have
accessto the source code, and the binary does not have the PAM functions included, then it is not possible
to use PAM.

5

Chapter 4. The Linux-PAM
configuration file

When a PAM aware privilege granting application is started, it activates its attachment to the PAM-API.
This activation performs a number of tasks, the most important being the reading of the configuration
file(s): /etc/pam.conf. Alternatively, this may be the contents of the /etc/pam.d/ directory. The
presence of this directory will cause Linux-PAM to ignore /etc/pam.conf.

These files list the PAMs that will do the authentication tasks required by this service, and the appropriate
behavior of the PAM-API in the event that individual PAMs fail.

4.1. Configuration file syntax
The syntax of the /etc/pam.conf configuration file is as follows. The file is made up of a list of rules,
each rule is typically placed on a single line, but may be extended with an escaped end of line: `\<LF>'.
Comments are preceded with `#' marks and extend to the next end of line.

The format of each rule is a space separated collection of tokens, the first three being case-insensitive:

service type control module-path module-arguments

The syntax of files contained in the /etc/pam.d/ directory, are identical except for the absence of any
service field. In this case, the service is the name of the file in the /etc/pam.d/ directory. This filename
must be in lower case.

An important feature of PAM, is that a number of rules may be stacked to combine the services of a number
of PAMs for a given authentication task.

The service is typically the familiar name of the corresponding application: login and su are good examples.
The service-name, other, is reserved for giving default rules. Only lines that mention the current service
(or in the absence of such, the other entries) will be associated with the given service-application.

The type is the management group that the rule corresponds to. It is used to specify which of the
management groups the subsequent module is to be associated with. Valid entries are:

account this module type performs non-authentication based account management. It is typically
used to restrict/permit access to a service based on the time of day, currently available system
resources (maximum number of users) or perhaps the location of the applicant user -- 'root'
login only on the console.

auth this module type provides two aspects of authenticating the user. Firstly, it establishes
that the user is who they claim to be, by instructing the application to prompt the user
for a password or other means of identification. Secondly, the module can grant group
membership or other privileges through its credential granting properties.

password this module type is required for updating the authentication token associated with the user.
Typically, there is one module for each 'challenge/response' based authentication (auth)
type.

session this module type is associated with doing things that need to be done for the user before/after
they can be given service. Such things include the logging of information concerning the
opening/closing of some data exchange with a user, mounting directories, etc.

The Linux-PAM configuration file

6

The third field, control, indicates the behavior of the PAM-API should the module fail to succeed in its
authentication task. There are two types of syntax for this control field: the simple one has a single simple
keyword; the more complicated one involves a square-bracketed selection of value=action pairs.

For the simple (historical) syntax valid control values are:

required failure of such a PAM will ultimately lead to the PAM-API returning failure but only
after the remaining stacked modules (for this service and type) have been invoked.

requisite like required, however, in the case that such a module returns a failure, control is directly
returned to the application. The return value is that associated with the first required
or requisite module to fail. Note, this flag can be used to protect against the possibility
of a user getting the opportunity to enter a password over an unsafe medium. It is
conceivable that such behavior might inform an attacker of valid accounts on a system.
This possibility should be weighed against the not insignificant concerns of exposing a
sensitive password in a hostile environment.

sufficient success of such a module is enough to satisfy the authentication requirements of the stack
of modules (if a prior required module has failed the success of this one is ignored). A
failure of this module is not deemed as fatal to satisfying the application that this type has
succeeded. If the module succeeds the PAM framework returns success to the application
immediately without trying any other modules.

optional the success or failure of this module is only important if it is the only module in the stack
associated with this service+type.

include include all lines of given type from the configuration file specified as an argument to
this control.

substack include all lines of given type from the configuration file specified as an argument to
this control. This differs from include in that evaluation of the done and die actions in
a substack does not cause skipping the rest of the complete module stack, but only of
the substack. Jumps in a substack also can not make evaluation jump out of it, and the
whole substack is counted as one module when the jump is done in a parent stack. The
reset action will reset the state of a module stack to the state it was in as of beginning
of the substack evaluation.

For the more complicated syntax valid control values have the following form:

 [value1=action1 value2=action2 ...]

Where valueN corresponds to the return code from the function invoked in the module for which the
line is defined. It is selected from one of these: success, open_err, symbol_err, service_err, system_err,
buf_err, perm_denied, auth_err, cred_insufficient, authinfo_unavail, user_unknown, maxtries,
new_authtok_reqd, acct_expired, session_err, cred_unavail, cred_expired, cred_err, no_module_data,
conv_err, authtok_err, authtok_recover_err, authtok_lock_busy, authtok_disable_aging, try_again,
ignore, abort, authtok_expired, module_unknown, bad_item, conv_again, incomplete, and default.

The last of these, default, implies 'all valueN's not mentioned explicitly. Note, the full list of PAM errors is
available in /usr/include/security/_pam_types.h. The actionN can be: an unsigned integer,
n, signifying an action of 'jump over the next n modules in the stack'; or take one of the following forms:

ignore when used with a stack of modules, the module's return status will not contribute to the return
code the application obtains.

The Linux-PAM configuration file

7

bad this action indicates that the return code should be thought of as indicative of the module failing.
If this module is the first in the stack to fail, its status value will be used for that of the whole
stack.

die equivalent to bad with the side effect of terminating the module stack and PAM immediately
returning to the application.

ok this tells PAM that the administrator thinks this return code should contribute directly to the
return code of the full stack of modules. In other words, if the former state of the stack would
lead to a return of PAM_SUCCESS, the module's return code will override this value. Note, if
the former state of the stack holds some value that is indicative of a modules failure, this 'ok'
value will not be used to override that value.

done equivalent to ok with the side effect of terminating the module stack and PAM immediately
returning to the application.

reset clear all memory of the state of the module stack and start again with the next stacked module.

Each of the four keywords: required; requisite; sufficient; and optional, have an equivalent expression in
terms of the [...] syntax. They are as follows:

required [success=ok new_authtok_reqd=ok ignore=ignore default=bad]

requisite [success=ok new_authtok_reqd=ok ignore=ignore default=die]

sufficient [success=done new_authtok_reqd=done default=ignore]

optional [success=ok new_authtok_reqd=ok default=ignore]

module-path is either the full filename of the PAM to be used by the application (it begins with a '/'), or
a relative pathname from the default module location: /lib/security/ or /lib64/security/,
depending on the architecture.

module-arguments are a space separated list of tokens that can be used to modify the specific behavior
of the given PAM. Such arguments will be documented for each individual module. Note, if you wish to
include spaces in an argument, you should surround that argument with square brackets.

 squid auth required pam_mysql.so user=passwd_query passwd=mada \
 db=eminence [query=select user_name from internet_service \
 where user_name='%u' and password=PASSWORD('%p') and \
 service='web_proxy']

When using this convention, you can include `[' characters inside the string, and if you wish to include a
`]' character inside the string that will survive the argument parsing, you should use `\]'. In other words:

 [..[..\]..] --> ..[..]..

Any line in (one of) the configuration file(s), that is not formatted correctly, will generally tend (erring on
the side of caution) to make the authentication process fail. A corresponding error is written to the system
log files with a call to syslog(3).

The Linux-PAM configuration file

8

4.2. Directory based configuration
More flexible than the single configuration file is it to configure libpam via the contents of the /etc/
pam.d/ directory. In this case the directory is filled with files each of which has a filename equal to a
service-name (in lower-case): it is the personal configuration file for the named service.

The syntax of each file in /etc/pam.d/ is similar to that of the /etc/pam.conf file and is made up of
lines of the following form:

type control module-path module-arguments

The only difference being that the service-name is not present. The service-name is of course the name
of the given configuration file. For example, /etc/pam.d/login contains the configuration for the
login service.

4.3. Example configuration file entries
In this section, we give some examples of entries that can be present in the Linux-PAM configuration file.
As a first attempt at configuring your system you could do worse than to implement these.

If a system is to be considered secure, it had better have a reasonably secure 'other entry. The following
is a paranoid setting (which is not a bad place to start!):

#
default; deny access
#
other auth required pam_deny.so
other account required pam_deny.so
other password required pam_deny.so
other session required pam_deny.so

Whilst fundamentally a secure default, this is not very sympathetic to a misconfigured system. For
example, such a system is vulnerable to locking everyone out should the rest of the file become badly
written.

The module pam_deny (documented in a later section) is not very sophisticated. For example, it logs no
information when it is invoked so unless the users of a system contact the administrator when failing to
execute a service application, the administrator may go for a long while in ignorance of the fact that his
system is misconfigured.

The addition of the following line before those in the above example would provide a suitable warning
to the administrator.

#
default; wake up! This application is not configured
#
other auth required pam_warn.so
other password required pam_warn.so

The Linux-PAM configuration file

9

Having two 'other auth' lines is an example of stacking.

On a system that uses the /etc/pam.d/ configuration, the corresponding default setup would be
achieved with the following file:

#
default configuration: /etc/pam.d/other
#
auth required pam_warn.so
auth required pam_deny.so
account required pam_deny.so
password required pam_warn.so
password required pam_deny.so
session required pam_deny.so

This is the only explicit example we give for an /etc/pam.d/ file. In general, it should be clear how
to transpose the remaining examples to this configuration scheme.

On a less sensitive computer, one on which the system administrator wishes to remain ignorant of much of
the power of Linux-PAM, the following selection of lines (in /etc/pam.d/other) is likely to mimic
the historically familiar Linux setup.

#
default; standard UN*X access
#
auth required pam_unix.so
account required pam_unix.so
password required pam_unix.so
session required pam_unix.so

In general this will provide a starting place for most applications.

10

Chapter 5. Security issues
5.1. If something goes wrong

Linux-PAM has the potential to seriously change the security of your system. You can choose to have no
security or absolute security (no access permitted). In general, Linux-PAM errs towards the latter. Any
number of configuration errors can dissable access to your system partially, or completely.

The most dramatic problem that is likely to be encountered when configuring Linux-PAM is that of deleting
the configuration file(s): /etc/pam.d/* and/or /etc/pam.conf. This will lock you out of your own
system!

To recover, your best bet is to restore the system from a backup or boot the system into a rescue system
and correct things from there.

5.2. Avoid having a weak `other' configuration
It is not a good thing to have a weak default (other) entry. This service is the default configuration for all
PAM aware applications and if it is weak, your system is likely to be vulnerable to attack.

Here is a sample "other" configuration file. The pam_deny module will deny access and the pam_warn
module will send a syslog message to auth.notice:

#
The PAM configuration file for the `other' service
#
auth required pam_deny.so
auth required pam_warn.so
account required pam_deny.so
account required pam_warn.so
password required pam_deny.so
password required pam_warn.so
session required pam_deny.so
session required pam_warn.so

11

Chapter 6. A reference guide for
available modules

Here, we collect together the descriptions of the various modules coming with Linux-PAM.

6.1. pam_access - logdaemon style login
access control

pam_access.so [debug] [nodefgroup] [noaudit] [accessfile=file] [fieldsep=sep] [listsep=sep
]

6.1.1. DESCRIPTION

The pam_access PAM module is mainly for access management. It provides logdaemon style login access
control based on login names, host or domain names, internet addresses or network numbers, or on terminal
line names in case of non-networked logins.

By default rules for access management are taken from config file /etc/security/access.conf
if you don't specify another file.

If Linux PAM is compiled with audit support the module will report when it denies access based on origin
(host or tty).

6.1.2. DESCRIPTION

The /etc/security/access.conf file specifies (user/group, host), (user/group,
network/netmask) or (user/group, tty) combinations for which a login will be either accepted
or refused.

When someone logs in, the file access.conf is scanned for the first entry that matches the (user/
group, host) or (user/group, network/netmask) combination, or, in case of non-networked
logins, the first entry that matches the (user/group, tty) combination. The permissions field of that
table entry determines whether the login will be accepted or refused.

Each line of the login access control table has three fields separated by a ":" character (colon):

permission:users/groups:origins

The first field, the permission field, can be either a "+" character (plus) for access granted or a "-"
character (minus) for access denied.

The second field, the users/group field, should be a list of one or more login names, group names,
or ALL (which always matches). To differentiate user entries from group entries, group entries should be
written with brackets, e.g. (group).

The third field, the origins field, should be a list of one or more tty names (for non-networked logins),
host names, domain names (begin with "."), host addresses, internet network numbers (end with "."),
internet network addresses with network mask (where network mask can be a decimal number or an internet

A reference guide for
available modules

12

address also), ALL (which always matches) or LOCAL (which matches any string that does not contain a
"." character). If supported by the system you can use @netgroupname in host or user patterns.

The EXCEPT operator makes it possible to write very compact rules.

If the nodefgroup is not set, the group file is searched when a name does not match that of the logged-in
user. Only groups are matched in which users are explicitly listed. However the PAM module does not
look at the primary group id of a user.

The "#" character at start of line (no space at front) can be used to mark this line as a comment line.

6.1.3. OPTIONS

accessfile=/path/to/
access.conf

Indicate an alternative access.conf style configuration file to
override the default. This can be useful when different services need
different access lists.

debug A lot of debug informations are printed with syslog(3).

noaudit Do not report logins from disallowed hosts and ttys to the audit
subsystem.

fieldsep=separators This option modifies the field separator character that pam_access
will recognize when parsing the access configuration file. For
example: fieldsep=| will cause the default `:' character to be treated
as part of a field value and `|' becomes the field separator. Doing
this may be useful in conjuction with a system that wants to use
pam_access with X based applications, since the PAM_TTY item is
likely to be of the form "hostname:0" which includes a `:' character
in its value. But you should not need this.

listsep=separators This option modifies the list separator character that pam_access
will recognize when parsing the access configuration file. For
example: listsep=, will cause the default ` ' (space) and `\t' (tab)
characters to be treated as part of a list element value and ̀ ,' becomes
the only list element separator. Doing this may be useful on a system
with group information obtained from a Windows domain, where
the default built-in groups "Domain Users", "Domain Admins"
contain a space.

nodefgroup The group database will not be used for tokens not identified as
account name.

6.1.4. MODULE SERVICES PROVIDED

All services are supported.

6.1.5. RETURN VALUES

PAM_SUCCESS Access was granted.

PAM_PERM_DENIED Access was not granted.

A reference guide for
available modules

13

PAM_IGNORE pam_setcred was called which does nothing.

PAM_ABORT Not all relevant data or options could be gotten.

PAM_USER_UNKNOWNThe user is not known to the system.

6.1.6. FILES
/etc/security/
access.conf

Default configuration file

6.1.7. EXAMPLES
These are some example lines which might be specified in /etc/security/access.conf.

User root should be allowed to get access via cron, X11 terminal :0, tty1, ..., tty5, tty6.

+ : root : crond :0 tty1 tty2 tty3 tty4 tty5 tty6

User root should be allowed to get access from hosts which own the IPv4 addresses. This does not mean
that the connection have to be a IPv4 one, a IPv6 connection from a host with one of this IPv4 addresses
does work, too.

+ : root : 192.168.200.1 192.168.200.4 192.168.200.9

+ : root : 127.0.0.1

User root should get access from network 192.168.201. where the term will be evaluated by string
matching. But it might be better to use network/netmask instead. The same meaning of 192.168.201.
is 192.168.201.0/24 or 192.168.201.0/255.255.255.0.

+ : root : 192.168.201.

User root should be able to have access from hosts foo1.bar.org and foo2.bar.org (uses string matching
also).

+ : root : foo1.bar.org foo2.bar.org

User root should be able to have access from domain foo.bar.org (uses string matching also).

+ : root : .foo.bar.org

User root should be denied to get access from all other sources.

- : root : ALL

User foo and members of netgroup admins should be allowed to get access from all sources. This will only
work if netgroup service is available.

+ : @admins foo : ALL

User john and foo should get access from IPv6 host address.

+ : john foo : 2001:4ca0:0:101::1

A reference guide for
available modules

14

User john should get access from IPv6 net/mask.

+ : john : 2001:4ca0:0:101::/64

Disallow console logins to all but the shutdown, sync and all other accounts, which are a member of the
wheel group.

-:ALL EXCEPT (wheel) shutdown sync:LOCAL

All other users should be denied to get access from all sources.

- : ALL : ALL

6.1.8. AUTHORS
The logdaemon style login access control scheme was designed and implemented by Wietse Venema.
The pam_access PAM module was developed by Alexei Nogin <alexei@nogin.dnttm.ru>. The IPv6
support and the network(address) / netmask feature was developed and provided by Mike Becher
<mike.becher@lrz-muenchen.de>.

6.2. pam_cracklib - checks the password
against dictionary words

pam_cracklib.so [...]

6.2.1. DESCRIPTION
This module can be plugged into the password stack of a given application to provide some plug-in
strength-checking for passwords.

The action of this module is to prompt the user for a password and check its strength against a system
dictionary and a set of rules for identifying poor choices.

The first action is to prompt for a single password, check its strength and then, if it is considered strong,
prompt for the password a second time (to verify that it was typed correctly on the first occasion). All being
well, the password is passed on to subsequent modules to be installed as the new authentication token.

The strength checks works in the following manner: at first the Cracklib routine is called to check if
the password is part of a dictionary; if this is not the case an additional set of strength checks is done.
These checks are:

Palindrome Is the new password a palindrome of the old one?

Case Change Only Is the new password the the old one with only a change of case?

Similar Is the new password too much like the old one? This is primarily controlled by
one argument, difok which is a number of characters that if different between
the old and new are enough to accept the new password, this defaults to 10 or
1/2 the size of the new password whichever is smaller.

To avoid the lockup associated with trying to change a long and complicated
password, difignore is available. This argument can be used to specify the

A reference guide for
available modules

15

minimum length a new password needs to be before the difok value is ignored.
The default value for difignore is 23.

Simple Is the new password too small? This is controlled by 5 arguments minlen,
dcredit, ucredit, lcredit, and ocredit. See the section on the
arguments for the details of how these work and there defaults.

Rotated Is the new password a rotated version of the old password?

Already used Was the password used in the past? Previously used passwords are to be found
in /etc/security/opasswd.

This module with no arguments will work well for standard unix password encryption. With md5
encryption, passwords can be longer than 8 characters and the default settings for this module can make it
hard for the user to choose a satisfactory new password. Notably, the requirement that the new password
contain no more than 1/2 of the characters in the old password becomes a non-trivial constraint. For
example, an old password of the form "the quick brown fox jumped over the lazy dogs" would be difficult
to change... In addition, the default action is to allow passwords as small as 5 characters in length. For a
md5 systems it can be a good idea to increase the required minimum size of a password. One can then
allow more credit for different kinds of characters but accept that the new password may share most of
these characters with the old password.

6.2.2. OPTIONS
debug This option makes the module write information to syslog(3)

indicating the behavior of the module (this option does not write
password information to the log file).

type=XXX The default action is for the module to use the following prompts
when requesting passwords: "New UNIX password: " and "Retype
UNIX password: ". The default word UNIX can be replaced with
this option.

retry=N Prompt user at most N times before returning with error. The default
is 1

difok=N This argument will change the default of 5 for the number of
characters in the new password that must not be present in the old
password. In addition, if 1/2 of the characters in the new password
are different then the new password will be accepted anyway.

difignore=N How many characters should the password have before difok will
be ignored. The default is 23.

minlen=N The minimum acceptable size for the new password (plus one if
credits are not disabled which is the default). In addition to the
number of characters in the new password, credit (of +1 in length)
is given for each different kind of character (other, upper, lower
and digit). The default for this parameter is 9 which is good for
a old style UNIX password all of the same type of character but
may be too low to exploit the added security of a md5 system. Note
that there is a pair of length limits in Cracklib itself, a "way too
short" limit of 4 which is hard coded in and a defined limit (6) that
will be checked without reference to minlen. If you want to allow
passwords as short as 5 characters you should not use this module.

A reference guide for
available modules

16

dcredit=N (N >= 0) This is the maximum credit for having digits in the new
password. If you have less than or N digits, each digit will count
+1 towards meeting the current minlen value. The default for
dcredit is 1 which is the recommended value for minlen less
than 10.

(N < 0) This is the minimum number of digits that must be met for
a new password.

ucredit=N (N >= 0) This is the maximum credit for having upper case letters in
the new password. If you have less than or N upper case letters each
letter will count +1 towards meeting the current minlen value.
The default for ucredit is 1 which is the recommended value for
minlen less than 10.

(N > 0) This is the minimum number of upper case letters that must
be met for a new password.

lcredit=N (N >= 0) This is the maximum credit for having lower case letters in
the new password. If you have less than or N lower case letters, each
letter will count +1 towards meeting the current minlen value.
The default for lcredit is 1 which is the recommended value for
minlen less than 10.

(N < 0) This is the minimum number of lower case letters that must
be met for a new password.

ocredit=N (N >= 0) This is the maximum credit for having other characters
in the new password. If you have less than or N other characters,
each character will count +1 towards meeting the current minlen
value. The default for ocredit is 1 which is the recommended
value for minlen less than 10.

(N < 0) This is the minimum number of other characters that must
be met for a new password.

minclass=N The minimum number of required classes of characters for the
new password. The default number is zero. The four classes are
digits, upper and lower letters and other characters. The difference
to the credit check is that a specific class if of characters is not
required. Instead N out of four of the classes are required.

use_authtok This argument is used to force the module to not prompt the user for
a new password but use the one provided by the previously stacked
password module.

dictpath=/path/to/dict Path to the cracklib dictionaries.

6.2.3. MODULE SERVICES PROVIDED
Only he password service is supported.

6.2.4. RETURN VALUES
PAM_SUCCESS The new password passes all checks.

A reference guide for
available modules

17

PAM_AUTHTOK_ERR No new password was entered, the username could not be
determined or the new password fails the strength checks.

PAM_AUTHTOK_RECOVERY_ERRThe old password was not supplied by a previous stacked module
or got not requested from the user. The first error can happen if
use_authtok is specified.

PAM_SERVICE_ERR A internal error occured.

6.2.5. EXAMPLES
For an example of the use of this module, we show how it may be stacked with the password component
of pam_unix(8)

#
These lines stack two password type modules. In this example the
user is given 3 opportunities to enter a strong password. The
"use_authtok" argument ensures that the pam_unix module does not
prompt for a password, but instead uses the one provided by
pam_cracklib.
#
passwd password required pam_cracklib.so retry=3
passwd password required pam_unix.so use_authtok

Another example (in the /etc/pam.d/passwd format) is for the case that you want to use md5
password encryption:

#%PAM-1.0
#
These lines allow a md5 systems to support passwords of at least 14
bytes with extra credit of 2 for digits and 2 for others the new
password must have at least three bytes that are not present in the
old password
#
password required pam_cracklib.so \
 difok=3 minlen=15 dcredit= 2 ocredit=2
password required pam_unix.so use_authtok nullok md5

And here is another example in case you don't want to use credits:

#%PAM-1.0
#
These lines require the user to select a password with a minimum
length of 8 and with at least 1 digit number, 1 upper case letter,
and 1 other character
#
password required pam_cracklib.so \
 dcredit=-1 ucredit=-1 ocredit=-1 lcredit=0 minlen=8
password required pam_unix.so use_authtok nullok md5

A reference guide for
available modules

18

6.2.6. AUTHOR
pam_cracklib was written by Cristian Gafton <gafton@redhat.com>

6.3. pam_debug - debug the PAM stack
pam_debug.so [auth=value] [cred=value] [acct=value] [prechauthtok=value] [
chauthtok=value] [auth=value] [open_session=value] [close_session=value]

6.3.1. DESCRIPTION
The pam_debug PAM module is intended as a debugging aide for determining how the PAM stack is
operating. This module returns what its module arguments tell it to return.

6.3.2. OPTIONS
auth=value The pam_sm_authenticate(3) function will return value.

cred=value The pam_sm_setcred(3) function will return value.

acct=value The pam_sm_acct_mgmt(3) function will return value.

prechauthtok=value The pam_sm_chauthtok(3) function will return value if the
PAM_PRELIM_CHECK flag is set.

chauthtok=value The pam_sm_chauthtok(3) function will return value if the
PAM_PRELIM_CHECK flag is not set.

open_session=value The pam_sm_open_session(3) function will return value.

close_session=value The pam_sm_close_session(3) function will return value.

Where value can be one of: success, open_err, symbol_err, service_err, system_err,
buf_err, perm_denied, auth_err, cred_insufficient, authinfo_unavail, user_unknown, maxtries,
new_authtok_reqd, acct_expired, session_err, cred_unavail, cred_expired, cred_err, no_module_data,
conv_err, authtok_err, authtok_recover_err, authtok_lock_busy, authtok_disable_aging, try_again,
ignore, abort, authtok_expired, module_unknown, bad_item, conv_again, incomplete.

6.3.3. MODULE SERVICES PROVIDED
The services auth, account, password and session are supported.

6.3.4. RETURN VALUES
PAM_SUCCESS Default return code if no other value was specified, else specified return value.

6.3.5. EXAMPLES

auth requisite pam_permit.so
auth [success=2 default=ok] pam_debug.so auth=perm_denied cred=success
auth [default=reset] pam_debug.so auth=success cred=perm_denied
auth [success=done default=die] pam_debug.so

A reference guide for
available modules

19

auth optional pam_debug.so auth=perm_denied cred=perm_denied
auth sufficient pam_debug.so auth=success cred=success

6.3.6. AUTHOR
pam_debug was written by Andrew G. Morgan <morgan@kernel.org>.

6.4. pam_deny - locking-out PAM module
pam_deny.so

6.4.1. DESCRIPTION
This module can be used to deny access. It always indicates a failure to the application through the PAM
framework. It might be suitable for using for default (the OTHER) entries.

6.4.2. OPTIONS
This module does not recognise any options.

6.4.3. MODULE SERVICES PROVIDED
All services (account, auth, password and session) are supported.

6.4.4. RETURN VALUES
PAM_AUTH_ERR This is returned by the account and auth services.

PAM_CRED_ERR This is returned by the setcred function.

PAM_AUTHTOK_ERRThis is returned by the password service.

PAM_SESSION_ERR This is returned by the session service.

6.4.5. EXAMPLES

#%PAM-1.0
#
If we don't have config entries for a service, the
OTHER entries are used. To be secure, warn and deny
access to everything.
other auth required pam_warn.so
other auth required pam_deny.so
other account required pam_warn.so
other account required pam_deny.so
other password required pam_warn.so
other password required pam_deny.so
other session required pam_warn.so
other session required pam_deny.so

A reference guide for
available modules

20

6.4.6. AUTHOR
pam_deny was written by Andrew G. Morgan <morgan@kernel.org>

6.5. pam_echo - print text messages
pam_echo.so [file=/path/message]

6.5.1. DESCRIPTION
The pam_echo PAM module is for printing text messages to inform user about special things. Sequences
starting with the % character are interpreted in the following way:

%H The name of the remote host (PAM_RHOST).

%h The name of the local host.

%s The service name (PAM_SERVICE).

%t The name of the controlling terminal (PAM_TTY).

%U The remote user name (PAM_RUSER).

%u The local user name (PAM_USER).

All other sequences beginning with % expands to the characters following the % character.

6.5.2. OPTIONS
file=/path/message The content of the file /path/message will be printed with the

PAM conversion function as PAM_TEXT_INFO.

6.5.3. MODULE SERVICES PROVIDED
All services are supported.

6.5.4. RETURN VALUES
PAM_BUF_ERR Memory buffer error.

PAM_SUCCESS Message was successful printed.

PAM_IGNORE PAM_SILENT flag was given or message file does not exist, no message printed.

6.5.5. EXAMPLES
For an example of the use of this module, we show how it may be used to print informations about good
passwords:

password optional pam_echo.so file=/usr/share/doc/good-password.txt
password required pam_unix.so

A reference guide for
available modules

21

6.5.6. AUTHOR
Thorsten Kukuk <kukuk@thkukuk.de>

6.6. pam_env - set/unset environment variables
pam_env.so [debug] [conffile=conf-file] [envfile=env-file] [readenv=0|1]

6.6.1. DESCRIPTION
The pam_env PAM module allows the (un)setting of environment variables. Supported is the use of
previously set environment variables as well as PAM_ITEMs such as PAM_RHOST.

By default rules for (un)setting of variables is taken from the config file /etc/security/
pam_env.conf if no other file is specified.

This module can also parse a file with simple KEY=VAL pairs on seperate lines (/etc/environment
by default). You can change the default file to parse, with the envfile flag and turn it on or off by setting
the readenv flag to 1 or 0 respectively.

6.6.2. DESCRIPTION
The /etc/security/pam_env.conf file specifies the environment variables to be set, unset or
modified by pam_env(8). When someone logs in, this file is read and the environment variables are set
according.

Each line starts with the variable name, there are then two possible options for each variable DEFAULT
and OVERRIDE. DEFAULT allows and administrator to set the value of the variable to some default
value, if none is supplied then the empty string is assumed. The OVERRIDE option tells pam_env that it
should enter in its value (overriding the default value) if there is one to use. OVERRIDE is not used, ""
is assumed and no override will be done.

VARIABLE [DEFAULT=[value]] [OVERRIDE=[value]]

(Possibly non-existent) environment variables may be used in values using the ${string} syntax and
(possibly non-existent) PAM_ITEMs may be used in values using the @{string} syntax. Both the $ and @
characters can be backslash escaped to be used as literal values values can be delimited with "", escaped
" not supported. Note that many environment variables that you would like to use may not be set by the
time the module is called. For example, HOME is used below several times, but many PAM applications
don't make it available by the time you need it.

The "#" character at start of line (no space at front) can be used to mark this line as a comment line.

6.6.3. OPTIONS
conffile=/path/to/
pam_env.conf

Indicate an alternative pam_env.conf style configuration file to
override the default. This can be useful when different services need
different environments.

debug A lot of debug informations are printed with syslog(3).

envfile=/path/to/
environment

Indicate an alternative environment file to override the
default. This can be useful when different services need different
environments.

A reference guide for
available modules

22

readenv=0|1 Turns on or off the reading of the file specified by envfile (0 is off,
1 is on). By default this option is on.

6.6.4. MODULE SERVICES PROVIDED
The auth and session services are supported.

6.6.5. RETURN VALUES
PAM_ABORT Not all relevant data or options could be gotten.

PAM_BUF_ERR Memory buffer error.

PAM_IGNORE No pam_env.conf and environment file was found.

PAM_SUCCESS Environment variables were set.

6.6.6. FILES
/etc/security/
pam_env.conf

Default configuration file

/etc/environment Default environment file

6.6.7. EXAMPLES
These are some example lines which might be specified in /etc/security/pam_env.conf.

Set the REMOTEHOST variable for any hosts that are remote, default to "localhost" rather than not being
set at all

 REMOTEHOST DEFAULT=localhost OVERRIDE=@{PAM_RHOST}

Set the DISPLAY variable if it seems reasonable

 DISPLAY DEFAULT=${REMOTEHOST}:0.0 OVERRIDE=${DISPLAY}

Now some simple variables

 PAGER DEFAULT=less
 MANPAGER DEFAULT=less
 LESS DEFAULT="M q e h15 z23 b80"
 NNTPSERVER DEFAULT=localhost
 PATH DEFAULT=${HOME}/bin:/usr/local/bin:/bin\
 :/usr/bin:/usr/local/bin/X11:/usr/bin/X11

Silly examples of escaped variables, just to show how they work.

 DOLLAR DEFAULT=\$

A reference guide for
available modules

23

 DOLLARDOLLAR DEFAULT= OVERRIDE=\$${DOLLAR}
 DOLLARPLUS DEFAULT=\${REMOTEHOST}${REMOTEHOST}
 ATSIGN DEFAULT="" OVERRIDE=\@

6.6.8. AUTHOR
pam_env was written by Dave Kinchlea <kinch@kinch.ark.com>.

6.7. pam_exec - call an external command
pam_exec.so [debug] [seteuid] [quiet] [log=file] command [...]

6.7.1. DESCRIPTION
pam_exec is a PAM module that can be used to run an external command.

The child's environment is set to the current PAM environment list, as returned by pam_getenvlist(3) In
addition, the following PAM items are exported as environment variables: PAM_RHOST, PAM_RUSER,
PAM_SERVICE, PAM_TTY, and PAM_USER.

6.7.2. OPTIONS
debug Print debug information.

log=file The output of the command is appended to file

quiet Per default pam_exec.so will echo the exit status of the external
command if it fails. Specifying this option will suppress the
message.

seteuid Per default pam_exec.so will execute the external command with
the real user ID of the calling process. Specifying this option means
the command is run with the effective user ID.

6.7.3. MODULE SERVICES PROVIDED
The services auth, account, password and session are supported.

6.7.4. RETURN VALUES
PAM_SUCCESS The external command runs successfull.

PAM_SERVICE_ERR No argument or a wrong number of arguments were given.

PAM_SYSTEM_ERR A system error occured or the command to execute failed.

PAM_IGNORE pam_setcred was called, which does not execute the command.

6.7.5. EXAMPLES
Add the following line to /etc/pam.d/passwd to rebuild the NIS database after each local password
change:

A reference guide for
available modules

24

 passwd optional pam_exec.so seteuid make -C /var/yp

This will execute the command

make -C /var/yp

with effective user ID.

6.7.6. AUTHOR
pam_exec was written by Thorsten Kukuk <kukuk@thkukuk.de>.

6.8. pam_faildelay - change the delay on failure
per-application

pam_faildelay.so [debug] [delay=microseconds]

6.8.1. DESCRIPTION
pam_faildelay is a PAM module that can be used to set the delay on failure per-application.

If no delay is given, pam_faildelay will use the value of FAIL_DELAY from /etc/login.defs.

6.8.2. OPTIONS
debug Turns on debugging messages sent to syslog.

delay=N Set the delay on failure to N microseconds.

6.8.3. MODULE SERVICES PROVIDED
Only the auth service is supported.

6.8.4. RETURN VALUES
PAM_IGNORE Delay was successful adjusted.

PAM_SYSTEM_ERR The specified delay was not valid.

6.8.5. EXAMPLES
The following example will set the delay on failure to 10 seconds:

auth optional pam_faildelay.so delay=10000000

6.8.6. AUTHOR
pam_faildelay was written by Darren Tucker <dtucker@zip.com.au>.

A reference guide for
available modules

25

6.9. pam_filter - filter module
pam_filter.so [debug] [new_term] [non_term] run1|run2 filter [...]

6.9.1. DESCRIPTION
This module is intended to be a platform for providing access to all of the input/output that passes between
the user and the application. It is only suitable for tty-based and (stdin/stdout) applications.

To function this module requires filters to be installed on the system. The single filter provided with the
module simply transposes upper and lower case letters in the input and output streams. (This can be very
annoying and is not kind to termcap based editors).

Each component of the module has the potential to invoke the desired filter. The filter is always execv(2)
with the privilege of the calling application and not that of the user. For this reason it cannot usually be
killed by the user without closing their session.

6.9.2. OPTIONS
debug Print debug information.

new_term The default action of the filter is to set the PAM_TTY item to
indicate the terminal that the user is using to connect to the
application. This argument indicates that the filter should set
PAM_TTY to the filtered pseudo-terminal.

non_term don't try to set the PAM_TTY item.

runX In order that the module can invoke a filter it should know when to
invoke it. This argument is required to tell the filter when to do this.

Permitted values for X are 1 and 2. These indicate the precise
time that the filter is to be run. To understand this concept it will
be useful to have read the pam(3) manual page. Basically, for
each management group there are up to two ways of calling the
module's functions. In the case of the authentication and session
components there are actually two separate functions. For the
case of authentication, these functions are pam_authenticate(3)
and pam_setcred(3), here run1 means run the filter from the
pam_authenticate function and run2 means run the filter
from pam_setcred. In the case of the session modules, run1
implies that the filter is invoked at the pam_open_session(3) stage,
and run2 for pam_close_session(3).

For the case of the account component. Either run1 or run2 may
be used.

For the case of the password component, run1 is used
to indicate that the filter is run on the first occasion of
pam_chauthtok(3) (the PAM_PRELIM_CHECK phase) and run2 is
used to indicate that the filter is run on the second occasion (the
PAM_UPDATE_AUTHTOK phase).

filter The full pathname of the filter to be run and any command line
arguments that the filter might expect.

A reference guide for
available modules

26

6.9.3. MODULE SERVICES PROVIDED
The services auth, account, password and session are supported.

6.9.4. RETURN VALUES
PAM_SUCCESS The new filter was set successfull.

PAM_ABORT Critical error, immediate abort.

6.9.5. EXAMPLES
Add the following line to /etc/pam.d/login to see how to configure login to transpose upper and
lower case letters once the user has logged in:

 session required pam_filter.so run1 /lib/security/pam_filter/upperLOWER

6.9.6. AUTHOR
pam_filter was written by Andrew G. Morgan <morgan@kernel.org>.

6.10. pam_ftp - module for anonymous access
pam_ftp.so [debug] [ignore] [users=XXX,YYY, ...]

6.10.1. DESCRIPTION
pam_ftp is a PAM module which provides a pluggable anonymous ftp mode of access.

This module intercepts the user's name and password. If the name is ftp or anonymous, the user's password
is broken up at the @ delimiter into a PAM_RUSER and a PAM_RHOST part; these pam-items being set
accordingly. The username (PAM_USER) is set to ftp. In this case the module succeeds. Alternatively, the
module sets the PAM_AUTHTOK item with the entered password and fails.

This module is not safe and easily spoofable.

6.10.2. OPTIONS
debug Print debug information.

ignore Pay no attention to the email address of the user (if supplied).

ftp=XXX,YYY,... Instead of ftp or anonymous, provide anonymous login to the
comma separated list of users: XXX,YYY,.... Should the
applicant enter one of these usernames the returned username is set
to the first in the list: XXX.

6.10.3. MODULE SERVICES PROVIDED
Only the auth service is supported.

A reference guide for
available modules

27

6.10.4. RETURN VALUES
PAM_SUCCESS The authentication was successfull.

PAM_USER_UNKNOWNUser not known.

6.10.5. EXAMPLES
Add the following line to /etc/pam.d/ftpd to handle ftp style anonymous login:

#
ftpd; add ftp-specifics. These lines enable anonymous ftp over
standard UN*X access (the listfile entry blocks access to
users listed in /etc/ftpusers)
#
auth sufficient pam_ftp.so
auth required pam_unix.so use_first_pass
auth required pam_listfile.so \
 onerr=succeed item=user sense=deny file=/etc/ftpusers

6.10.6. AUTHOR
pam_ftp was written by Andrew G. Morgan <morgan@kernel.org>.

6.11. pam_group - module to modify group
access

pam_group.so

6.11.1. DESCRIPTION
The pam_group PAM module does not authenticate the user, but instead it grants group memberships (in
the credential setting phase of the authentication module) to the user. Such memberships are based on the
service they are applying for.

By default rules for group memberships are taken from config file /etc/security/group.conf.

This module's usefulness relies on the file-systems accessible to the user. The point being that once granted
the membership of a group, the user may attempt to create a setgid binary with a restricted group
ownership. Later, when the user is not given membership to this group, they can recover group membership
with the precompiled binary. The reason that the file-systems that the user has access to are so significant,
is the fact that when a system is mounted nosuid the user is unable to create or execute such a binary file.
For this module to provide any level of security, all file-systems that the user has write access to should
be mounted nosuid.

The pam_group module fuctions in parallel with the /etc/group file. If the user is granted any groups
based on the behavior of this module, they are granted in addition to those entries /etc/group (or
equivalent).

A reference guide for
available modules

28

6.11.2. DESCRIPTION
The pam_group PAM module does not authenticate the user, but instead it grants group memberships (in
the credential setting phase of the authentication module) to the user. Such memberships are based on the
service they are applying for.

For this module to function correctly there must be a correctly formatted /etc/security/
group.conf file present. White spaces are ignored and lines maybe extended with '\' (escaped newlines).
Text following a '#' is ignored to the end of the line.

The syntax of the lines is as follows:

services;ttys;users;times;groups

The first field, the services field, is a logic list of PAM service names that the rule applies to.

The second field, the tty field, is a logic list of terminal names that this rule applies to.

The third field, the users field, is a logic list of users or a netgroup of users to whom this rule applies.

For these items the simple wildcard '*' may be used only once. With netgroups no wildcards or logic
operators are allowed.

The times field is used to indicate "when" these groups are to be given to the user. The format here is a
logic list of day/time-range entries. The days are specified by a sequence of two character entries, MoTuSa
for example is Monday Tuesday and Saturday. Note that repeated days are unset MoMo = no day, and
MoWk = all weekdays bar Monday. The two character combinations accepted are Mo Tu We Th Fr Sa Su
Wk Wd Al, the last two being week-end days and all 7 days of the week respectively. As a final example,
AlFr means all days except Friday.

Each day/time-range can be prefixed with a '!' to indicate "anything but". The time-range part is two
24-hour times HHMM, separated by a hyphen, indicating the start and finish time (if the finish time is
smaller than the start time it is deemed to apply on the following day).

The groups field is a comma or space separated list of groups that the user inherits membership of. These
groups are added if the previous fields are satisfied by the user's request.

For a rule to be active, ALL of service+ttys+users must be satisfied by the applying process.

6.11.3. OPTIONS
This module does not recognise any options.

6.11.4. MODULE SERVICES PROVIDED
Only the auth service is supported.

6.11.5. RETURN VALUES
PAM_SUCCESS group membership was granted.

PAM_ABORT Not all relevant data could be gotten.

PAM_BUF_ERR Memory buffer error.

A reference guide for
available modules

29

PAM_CRED_ERR Group membership was not granted.

PAM_IGNORE pam_sm_authenticate was called which does nothing.

PAM_USER_UNKNOWNThe user is not known to the system.

6.11.6. FILES
/etc/security/group.conf Default configuration file

6.11.7. EXAMPLES
These are some example lines which might be specified in /etc/security/group.conf.

Running 'xsh' on tty* (any ttyXXX device), the user 'us' is given access to the floppy (through membership
of the floppy group)

xsh;tty*&!ttyp*;us;Al0000-2400;floppy

Running 'xsh' on tty* (any ttyXXX device), the user 'sword' is given access to games (through membership
of the floppy group) after work hours.

xsh; tty* ;sword;!Wk0900-1800;games, sound
xsh; tty* ;*;Al0900-1800;floppy

6.11.8. AUTHORS
pam_group was written by Andrew G. Morgan <morgan@kernel.org>.

6.12. pam_issue - add issue file to user prompt
pam_issue.so [noesc] [issue=issue-file-name]

6.12.1. DESCRIPTION
pam_issue is a PAM module to prepend an issue file to the username prompt. It also by default parses
escape codes in the issue file similar to some common getty's (using \x format).

Recognized escapes:

\d current day

\l name of this tty

\m machine architecture (uname -m)

\n machine's network node hostname (uname -n)

\o domain name of this system

\r release number of operating system (uname -r)

\t current time

A reference guide for
available modules

30

\s operating system name (uname -s)

\u number of users currently logged in

\U same as \u except it is suffixed with "user" or "users" (eg. "1 user" or "10 users")

\v operating system version and build date (uname -v)

6.12.2. OPTIONS
noesc Turns off escape code parsing.

issue=issue-file-name The file to output if not using the default.

6.12.3. MODULE SERVICES PROVIDED
Only the auth service is supported.

6.12.4. RETURN VALUES
PAM_BUF_ERR Memory buffer error.

PAM_IGNORE The prompt was already changed.

PAM_SERVICE_ERR A service module error occured.

PAM_SUCCESS The new prompt was set successfull.

6.12.5. EXAMPLES
Add the following line to /etc/pam.d/login to set the user specific issue at login:

 auth optional pam_issue.so issue=/etc/issue

6.12.6. AUTHOR
pam_issue was written by Ben Collins <bcollins@debian.org>.

6.13. pam_keyinit - display the keyinit file
pam_keyinit.so [debug] [force] [revoke]

6.13.1. DESCRIPTION
The pam_keyinit PAM module ensures that the invoking process has a session keyring other than the user
default session keyring.

The session component of the module checks to see if the process's session keyring is the user default,
and, if it is, creates a new anonymous session keyring with which to replace it.

If a new session keyring is created, it will install a link to the user common keyring in the session keyring
so that keys common to the user will be automatically accessible through it.

A reference guide for
available modules

31

The session keyring of the invoking process will thenceforth be inherited by all its children unless they
override it.

This module is intended primarily for use by login processes. Be aware that after the session keyring has
been replaced, the old session keyring and the keys it contains will no longer be accessible.

This module should not, generally, be invoked by programs like su, since it is usually desirable for the key
set to percolate through to the alternate context. The keys have their own permissions system to manage
this.

This module should be included as early as possible in a PAM configuration, so that other PAM modules
can attach tokens to the keyring.

The keyutils package is used to manipulate keys more directly. This can be obtained from:

Keyutils [http://people.redhat.com/~dhowells/keyutils/]

6.13.2. OPTIONS
debug Log debug information with syslog(3).

force Causes the session keyring of the invoking process to be replaced
unconditionally.

revoke Causes the session keyring of the invoking process to be revoked
when the invoking process exits if the session keyring was created
for this process in the first place.

6.13.3. MODULE SERVICES PROVIDED
Only the session service is supported.

6.13.4. RETURN VALUES
PAM_SUCCESS This module will usually return this value

PAM_AUTH_ERR Authentication failure.

PAM_BUF_ERR Memory buffer error.

PAM_IGNORE The return value should be ignored by PAM dispatch.

PAM_SERVICE_ERR Cannot determine the user name.

PAM_SESSION_ERR This module will return this value if its arguments are invalid or if a system
error such as ENOMEM occurs.

PAM_USER_UNKNOWNUser not known.

6.13.5. EXAMPLES
Add this line to your login entries to start each login session with its own session keyring:

session required pam_keyinit.so

http://people.redhat.com/~dhowells/keyutils/
http://people.redhat.com/~dhowells/keyutils/

A reference guide for
available modules

32

This will prevent keys from one session leaking into another session for the same user.

6.13.6. AUTHOR
pam_keyinit was written by David Howells, <dhowells@redhat.com>.

6.14. pam_lastlog - display date of last login
pam_lastlog.so [debug] [silent] [never] [nodate] [nohost] [noterm] [nowtmp]

6.14.1. DESCRIPTION
pam_lastlog is a PAM module to display a line of information about the last login of the user. In addition,
the module maintains the /var/log/lastlog file.

Some applications may perform this function themselves. In such cases, this module is not necessary.

6.14.2. OPTIONS
debug Print debug information.

silent Don't inform the user about any previous login, just upate the /
var/log/lastlog file.

never If the /var/log/lastlog file does not contain any old entries
for the user, indicate that the user has never previously logged in
with a welcome message.

nodate Don't display the date of the last login.

noterm Don't display the terminal name on which the last login was
attempted.

nohost Don't indicate from which host the last login was attempted.

nowtmp Don't update the wtmp entry.

6.14.3. MODULE SERVICES PROVIDED
Only the session service is supported.

6.14.4. RETURN VALUES
PAM_SUCCESS Everything was successfull.

PAM_SERVICE_ERR Internal service module error.

PAM_USER_UNKNOWNUser not known.

6.14.5. EXAMPLES
Add the following line to /etc/pam.d/login to display the last login time of an user:

 session required pam_lastlog.so nowtmp

A reference guide for
available modules

33

6.14.6. AUTHOR
pam_lastlog was written by Andrew G. Morgan <morgan@kernel.org>.

6.15. pam_limits - limit resources
pam_limits.so [change_uid] [conf=/path/to/limits.conf] [debug] [utmp_early] [
noaudit]

6.15.1. DESCRIPTION
The pam_limits PAM module sets limits on the system resources that can be obtained in a user-session.
Users of uid=0 are affected by this limits, too.

By default limits are taken from the /etc/security/limits.conf config file. Then individual files
from the /etc/security/limits.d/ directory are read. The files are parsed one after another in
the order of "C" locale. The effect of the individual files is the same as if all the files were concatenated
together in the order of parsing. If a config file is explicitely specified with a module option then the files
in the above directory are not parsed.

The module must not be called by a multithreaded application.

If Linux PAM is compiled with audit support the module will report when it denies access based on limit
of maximum number of concurrent login sessions.

6.15.2. DESCRIPTION
The syntax of the lines is as follows:

<domain> <type> <item> <value>

The fields listed above should be filled as follows:

<domain> • a username

• a groupname, with @group syntax. This should not be confused
with netgroups.

• the wildcard *, for default entry.

• the wildcard %, for maxlogins limit only, can also be used with
%group syntax.

<type> hard for enforcing hard resource limits. These limits are set
by the superuser and enforced by the Kernel. The user
cannot raise his requirement of system resources above
such values.

soft for enforcing soft resource limits. These limits are ones that
the user can move up or down within the permitted range
by any pre-existing hard limits. The values specified with
this token can be thought of as default values, for normal
system usage.

A reference guide for
available modules

34

- for enforcing both soft and hard resource limits together.

Note, if you specify a type of '-' but neglect to supply the
item and value fields then the module will never enforce
any limits on the specified user/group etc. .

<item> core limits the core file size (KB)

data maximum data size (KB)

fsize maximum filesize (KB)

memlock maximum locked-in-memory address space
(KB)

nofile maximum number of open files

rss maximum resident set size (KB)

stack maximum stack size (KB)

cpu maximum CPU time (minutes)

nproc maximum number of processes

as address space limit (KB)

maxlogins maximum number of logins for this user
except for this with uid=0

maxsyslogins maximum number of logins on system

priority the priority to run user process with (negative
values boost process priority)

locks maximum locked files (Linux 2.4 and higher)

sigpending maximum number of pending signals (Linux
2.6 and higher)

msqqueue maximum memory used by POSIX message
queues (bytes) (Linux 2.6 and higher)

nice maximum nice priority allowed to raise to
(Linux 2.6.12 and higher) values: [-20,19]

rtprio maximum realtime priority allowed for non-
privileged processes (Linux 2.6.12 and higher)

In general, individual limits have priority over group limits, so if you impose no limits for admin group, but
one of the members in this group have a limits line, the user will have its limits set according to this line.

Also, please note that all limit settings are set per login. They are not global, nor are they permanent;
existing only for the duration of the session.

In the limits configuration file, the '#' character introduces a comment - after which the rest of the line
is ignored.

A reference guide for
available modules

35

The pam_limits module does its best to report configuration problems found in its configuration file via
syslog(3).

6.15.3. OPTIONS
change_uid Change real uid to the user for who the limits are set up. Use this

option if you have problems like login not forking a shell for user
who has no processes. Be warned that something else may break
when you do this.

conf=/path/to/
limits.conf

Indicate an alternative limits.conf style configuration file to
override the default.

debug Print debug information.

utmp_early Some broken applications actually allocate a utmp entry for the user
before the user is admitted to the system. If some of the services
you are configuring PAM for do this, you can selectively use this
module argument to compensate for this behavior and at the same
time maintain system-wide consistency with a single limits.conf
file.

noaudit Do not report exceeded maximum logins count to the audit
subsystem.

6.15.4. MODULE SERVICES PROVIDED
Only the session service is supported.

6.15.5. RETURN VALUES
PAM_ABORT Cannot get current limits.

PAM_IGNORE No limits found for this user.

PAM_PERM_DENIED New limits could not be set.

PAM_SERVICE_ERR Cannot read config file.

PAM_SESSEION_ERR Error recovering account name.

PAM_SUCCESS Limits were changed.

PAM_USER_UNKNOWNThe user is not known to the system.

6.15.6. FILES
/etc/security/
limits.conf

Default configuration file

6.15.7. EXAMPLES
These are some example lines which might be specified in /etc/security/limits.conf.

* soft core 0

A reference guide for
available modules

36

* hard rss 10000
@student hard nproc 20
@faculty soft nproc 20
@faculty hard nproc 50
ftp hard nproc 0
@student - maxlogins 4

6.15.8. AUTHORS
pam_limits was initially written by Cristian Gafton <gafton@redhat.com>

6.16. pam_listfile - deny or allow services
based on an arbitrary file

pam_listfile.so item=[tty|user|rhost|ruser|group|shell] sense=[allow|deny] file=/path/
filename onerr=[succeed|fail] [apply=[user|@group]] [quiet]

6.16.1. DESCRIPTION
pam_listfile is a PAM module which provides a way to deny or allow services based on an arbitrary file.

The module gets the item of the type specified -- user specifies the username, PAM_USER; tty specifies
the name of the terminal over which the request has been made, PAM_TTY; rhost specifies the name of
the remote host (if any) from which the request was made, PAM_RHOST; and ruser specifies the name
of the remote user (if available) who made the request, PAM_RUSER -- and looks for an instance of
that item in the file=filename. filename contains one line per item listed. If the item is found,
then if sense=allow, PAM_SUCCESS is returned, causing the authorization request to succeed; else if
sense=deny, PAM_AUTH_ERR is returned, causing the authorization request to fail.

If an error is encountered (for instance, if filename does not exist, or a poorly-constructed
argument is encountered), then if onerr=succeed, PAM_SUCCESS is returned, otherwise if onerr=fail,
PAM_AUTH_ERR or PAM_SERVICE_ERR (as appropriate) will be returned.

An additional argument, apply=, can be used to restrict the application of the above to a specific
user (apply=username) or a given group (apply=@groupname). This added restriction is only
meaningful when used with the tty, rhost and shell items.

Besides this last one, all arguments should be specified; do not count on any default behavior.

No credentials are awarded by this module.

6.16.2. OPTIONS
item=[tty|user|rhost|ruser|group|shell]What is listed in the file and should be checked for.

sense=[allow|deny] Action to take if found in file, if the item is NOT found in the file,
then the opposite action is requested.

file=/path/filename File containing one item per line. The file needs to be a plain file
and not world writeable.

onerr=[succeed|fail] What to do if something weird happens like being unable to open
the file.

A reference guide for
available modules

37

apply=[user|@group] Restrict the user class for which the restriction apply. Note that with
item=[user|ruser|group] this does not make sense, but for
item=[tty|rhost|shell] it have a meaning.

quiet Do not treat service refusals or missing list files as errors that need
to be logged.

6.16.3. MODULE SERVICES PROVIDED
The services auth, account, password and session are supported.

6.16.4. RETURN VALUES
PAM_AUTH_ERR Authentication failure.

PAM_BUF_ERR Memory buffer error.

PAM_IGNORE The rule does not apply to the apply option.

PAM_SERVICE_ERR Error in service module.

PAM_SUCCESS Success.

6.16.5. EXAMPLES
Classic 'ftpusers' authentication can be implemented with this entry in /etc/pam.d/ftpd:

#
deny ftp-access to users listed in the /etc/ftpusers file
#
auth required pam_listfile.so \
 onerr=succeed item=user sense=deny file=/etc/ftpusers

Note, users listed in /etc/ftpusers file are (counterintuitively) not allowed access to the ftp service.

To allow login access only for certain users, you can use a /etc/pam.d/login entry like this:

#
permit login to users listed in /etc/loginusers
#
auth required pam_listfile.so \
 onerr=fail item=user sense=allow file=/etc/loginusers

For this example to work, all users who are allowed to use the login service should be listed in the file
/etc/loginusers. Unless you are explicitly trying to lock out root, make sure that when you do this,
you leave a way for root to log in, either by listing root in /etc/loginusers, or by listing a user who
is able to su to the root account.

6.16.6. AUTHOR
pam_listfile was written by Michael K. Johnson <johnsonm@redhat.com> and Elliot Lee
<sopwith@cuc.edu>.

A reference guide for
available modules

38

6.17. pam_localuser - require users to be listed
in /etc/passwd

pam_localuser.so [debug] [file=/path/passwd]

6.17.1. DESCRIPTION
pam_localuser is a PAM module to help implementing site-wide login policies, where they typically
include a subset of the network's users and a few accounts that are local to a particular workstation. Using
pam_localuser and pam_wheel or pam_listfile is an effective way to restrict access to either local users
and/or a subset of the network's users.

This could also be implemented using pam_listfile.so and a very short awk script invoked by cron, but it's
common enough to have been separated out.

6.17.2. OPTIONS
debug Print debug information.

file=/path/passwd Use a file other than /etc/passwd.

6.17.3. MODULE SERVICES PROVIDED
All services (account, auth, password and session) are supported.

6.17.4. RETURN VALUES
PAM_SUCCESS The new localuser was set successfull.

PAM_SERVICE_ERR No username was given.

PAM_USER_UNKNOWNUser not known.

6.17.5. EXAMPLES
Add the following line to /etc/pam.d/su to allow only local users in group wheel to use su.

account sufficient pam_localuser.so
account required pam_wheel.so

6.17.6. AUTHOR
pam_localuser was written by Nalin Dahyabhai <nalin@redhat.com>.

6.18. pam_loginuid - record user's login uid to
the process attribute

pam_loginuid.so [require_auditd]

A reference guide for
available modules

39

6.18.1. DESCRIPTION
The pam_loginuid module sets the loginuid process attribute for the process that was authenticated. This
is necessary for applications to be correctly audited. This PAM module should only be used for entry point
applications like: login, sshd, gdm, vsftpd, crond and atd. There are probably other entry point applications
besides these. You should not use it for applications like sudo or su as that defeats the purpose by changing
the loginuid to the account they just switched to.

6.18.2. OPTIONS
require_auditd This option, when given, will cause this module to query the audit

daemon status and deny logins if it is not running.

6.18.3. MODULE SERVICES PROVIDED
The session service is supported.

6.18.4. RETURN VALUES
PAM_SESSION_ERR An error occured during session management.

6.18.5. EXAMPLES

#%PAM-1.0
auth required pam_unix.so
auth required pam_nologin.so
account required pam_unix.so
password required pam_unix.so
session required pam_unix.so
session required pam_loginuid.so

6.18.6. AUTHOR
pam_loginuid was written by Steve Grubb <sgrubb@redhat.com>

6.19. pam_mail - inform about available mail
pam_mail.so [close] [debug] [dir=maildir] [empty] [hash=count] [noenv] [nopen] [
quit] [standard]

6.19.1. DESCRIPTION
The pam_mail PAM module provides the "you have new mail" service to the user. It can be plugged into
any application that has credential or session hooks. It gives a single message indicating the newness of
any mail it finds in the user's mail folder. This module also sets the PAM environment variable, MAIL,
to the user's mail directory.

If the mail spool file (be it /var/mail/$USER or a pathname given with the dir= parameter) is a
directory then pam_mail assumes it is in the Maildir format.

A reference guide for
available modules

40

6.19.2. OPTIONS
close Indicate if the user has any mail also on logout.

debug Print debug information.

dir=maildir Look for the users' mail in an alternative location defined by
maildir/<login>. The default location for mail is /var/
mail/<login>. Note, if the supplied maildir is prefixed by a
'~', the directory is interpreted as indicating a file in the user's home
directory.

empty Also print message if user has no mail.

hash=count Mail directory hash depth. For example, a hashcount of 2 would
make the mail file be /var/spool/mail/u/s/user.

noenv Do not set the MAIL environment variable.

nopen Don't print any mail information on login. This flag is useful to
get the MAIL environment variable set, but to not display any
information about it.

quiet Only report when there is new mail.

standard Old style "You have..." format which doesn't show the mail spool
being used. This also implies "empty".

6.19.3. MODULE SERVICES PROVIDED
The auth and account services are supported.

6.19.4. RETURN VALUES
PAM_BUF_ERR Memory buffer error.

PAM_SERVICE_ERR Badly formed arguments.

PAM_SUCCESS Success.

PAM_USER_UNKNOWNUser not known.

6.19.5. EXAMPLES
Add the following line to /etc/pam.d/login to indicate that the user has new mail when they login
to the system.

session optional pam_mail.so standard

6.19.6. AUTHOR
pam_mail was written by Andrew G. Morgan <morgan@kernel.org>.

A reference guide for
available modules

41

6.20. pam_mkhomedir - create users home
directory

pam_mkhomedir.so [silent] [umask=mode] [skel=skeldir]

6.20.1. DESCRIPTION
The pam_mkhomedir PAM module will create a users home directory if it does not exist when the session
begins. This allows users to be present in central database (such as NIS, kerberos or LDAP) without using
a distributed file system or pre-creating a large number of directories. The skeleton directory (usually
/etc/skel/) is used to copy default files and also set's a umask for the creation.

The new users home directory will not be removed after logout of the user.

6.20.2. OPTIONS
silent Don't print informative messages.

umask=mask The user file-creation mask is set to mask. The default value of
mask is 0022.

skel=/path/to/skel/
directory

Indicate an alternative skel directory to override the default /
etc/skel.

6.20.3. MODULE SERVICES PROVIDED
Only the session service is supported.

6.20.4. RETURN VALUES
PAM_BUF_ERR Memory buffer error.

PAM_CRED_INSUFFICIENT Insufficient credentials to access authentication data.

PAM_PERM_DENIED Not enough permissions to create the new directory or read the skel
directory.

PAM_USER_UNKNOWN User not known to the underlying authentication module.

PAM_SUCCESS Environment variables were set.

6.20.5. EXAMPLES
A sample /etc/pam.d/login file:

 auth requisite pam_securetty.so
 auth sufficient pam_ldap.so
 auth required pam_unix.so
 auth required pam_nologin.so
 account sufficient pam_ldap.so
 account required pam_unix.so

A reference guide for
available modules

42

 password required pam_unix.so
 session required pam_mkhomedir.so skel=/etc/skel/ umask=0022
 session required pam_unix.so
 session optional pam_lastlog.so
 session optional pam_mail.so standard

6.20.6. AUTHOR
pam_mkhomedir was written by Jason Gunthorpe <jgg@debian.org>.

6.21. pam_motd - display the motd file
pam_motd.so [motd=/path/filename]

6.21.1. DESCRIPTION
pam_motd is a PAM module that can be used to display arbitrary motd (message of the day) files after a
succesful login. By default the /etc/motd file is shown. The message size is limited to 64KB.

6.21.2. OPTIONS
motd=/path/filename The /path/filename file is displayed as message of the day.

6.21.3. MODULE SERVICES PROVIDED
Only the session service is supported.

6.21.4. RETURN VALUES
PAM_IGNORE This is the only return value of this module.

6.21.5. EXAMPLES
The suggested usage for /etc/pam.d/login is:

session optional pam_motd.so motd=/etc/motd

6.21.6. AUTHOR
pam_motd was written by Ben Collins <bcollins@debian.org>.

6.22. pam_namespace - setup a private
namespace

pam_namespace.so [debug] [unmnt_remnt] [unmnt_only] [require_selinux] [gen_hash] [
ignore_config_error] [ignore_instance_parent_mode] [no_unmount_on_close] [use_current_context
] [use_default_context]

A reference guide for
available modules

43

6.22.1. DESCRIPTION
The pam_namespace PAM module sets up a private namespace for a session with polyinstantiated
directories. A polyinstantiated directory provides a different instance of itself based on user name, or
when using SELinux, user name, security context or both. If an executable script /etc/security/
namespace.init exists, it is used to initialize the namespace every time a new instance directory is
setup. The script receives the polyinstantiated directory path, the instance directory path, flag whether the
instance directory was newly created (0 for no, 1 for yes), and the user name as its arguments.

The pam_namespace module disassociates the session namespace from the parent namespace. Any
mounts/unmounts performed in the parent namespace, such as mounting of devices, are not reflected in
the session namespace. To propagate selected mount/unmount events from the parent namespace into
the disassociated session namespace, an administrator may use the special shared-subtree feature. For
additional information on shared-subtree feature, please refer to the mount(8) man page and the shared-
subtree description at http://lwn.net/Articles/159077 and http://lwn.net/Articles/159092.

6.22.2. DESCRIPTION
The pam_namespace.so module allows setup of private namespaces with polyinstantiated directories.
Directories can be polyinstantiated based on user name or, in the case of SELinux, user name, sensitivity
level or complete security context. If an executable script /etc/security/namespace.init exists,
it is used to initialize the namespace every time a new instance directory is setup. The script receives the
polyinstantiated directory path and the instance directory path as its arguments.

The /etc/security/namespace.conf file specifies which directories are polyinstantiated,
how they are polyinstantiated, how instance directories would be named, and any users for whom
polyinstantiation would not be performed.

When someone logs in, the file namespace.conf is scanned. Comments are marked by # characters.
Each non comment line represents one polyinstantiated directory. The fields are separated by spaces but
can be quoted by " characters also escape sequences \b, \n, and \t are recognized. The fields are as follows:

polydir instance_prefix method list_of_uids

The first field, polydir, is the absolute pathname of the directory to polyinstantiate. The special string
$HOME is replaced with the user's home directory, and $USER with the username. This field cannot be
blank.

The second field, instance_prefix is the string prefix used to build the pathname for the
instantiation of <polydir>. Depending on the polyinstantiation method it is then appended with "instance
differentiation string" to generate the final instance directory path. This directory is created if it did not
exist already, and is then bind mounted on the <polydir> to provide an instance of <polydir> based on
the <method> column. The special string $HOME is replaced with the user's home directory, and $USER
with the username. This field cannot be blank.

The third field, method, is the method used for polyinstantiation. It can take these values; "user" for
polyinstantiation based on user name, "level" for polyinstantiation based on process MLS level and
user name, "context" for polyinstantiation based on process security context and user name, "tmpfs" for
mounting tmpfs filesystem as an instance dir, and "tmpdir" for creating temporary directory as an instance
dir which is removed when the user's session is closed. Methods "context" and "level" are only available
with SELinux. This field cannot be blank.

The fourth field, list_of_uids, is a comma separated list of user names for whom the polyinstantiation
is not performed. If left blank, polyinstantiation will be performed for all users. If the list is preceded with
a single "~" character, polyinstantiation is performed only for users in the list.

A reference guide for
available modules

44

The method field can contain also following optional flags separated by : characters.

create=mode,owner,group - create the polyinstantiated directory. The mode, owner and group
parameters are optional. The default for mode is determined by umask, the default owner is the user whose
session is opened, the default group is the primary group of the user.

iscript=path - path to the instance directory init script. The base directory for relative paths is /etc/
security/namespace.d.

noinit - instance directory init script will not be executed.

shared - the instance directories for "context" and "level" methods will not contain the user name and will
be shared among all users.

The directory where polyinstantiated instances are to be created, must exist and must have, by default,
the mode of 0000. The requirement that the instance parent be of mode 0000 can be overridden with the
command line option ignore_instance_parent_mode

In case of context or level polyinstantiation the SELinux context which is used for polyinstantiation is
the context used for executing a new process as obtained by getexeccon. This context must be set by the
calling application or pam_selinux.so module. If this context is not set the polyinstatiation will be
based just on user name.

The "instance differentiation string" is <user name> for "user" method and <user name>_<raw directory
context> for "context" and "level" methods. If the whole string is too long the end of it is replaced with
md5sum of itself. Also when command line option gen_hash is used the whole string is replaced with
md5sum of itself.

6.22.3. OPTIONS
debug A lot of debug information is logged using syslog

unmnt_remnt For programs such as su and newrole, the login session
has already setup a polyinstantiated namespace. For these
programs, polyinstantiation is performed based on new user id
or security context, however the command first needs to undo
the polyinstantiation performed by login. This argument instructs
the command to first undo previous polyinstantiation before
proceeding with new polyinstantiation based on new id/context

unmnt_only For trusted programs that want to undo any existing bind mounts
and process instance directories on their own, this argument allows
them to unmount currently mounted instance directories

require_selinux If selinux is not enabled, return failure

gen_hash Instead of using the security context string for the instance name,
generate and use its md5 hash.

ignore_config_error If a line in the configuration file corresponding to a polyinstantiated
directory contains format error, skip that line process the next line.
Without this option, pam will return an error to the calling program
resulting in termination of the session.

ignore_instance_parent_modeInstance parent directories by default are expected to have the
restrictive mode of 000. Using this option, an administrator can
choose to ignore the mode of the instance parent. This option should

A reference guide for
available modules

45

be used with caution as it will reduce security and isolation goals
of the polyinstantiation mechanism.

no_unmount_on_close For certain trusted programs such as newrole, open session is
called from a child process while the parent perfoms close session
and pam end functions. For these commands use this option
to instruct pam_close_session to not unmount the bind mounted
polyinstantiated directory in the parent.

use_current_context Useful for services which do not change the SELinux context with
setexeccon call. The module will use the current SELinux context
of the calling process for the level and context polyinstantiation.

use_default_context Useful for services which do not use pam_selinux for changing
the SELinux context with setexeccon call. The module will use
the default SELinux context of the user for the level and context
polyinstantiation.

6.22.4. MODULE SERVICES PROVIDED
The session service is supported. The module must not be called from multithreaded processes.

6.22.5. RETURN VALUES
PAM_SUCCESS Namespace setup was successful.

PAM_SERVICE_ERR Unexpected system error occurred while setting up namespace.

PAM_SESSION_ERR Unexpected namespace configuration error occurred.

6.22.6. FILES
/etc/security/
namespace.conf

Main configuration file

/etc/security/
namespace.d

Directory for additional configuration files

/etc/security/
namespace.init

Init script for instance directories

6.22.7. EXAMPLES
These are some example lines which might be specified in /etc/security/namespace.conf.

 # The following three lines will polyinstantiate /tmp,
 # /var/tmp and user's home directories. /tmp and /var/tmp
 # will be polyinstantiated based on the security level
 # as well as user name, whereas home directory will be
 # polyinstantiated based on the full security context and user name.
 # Polyinstantiation will not be performed for user root
 # and adm for directories /tmp and /var/tmp, whereas home
 # directories will be polyinstantiated for all users.
 #

A reference guide for
available modules

46

 # Note that instance directories do not have to reside inside
 # the polyinstantiated directory. In the examples below,
 # instances of /tmp will be created in /tmp-inst directory,
 # where as instances of /var/tmp and users home directories
 # will reside within the directories that are being
 # polyinstantiated.
 #
 /tmp /tmp-inst/ level root,adm
 /var/tmp /var/tmp/tmp-inst/ level root,adm
 $HOME $HOME/$USER.inst/inst- context

For the <service>s you need polyinstantiation (login for example) put the following line in /etc/pam.d/
<service> as the last line for session group:

session required pam_namespace.so [arguments]

This module also depends on pam_selinux.so setting the context.

6.22.8. AUTHORS
The namespace setup scheme was designed by Stephen Smalley, Janak Desai and Chad Sellers. The
pam_namespace PAM module was developed by Janak Desai <janak@us.ibm.com>, Chad Sellers
<csellers@tresys.com> and Steve Grubb <sgrubb@redhat.com>. Additional improvements by Xavier
Toth <txtoth@gmail.com> and Tomas Mraz <tmraz@redhat.com>.

6.23. pam_nologin - prevent non-root users
from login

pam_nologin.so [file=/path/nologin] [successok]

6.23.1. DESCRIPTION
pam_nologin is a PAM module that prevents users from logging into the system when /etc/nologin
exists. The contents of the /etc/nologin file are displayed to the user. The pam_nologin module has
no effect on the root user's ability to log in.

6.23.2. OPTIONS
file=/path/nologin Use this file instead the default /etc/nologin.

successok Return PAM_SUCCESS if no file exists, the default is
PAM_IGNORE.

6.23.3. MODULE SERVICES PROVIDED
The auth and acct services are supported.

6.23.4. RETURN VALUES
PAM_AUTH_ERR The user is not root and /etc/nologin exists, so the user is not permitted

to log in.

A reference guide for
available modules

47

PAM_BUF_ERR Memory buffer error.

PAM_IGNORE This is the default return value.

PAM_SUCCESS Success: either the user is root or the /etc/nologin file does not exist.

PAM_USER_UNKNOWNUser not known to the underlying authentication module.

6.23.5. EXAMPLES
The suggested usage for /etc/pam.d/login is:

auth required pam_nologin.so

6.23.6. AUTHOR
pam_nologin was written by Michael K. Johnson <johnsonm@redhat.com>.

6.24. pam_permit - the promiscuous module
pam_permit.so

6.24.1. DESCRIPTION
pam_permit is a PAM module that always permit access. It does nothing else.

In the case of authentication, the user's name will be set to nobody if the application didn't set one. Many
applications and PAM modules become confused if this name is unknown.

This module is very dangerous. It should be used with extreme caution.

6.24.2. OPTIONS
This module does not recognise any options.

6.24.3. MODULE SERVICES PROVIDED
The services auth, account, password and session are supported.

6.24.4. RETURN VALUES
PAM_SUCCESS This module always returns this value.

6.24.5. EXAMPLES
Add this line to your other login entries to disable account management, but continue to permit users to
log in.

account required pam_permit.so

A reference guide for
available modules

48

6.24.6. AUTHOR
pam_permit was written by Andrew G. Morgan, <morgan@kernel.org>.

6.25. pam_rhosts - grant access using .rhosts
file

pam_rhosts.so

6.25.1. DESCRIPTION
This module performs the standard network authentication for services, as used by traditional
implementations of rlogin and rsh etc.

The authentication mechanism of this module is based on the contents of two files; /etc/hosts.equiv
(or and ~/.rhosts. Firstly, hosts listed in the former file are treated as equivalent to the localhost.
Secondly, entries in the user's own copy of the latter file is used to map "remote-host remote-user" pairs
to that user's account on the current host. Access is granted to the user if their host is present in /etc/
hosts.equiv and their remote account is identical to their local one, or if their remote account has an
entry in their personal configuration file.

The module authenticates a remote user (internally specified by the item PAM_RUSER connecting
from the remote host (internally specified by the item PAM_RHOST). Accordingly, for
applications to be compatible this authentication module they must set these items prior to calling
pam_authenticate(). The module is not capable of independently probing the network connection
for such information.

6.25.2. OPTIONS
debug Print debug information.

silent Don't print informative messages.

superuser=account Handle account as root.

6.25.3. MODULE SERVICES PROVIDED
Only the auth service is supported.

6.25.4. RETURN VALUES
PAM_AUTH_ERR The remote host, remote user name or the local user name couldn't be

determined or access was denied by .rhosts file.

PAM_USER_UNKNOWNUser is not known to system.

6.25.5. EXAMPLES
To grant a remote user access by /etc/hosts.equiv or .rhosts for rsh add the following lines
to /etc/pam.d/rsh:

A reference guide for
available modules

49

#%PAM-1.0
#
auth required pam_rhosts.so
auth required pam_nologin.so
auth required pam_env.so
auth required pam_unix.so

6.25.6. AUTHOR
pam_rhosts was written by Thorsten Kukuk <kukuk@thkukuk.de>

6.26. pam_rootok - gain only root access
pam_rootok.so [debug]

6.26.1. DESCRIPTION
pam_rootok is a PAM module that authenticates the user if their UID is 0. Applications that are created
setuid-root generally retain the UID of the user but run with the authority of an enhanced effective-UID.
It is the real UID that is checked.

6.26.2. OPTIONS
debug Print debug information.

6.26.3. MODULE SERVICES PROVIDED
Only the auth service is supported.

6.26.4. RETURN VALUES
PAM_SUCCESS The UID is 0.

PAM_AUTH_ERR The UID is not 0.

6.26.5. EXAMPLES
In the case of the su(1) application the historical usage is to permit the superuser to adopt the identity of
a lesser user without the use of a password. To obtain this behavior with PAM the following pair of lines
are needed for the corresponding entry in the /etc/pam.d/su configuration file:

su authentication. Root is granted access by default.
auth sufficient pam_rootok.so
auth required pam_unix.so

6.26.6. AUTHOR
pam_rootok was written by Andrew G. Morgan, <morgan@kernel.org>.

A reference guide for
available modules

50

6.27. pam_securetty - limit root login to special
devices

pam_securetty.so [debug]

6.27.1. DESCRIPTION
pam_securetty is a PAM module that allows root logins only if the user is logging in on a "secure" tty,
as defined by the listing in /etc/securetty. pam_securetty also checks to make sure that /etc/
securetty is a plain file and not world writable.

This module has no effect on non-root users and requires that the application fills in the PAM_TTY item
correctly.

For canonical usage, should be listed as a required authentication method before any sufficient
authentication methods.

6.27.2. OPTIONS
debug Print debug information.

6.27.3. MODULE SERVICES PROVIDED
Only the auth service is supported.

6.27.4. RETURN VALUES
PAM_SUCCESS The user is allowed to continue authentication. Either the user is not root, or the

root user is trying to log in on an acceptable device.

PAM_AUTH_ERR Authentication is rejected. Either root is attempting to log in via an unacceptable
device, or the /etc/securetty file is world writable or not a normal file.

PAM_INCOMPLETE An application error occurred. pam_securetty was not able to get information it
required from the application that called it.

PAM_SERVICE_ERR An error occurred while the module was determining the user's name or tty, or
the module could not open /etc/securetty.

PAM_IGNORE The module could not find the user name in the /etc/passwd file to verify
whether the user had a UID of 0. Therefore, the results of running this module
are ignored.

6.27.5. EXAMPLES

auth required pam_securetty.so
auth required pam_unix.so

6.27.6. AUTHOR
pam_securetty was written by Elliot Lee <sopwith@cuc.edu>.

A reference guide for
available modules

51

6.28. pam_selinux - set the default security
context

pam_selinux.so [close] [debug] [open] [nottys] [verbose] [select_context] [use_current_range]

6.28.1. DESCRIPTION
In a nutshell, pam_selinux sets up the default security context for the next execed shell.

When an application opens a session using pam_selinux, the shell that gets executed will be run in the
default security context, or if the user chooses and the pam file allows the selected security context. Also
the controlling tty will have it's security context modified to match the users.

Adding pam_selinux into a pam file could cause other pam modules to change their behavior if the exec
another application. The close and open option help mitigate this problem. close option will only cause
the close portion of the pam_selinux to execute, and open will only cause the open portion to run. You can
add pam_selinux to the config file twice. Add the pam_selinux close as the executes the open pass through
the modules, pam_selinux open_session will happen last. When PAM executes the close pass through the
modules pam_selinux close_session will happen first.

6.28.2. OPTIONS
close Only execute the close_session portion of the module.

debug Turns on debugging via syslog(3).

open Only execute the open_session portion of the module.

nottys Do not try to setup the ttys security context.

verbose attempt to inform the user when security context is set.

select_context Attempt to ask the user for a custom security context role. If MLS
is on ask also for sensitivity level.

use_current_range Use the sensitivity range of the process for the user context. This
option and the select_context option are mutually exclusive.

6.28.3. MODULE SERVICES PROVIDED
Only the session service is supported.

6.28.4. RETURN VALUES
PAM_AUTH_ERR Unable to get or set a valid context.

PAM_SUCCESS The security context was set successfull.

PAM_USER_UNKNOWNThe user is not known to the system.

6.28.5. EXAMPLES

A reference guide for
available modules

52

auth required pam_unix.so
session required pam_permit.so
session optional pam_selinux.so

6.28.6. AUTHOR
pam_selinux was written by Dan Walsh <dwalsh@redhat.com>.

6.29. pam_shells - check for valid login shell
pam_shells.so

6.29.1. DESCRIPTION
pam_shells is a PAM module that only allows access to the system if the users shell is listed in /etc/
shells.

It also checks if /etc/shells is a plain file and not world writable.

6.29.2. OPTIONS
This module does not recognise any options.

6.29.3. MODULE SERVICES PROVIDED
The services auth and account are supported.

6.29.4. RETURN VALUES
PAM_AUTH_ERR Access to the system was denied.

PAM_SUCCESS The users login shell was listed as valid shell in /etc/shells.

PAM_SERVICE_ERR The module was not able to get the name of the user.

6.29.5. EXAMPLES

auth required pam_shells.so

6.29.6. AUTHOR
pam_shells was written by Erik Troan <ewt@redhat.com>.

6.30. pam_succeed_if - test account
characteristics

pam_succeed_if.so [flag...] [condition...]

A reference guide for
available modules

53

6.30.1. DESCRIPTION
pam_succeed_if.so is designed to succeed or fail authentication based on characteristics of the account
belonging to the user being authenticated. One use is to select whether to load other modules based on
this test.

The module should be given one or more conditions as module arguments, and authentication will succeed
only if all of the conditions are met.

6.30.2. OPTIONS
The following flags are supported:

debug Turns on debugging messages sent to syslog.

use_uid Evaluate conditions using the account of the user whose UID the application is
running under instead of the user being authenticated.

quiet Don't log failure or success to the system log.

quiet_fail Don't log failure to the system log.

quiet_success Don't log success to the system log.

Conditions are three words: a field, a test, and a value to test for.

Available fields are user, uid, gid, shell, home and service:

field < number Field has a value numerically less than number.

field <= number Field has a value numerically less than or equal to number.

field eq number Field has a value numerically equal to number.

field >= number Field has a value numerically greater than or equal to number.

field > number Field has a value numerically greater than number.

field ne number Field has a value numerically different from number.

field = string Field exactly matches the given string.

field != string Field does not match the given string.

field =~ glob Field matches the given glob.

field !~ glob Field does not match the given glob.

field in item:item:... Field is contained in the list of items separated by colons.

field notin
item:item:...

Field is not contained in the list of items separated by colons.

user ingroup group User is in given group.

user notingroup group User is not in given group.

A reference guide for
available modules

54

user innetgr netgroup (user,host) is in given netgroup.

user notinnetgr group (user,host) is not in given netgroup.

6.30.3. MODULE SERVICES PROVIDED
All services are supported.

6.30.4. RETURN VALUES
PAM_SUCCESS The condition was true.

PAM_AUTH_ERR The condition was false.

PAM_SERVICE_ERR A service error occured or the arguments can't be parsed as numbers.

6.30.5. EXAMPLES
To emulate the behaviour of pam_wheel, except there is no fallback to group 0:

auth required pam_succeed_if.so quiet user ingroup wheel

Given that the type matches, only loads the othermodule rule if the UID is over 500. Adjust the number
after default to skip several rules.

type [default=1 success=ignore] pam_succeed_if.so quiet uid > 500
type required othermodule.so arguments...

6.30.6. AUTHOR
Nalin Dahyabhai <nalin@redhat.com>

6.31. pam_tally - login counter (tallying)
module

pam_tally.so [file=/path/to/counter] [onerr=[fail|succeed]] [magic_root] [
even_deny_root_account] [deny=n] [lock_time=n] [unlock_time=n] [per_user] [no_lock_time]
[no_reset] [audit]

pam_tally [--file /path/to/counter] [--user username] [--reset[=n]] [--quiet]

6.31.1. DESCRIPTION
This module maintains a count of attempted accesses, can reset count on success, can deny access if too
many attempts fail.

pam_tally comes in two parts: pam_tally.so and pam_tally. The former is the PAM module and the
latter, a stand-alone program. pam_tally is an (optional) application which can be used to interrogate and

A reference guide for
available modules

55

manipulate the counter file. It can display users' counts, set individual counts, or clear all counts. Setting
artificially high counts may be useful for blocking users without changing their passwords. For example,
one might find it useful to clear all counts every midnight from a cron job. The faillog(8) command can
be used instead of pam_tally to to maintain the counter file.

Normally, failed attempts to access root will not cause the root account to become blocked, to prevent
denial-of-service: if your users aren't given shell accounts and root may only login via su or at the machine
console (not telnet/rsh, etc), this is safe.

6.31.2. OPTIONS
GLOBAL OPTIONS This can be used for auth and account services.

onerr=[fail|succeed] If something weird happens
(like unable to open the file),
return with PAM_SUCESS
if onerr=succeed is
given, else with the
corresponding PAM error
code.

file=/path/to/counter File where to keep counts.
Default is /var/log/
faillog.

audit Will log the user name into
the system log if the user is
not found.

AUTH OPTIONS Authentication phase first checks if user should be denied access
and if not it increments attempted login counter. Then on call to
pam_setcred(3) it resets the attempts counter.

deny=n Deny access if tally for this
user exceeds n.

lock_time=n Always deny for n seconds
after failed attempt.

unlock_time=n Allow access after n
seconds after failed attempt.
If this option is used the
user will be locked out
for the specified amount of
time after he exceeded his
maximum allowed attempts.
Otherwise the account is
locked until the lock is
removed by a manual
intervention of the system
administrator.

magic_root If the module is invoked
by a user with uid=0 the
counter is not incremented.

A reference guide for
available modules

56

The sys-admin should use
this for user launched
services, like su, otherwise
this argument should be
omitted.

no_lock_time Do not use the
.fail_locktime field in /
var/log/faillog for
this user.

no_reset Don't reset count on
successful entry, only
decrement.

even_deny_root_account Root account can become
unavailable.

per_user If /var/log/faillog
contains a non-zero
.fail_max/.fail_locktime
field for this user then
use it instead of deny=n/
lock_time=n parameter.

no_lock_time Don't use .fail_locktime
filed in /var/log/
faillog for this user.

ACCOUNT OPTIONS Account phase resets attempts counter if the user is not magic root.
This phase can be used optionaly for services which don't call
pam_setcred(3) correctly or if the reset should be done regardless
of the failure of the account phase of other modules.

magic_root If the module is invoked
by a user with uid=0 the
counter is not incremented.
The sys-admin should use
this for user launched
services, like su, otherwise
this argument should be
omitted.

no_reset Don't reset count on
successful entry, only
decrement.

6.31.3. MODULE SERVICES PROVIDED
The auth and account services are supported.

6.31.4. RETURN VALUES
PAM_AUTH_ERR A invalid option was given, the module was not able to retrive the user name,

no valid counter file was found, or too many failed logins.

A reference guide for
available modules

57

PAM_SUCCESS Everything was successfull.

PAM_USER_UNKNOWNUser not known.

6.31.5. EXAMPLES
Add the following line to /etc/pam.d/login to lock the account after too many failed logins. The
number of allowed fails is specified by /var/log/faillog and needs to be set with pam_tally or
faillog(8) before.

auth required pam_securetty.so
auth required pam_tally.so per_user
auth required pam_env.so
auth required pam_unix.so
auth required pam_nologin.so
account required pam_unix.so
password required pam_unix.so
session required pam_limits.so
session required pam_unix.so
session required pam_lastlog.so nowtmp
session optional pam_mail.so standard

6.31.6. AUTHOR
pam_tally was written by Tim Baverstock and Tomas Mraz.

6.32. pam_time - time controled access
pam_time.so [debug] [noaudit]

6.32.1. DESCRIPTION
The pam_time PAM module does not authenticate the user, but instead it restricts access to a system and
or specific applications at various times of the day and on specific days or over various terminal lines. This
module can be configured to deny access to (individual) users based on their name, the time of day, the
day of week, the service they are applying for and their terminal from which they are making their request.

By default rules for time/port access are taken from config file /etc/security/time.conf.

If Linux PAM is compiled with audit support the module will report when it denies access.

6.32.2. DESCRIPTION
The pam_time PAM module does not authenticate the user, but instead it restricts access to a system and
or specific applications at various times of the day and on specific days or over various terminal lines. This
module can be configured to deny access to (individual) users based on their name, the time of day, the
day of week, the service they are applying for and their terminal from which they are making their request.

For this module to function correctly there must be a correctly formatted /etc/security/
time.conf file present. White spaces are ignored and lines maybe extended with '\' (escaped newlines).
Text following a '#' is ignored to the end of the line.

A reference guide for
available modules

58

The syntax of the lines is as follows:

services;ttys;users;times

In words, each rule occupies a line, terminated with a newline or the beginning of a comment; a '#'. It
contains four fields separated with semicolons, ';'.

The first field, the services field, is a logic list of PAM service names that the rule applies to.

The second field, the tty field, is a logic list of terminal names that this rule applies to.

The third field, the users field, is a logic list of users or a netgroup of users to whom this rule applies.

For these items the simple wildcard '*' may be used only once. With netgroups no wildcards or logic
operators are allowed.

The times field is used to indicate the times at which this rule applies. The format here is a logic list
of day/time-range entries. The days are specified by a sequence of two character entries, MoTuSa for
example is Monday Tuesday and Saturday. Note that repeated days are unset MoMo = no day, and MoWk
= all weekdays bar Monday. The two character combinations accepted are Mo Tu We Th Fr Sa Su Wk
Wd Al, the last two being week-end days and all 7 days of the week respectively. As a final example, AlFr
means all days except Friday.

Each day/time-range can be prefixed with a '!' to indicate "anything but". The time-range part is two
24-hour times HHMM, separated by a hyphen, indicating the start and finish time (if the finish time is
smaller than the start time it is deemed to apply on the following day).

For a rule to be active, ALL of service+ttys+users must be satisfied by the applying process.

Note, currently there is no daemon enforcing the end of a session. This needs to be remedied.

Poorly formatted rules are logged as errors using syslog(3).

6.32.3. OPTIONS
debug Some debug informations are printed with syslog(3).

noaudit Do not report logins at disallowed time to the audit subsystem.

6.32.4. MODULE SERVICES PROVIDED
Only the account service is supported.

6.32.5. RETURN VALUES
PAM_SUCCESS Access was granted.

PAM_ABORT Not all relevant data could be gotten.

PAM_BUF_ERR Memory buffer error.

PAM_PERM_DENIED Access was not granted.

PAM_USER_UNKNOWNThe user is not known to the system.

A reference guide for
available modules

59

6.32.6. FILES
/etc/security/time.conf Default configuration file

6.32.7. EXAMPLES
These are some example lines which might be specified in /etc/security/time.conf.

All users except for root are denied access to console-login at all times:

login ; tty* & !ttyp* ; !root ; !Al0000-2400

Games (configured to use PAM) are only to be accessed out of working hours. This rule does not apply
to the user waster:

games ; * ; !waster ; Wd0000-2400 | Wk1800-0800

6.32.8. AUTHOR
pam_time was written by Andrew G. Morgan <morgan@kernel.org>.

6.33. pam_umask - set the file mode creation
mask

pam_umask.so [debug] [silent] [usergroups] [umask=mask]

6.33.1. DESCRIPTION
pam_umask is a PAM module to set the file mode creation mask of the current environment. The umask
affects the default permissions assigned to newly created files.

The PAM module tries to get the umask value from the following places in the following order:

• umask= argument

• umask= entry of the users GECOS field

• pri= entry of the users GECOS field

• ulimit= entry of the users GECOS field

• UMASK= entry from /etc/default/login

• UMASK entry from /etc/login.defs

6.33.2. OPTIONS
debug Print debug information.

A reference guide for
available modules

60

silent Don't print informative messages.

usergroups If the user is not root, and the user ID is equal to the group ID, and
the username is the same as primary group name, the umask group
bits are set to be the same as owner bits (examples: 022 -> 002, 077
-> 007).

umask=mask Sets the calling process's file mode creation mask (umask) to mask
& 0777. The value is interpreted as Octal.

6.33.3. MODULE SERVICES PROVIDED
Only the session service is supported.

6.33.4. RETURN VALUES
PAM_SUCCESS The new umask was set successfull.

PAM_SERVICE_ERR No username was given.

PAM_USER_UNKNOWNUser not known.

6.33.5. EXAMPLES
Add the following line to /etc/pam.d/login to set the user specific umask at login:

 session optional pam_umask.so umask=0022

6.33.6. AUTHOR
pam_umask was written by Thorsten Kukuk <kukuk@thkukuk.de>.

6.34. pam_unix - traditional password
authentication

pam_unix.so [...]

6.34.1. DESCRIPTION
This is the standard Unix authentication module. It uses standard calls from the system's libraries to retrieve
and set account information as well as authentication. Usually this is obtained from the /etc/passwd and
the /etc/shadow file as well if shadow is enabled.

The account component performs the task of establishing the status of the user's account and password
based on the following shadow elements: expire, last_change, max_change, min_change, warn_change.
In the case of the latter, it may offer advice to the user on changing their password or, through the
PAM_AUTHTOKEN_REQD return, delay giving service to the user until they have established a new
password. The entries listed above are documented in the shadow(5) manual page. Should the user's record
not contain one or more of these entries, the corresponding shadow check is not performed.

A reference guide for
available modules

61

The authentication component performs the task of checking the users credentials (password). The default
action of this module is to not permit the user access to a service if their official password is blank.

A helper binary, unix_chkpwd(8), is provided to check the user's password when it is stored in a read
protected database. This binary is very simple and will only check the password of the user invoking it. It
is called transparently on behalf of the user by the authenticating component of this module. In this way
it is possible for applications like xlock(1) to work without being setuid-root. The module, by default,
will temporarily turn off SIGCHLD handling for the duration of execution of the helper binary. This is
generally the right thing to do, as many applications are not prepared to handle this signal from a child
they didn't know was fork()d. The noreap module argument can be used to suppress this temporary
shielding and may be needed for use with certain applications.

The password component of this module performs the task of updating the user's password.

The session component of this module logs when a user logins or leave the system.

Remaining arguments, supported by others functions of this module, are silently ignored. Other arguments
are logged as errors through syslog(3).

6.34.2. OPTIONS
debug Turns on debugging via syslog(3).

audit A little more extreme than debug.

nullok The default action of this module is to not permit the user access to
a service if their official password is blank. The nullok argument
overrides this default.

try_first_pass Before prompting the user for their password, the module first tries
the previous stacked module's password in case that satisfies this
module as well.

use_first_pass The argument use_first_pass forces the module to use a
previous stacked modules password and will never prompt the user
- if no password is available or the password is not appropriate, the
user will be denied access.

nodelay This argument can be used to discourage the authentication
component from requesting a delay should the authentication as a
whole fail. The default action is for the module to request a delay-
on-failure of the order of two second.

use_authtok When password changing enforce the module to set the new
password to the one provided by a previously stacked password
module (this is used in the example of the stacking of the
pam_cracklib module documented above).

not_set_pass This argument is used to inform the module that it is not to pay
attention to/make available the old or new passwords from/to other
(stacked) password modules.

nis NIS RPC is used for setting new passwords.

remember=n The last n passwords for each user are saved in /etc/
security/opasswd in order to force password change history

A reference guide for
available modules

62

and keep the user from alternating between the same password too
frequently.

shadow Try to maintain a shadow based system.

md5 When a user changes their password next, encrypt it with the MD5
algorithm.

bigcrypt When a user changes their password next, encrypt it with the DEC
C2 algorithm.

sha256 When a user changes their password next, encrypt it with the
SHA256 algorithm. If the SHA256 algorithm is not known to the
libcrypt, fall back to MD5.

sha512 When a user changes their password next, encrypt it with the
SHA512 algorithm. If the SHA512 algorithm is not known to the
libcrypt, fall back to MD5.

rounds=n Set the optional number of rounds of the SHA256 and SHA512
password hashing algorithms to n.

broken_shadow Ignore errors reading shadow inforation for users in the account
management module.

Invalid arguments are logged with syslog(3).

6.34.3. MODULE SERVICES PROVIDED
All service are supported.

6.34.4. RETURN VALUES
PAM_IGNORE Ignore this module.

6.34.5. EXAMPLES
An example usage for /etc/pam.d/login would be:

Authenticate the user
auth required pam_unix.so
Ensure users account and password are still active
account required pam_unix.so
Change the users password, but at first check the strength
with pam_cracklib(8)
password required pam_cracklib.so retry=3 minlen=6 difok=3
password required pam_unix.so use_authtok nullok md5
session required pam_unix.so

6.34.6. AUTHOR
pam_unix was written by various people.

A reference guide for
available modules

63

6.35. pam_userdb - authenticate against a db
database

pam_userdb.so db=/path/database [debug] [crypt=[crypt|none]] [icase] [dump] [
try_first_pass] [use_first_pass] [unknown_ok] [key_only]

6.35.1. DESCRIPTION
The pam_userdb module is used to verify a username/password pair against values stored in a Berkeley
DB database. The database is indexed by the username, and the data fields corresponding to the username
keys are the passwords.

6.35.2. OPTIONS
crypt=[crypt|none] Indicates whether encrypted or plaintext passwords are stored in the

database. If it is crypt, passwords should be stored in the database
in crypt(3) form. If none is selected, passwords should be stored
in the database as plaintext.

db=/path/database Use the /path/database database for performing lookup.
There is no default; the module will return PAM_IGNORE if no
database is provided.

debug Print debug information.

dump Dump all the entries in the database to the log. Don't do this by
default!

icase Make the password verification to be case insensitive (ie when
working with registration numbers and such). Only works with
plaintext password storage.

try_first_pass Use the authentication token previously obtained by another
module that did the conversation with the application. If this token
can not be obtained then the module will try to converse. This option
can be used for stacking different modules that need to deal with
the authentication tokens.

use_first_pass Use the authentication token previously obtained by another
module that did the conversation with the application. If this token
can not be obtained then the module will fail. This option can
be used for stacking different modules that need to deal with the
authentication tokens.

unknown_ok Do not return error when checking for a user that is not in the
database. This can be used to stack more than one pam_userdb
module that will check a username/password pair in more than a
database.

key_only The username and password are concatenated together in the
database hash as 'username-password' with a random value. if the
concatenation of the username and password with a dash in the

A reference guide for
available modules

64

middle returns any result, the user is valid. this is useful in cases
where the username may not be unique but the username and
password pair are.

6.35.3. MODULE SERVICES PROVIDED
The services auth and account are supported.

6.35.4. RETURN VALUES
PAM_AUTH_ERR Authentication failure.

PAM_AUTHTOK_RECOVERY_ERRAuthentication information cannot be recovered.

PAM_BUF_ERR Memory buffer error.

PAM_CONV_ERR Conversation failure.

PAM_SERVICE_ERR Error in service module.

PAM_SUCCESS Success.

PAM_USER_UNKNOWN User not known to the underlying authentication module.

6.35.5. EXAMPLES

auth sufficient pam_userdb.so icase db=/etc/dbtest.db

6.35.6. AUTHOR
pam_userdb was written by Cristian Gafton >gafton@redhat.com<.

6.36. pam_warn - logs all PAM items
pam_warn.so

6.36.1. DESCRIPTION
pam_warn is a PAM module that logs the service, terminal, user, remote user and remote host to syslog(3).
The items are not probed for, but instead obtained from the standard PAM items. The module always
returns PAM_IGNORE, indicating that it does not want to affect the authentication process.

6.36.2. OPTIONS
This module does not recognise any options.

6.36.3. MODULE SERVICES PROVIDED
The services auth, account, password and session are supported.

A reference guide for
available modules

65

6.36.4. RETURN VALUES
PAM_IGNORE This module always returns PAM_IGNORE.

6.36.5. EXAMPLES

#%PAM-1.0
#
If we don't have config entries for a service, the
OTHER entries are used. To be secure, warn and deny
access to everything.
other auth required pam_warn.so
other auth required pam_deny.so
other account required pam_warn.so
other account required pam_deny.so
other password required pam_warn.so
other password required pam_deny.so
other session required pam_warn.so
other session required pam_deny.so

6.36.6. AUTHOR
pam_warn was written by Andrew G. Morgan <morgan@kernel.org>.

6.37. pam_wheel - only permit root access to
members of group wheel

pam_wheel.so [debug] [deny] [group=name] [root_only] [trust] [use_uid]

6.37.1. DESCRIPTION
The pam_wheel PAM module is used to enforce the so-called wheel group. By default it permits root
access to the system if the applicant user is a member of the wheel group. If no group with this name exist,
the module is using the group with the group-ID 0.

6.37.2. OPTIONS
debug Print debug information.

deny Reverse the sense of the auth operation: if the user is trying to get
UID 0 access and is a member of the wheel group (or the group of
the group option), deny access. Conversely, if the user is not in the
group, return PAM_IGNORE (unless trust was also specified,
in which case we return PAM_SUCCESS).

group=name Instead of checking the wheel or GID 0 groups, use the name group
to perform the authentication.

root_only The check for wheel membership is done only.

A reference guide for
available modules

66

trust The pam_wheel module will return PAM_SUCCESS instead of
PAM_IGNORE if the user is a member of the wheel group (thus
with a little play stacking the modules the wheel members may be
able to su to root without being prompted for a passwd).

use_uid The check for wheel membership will be done against the current
uid instead of the original one (useful when jumping with su from
one account to another for example).

6.37.3. MODULE SERVICES PROVIDED
The auth and account services are supported.

6.37.4. RETURN VALUES
PAM_AUTH_ERR Authentication failure.

PAM_BUF_ERR Memory buffer error.

PAM_IGNORE The return value should be ignored by PAM dispatch.

PAM_PERM_DENY Permission denied.

PAM_SERVICE_ERR Cannot determine the user name.

PAM_SUCCESS Success.

PAM_USER_UNKNOWNUser not known.

6.37.5. EXAMPLES
The root account gains access by default (rootok), only wheel members can become root (wheel) but Unix
authenticate non-root applicants.

su auth sufficient pam_rootok.so
su auth required pam_wheel.so
su auth required pam_unix.so

6.37.6. AUTHOR
pam_wheel was written by Cristian Gafton <gafton@redhat.com>.

6.38. pam_xauth - forward xauth keys between
users

pam_xauth.so [debug] [xauthpath=/path/to/xauth] [systemuser=UID] [targetuser=UID]

6.38.1. DESCRIPTION
The pam_xauth PAM module is designed to forward xauth keys (sometimes referred to as "cookies")
between users.

A reference guide for
available modules

67

Without pam_xauth, when xauth is enabled and a user uses the su(1) command to assume another user's
priviledges, that user is no longer able to access the original user's X display because the new user does not
have the key needed to access the display. pam_xauth solves the problem by forwarding the key from the
user running su (the source user) to the user whose identity the source user is assuming (the target user)
when the session is created, and destroying the key when the session is torn down.

This means, for example, that when you run su(1) from an xterm sesssion, you will be able to run X
programs without explicitly dealing with the xauth(1) xauth command or ~/.Xauthority files.

pam_xauth will only forward keys if xauth can list a key connected to the $DISPLAY environment
variable.

Primitive access control is provided by ~/.xauth/export in the invoking user's home directory and
~/.xauth/import in the target user's home directory.

If a user has a ~/.xauth/import file, the user will only receive cookies from users listed in the file.
If there is no ~/.xauth/import file, the user will accept cookies from any other user.

If a user has a .xauth/export file, the user will only forward cookies to users listed in the file. If
there is no ~/.xauth/export file, and the invoking user is not root, the user will forward cookies to
any other user. If there is no ~/.xauth/export file, and the invoking user is root, the user will not
forward cookies to other users.

Both the import and export files support wildcards (such as *). Both the import and export files can be
empty, signifying that no users are allowed.

6.38.2. OPTIONS
debug Print debug information.

xauthpath=/path/to/
xauth

Specify the path the xauth program (it is expected in /usr/
X11R6/bin/xauth, /usr/bin/xauth, or /usr/bin/
X11/xauth by default).

systemuser=UID Specify the highest UID which will be assumed to belong to a
"system" user. pam_xauth will refuse to forward credentials to users
with UID less than or equal to this number, except for root and the
"targetuser", if specified.

targetuser=UID Specify a single target UID which is exempt from the systemuser
check.

6.38.3. MODULE SERVICES PROVIDED
Only the session service is supported.

6.38.4. RETURN VALUES
PAM_BUF_ERR Memory buffer error.

PAM_PERM_DENIED Permission denied by import/export file.

PAM_SESSION_ERR Cannot determine user name, UID or access users home directory.

PAM_SUCCESS Success.

A reference guide for
available modules

68

PAM_USER_UNKNOWNUser not known.

6.38.5. EXAMPLES
Add the following line to /etc/pam.d/su to forward xauth keys between users when calling su:

session optional pam_xauth.so

6.38.6. AUTHOR
pam_xauth was written by Nalin Dahyabhai <nalin@redhat.com>, based on original version by Michael
K. Johnson <johnsonm@redhat.com>.

69

Chapter 7. See also
• The Linux-PAM Application Writers' Guide.

• The Linux-PAM Module Writers' Guide.

• The V. Samar and R. Schemers (SunSoft), ``UNIFIED LOGIN WITH PLUGGABLE
AUTHENTICATION MODULES'', Open Software Foundation Request For Comments 86.0, October
1995.

70

Chapter 8. Author/acknowledgments
This document was written by Andrew G. Morgan (morgan@kernel.org) with many contributions from
Chris Adams, Peter Allgeyer, Tim Baverstock, Tim Berger, Craig S. Bell, Derrick J. Brashear, Ben Buxton,
Seth Chaiklin, Oliver Crow, Chris Dent, Marc Ewing, Cristian Gafton, Emmanuel Galanos, Brad M.
Garcia, Eric Hester, Michel D'Hooge, Roger Hu, Eric Jacksch, Michael K. Johnson, David Kinchlea, Olaf
Kirch, Marcin Korzonek, Thorsten Kukuk, Stephen Langasek, Nicolai Langfeldt, Elliot Lee, Luke Kenneth
Casson Leighton, Al Longyear, Ingo Luetkebohle, Marek Michalkiewicz, Robert Milkowski, Aleph One,
Martin Pool, Sean Reifschneider, Jan Rekorajski, Erik Troan, Theodore Ts'o, Jeff Uphoff, Myles Uyema,
Savochkin Andrey Vladimirovich, Ronald Wahl, David Wood, John Wilmes, Joseph S. D. Yao and Alex
O. Yuriev.

Thanks are also due to Sun Microsystems, especially to Vipin Samar and Charlie Lai for their advice.
At an early stage in the development of Linux-PAM, Sun graciously made the documentation for their
implementation of PAM available. This act greatly accelerated the development of Linux-PAM.

71

Chapter 9. Copyright information for
this document

Copyright (c) 2006 Thorsten Kukuk <kukuk@thkukuk.de>
Copyright (c) 1996-2002 Andrew G. Morgan <morgan@kernel.org>

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright
 notice, and the entire permission notice in its entirety,
 including the disclaimer of warranties.

2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

3. The name of the author may not be used to endorse or promote
 products derived from this software without specific prior
 written permission.

Alternatively, this product may be distributed under the terms of the GNU General Public License (GPL),
in which case the provisions of the GNU GPL are required instead of the above restrictions. (This clause
is necessary due to a potential bad interaction between the GNU GPL and the restrictions contained in a
BSD-style copyright.)

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

