
A trust model applied to e-mail servers

Leonardo Oliveira and Carlos Maziero

Graduate Program in Computer Science

Pontifical Catholic University of Paraná, Brazil

{bispo,maziero}@ppgia.pucpr.br

Abstract

E-mail services are essential in the Internet. However,

the basic e-mail architecture presents problems that opens

it to several threats. Alternatives have been proposed to

solve some problems related with e-mail services, offer-

ing reliability and scalability to those systems. This work

presents a distributed trust model, allowing to create dy-

namic and decentralized trusted server lists, through the ex-

clusion of servers used as spreaders of malicious messages.

Many techniques were used to build it, like a social network

model, message filters, message management, and a trust

information storage and propagation model.

1 Introduction

E-mail systems are commonly used by its simplicity,

flexibility, and low costs for implementation and usage.

However, this kind of system suffers problems caused by

fragilities of protocols involved on communication process.

Amongst them are lacks of a robust mechanism for authen-

tication, lacks of a confidentiality and integrity mechanism

for message delivery, and also lacks of a reputation mecha-

nism of users and e-mail servers.

E-mail systems researches are trying to solve this kind

of fragilities using filtering and classification algorithms,

which look for malicious patterns inside the message con-

tent, using symmetric keys on e-mail clients, to sign and

cypher sent messages, and methods for e-mail servers au-

thentication. These researches resulted in important ad-

vances in the attempt to solve problems related with authen-

tication, but does not provide mechanisms to measure how

trustful a server or domain is. In other words, authentica-

tion mechanisms by themselves are not able to minimize

the sending of malicious messages (spam).

This work presents a distributed trust model for e-mail

servers that uses e-mail classification techniques, a sender

authentication model, and social networks, to create an en-

vironment able to keep information about legitimate/mali-

cious e-mail servers using a decentralized method. Section

2 brings a short review of main threats in e-mail services.

Section 3 describes the main techniques used to authenti-

cate the e-mail senders; section 4 describes the use of so-

cial networks in a distributed environment, section 5 shows

the proposal architecture and details its functional aspects;

section 6 presents the model implementation and discusses

some experimental results; finally, section 8 concludes this

work and delineates some perspectives of continuity.

2 Threats in e-mail systems

Today e-mail systems were designed to be simple, their

main target was restricted to a small and trustful environ-

ment, constituted basically by the academic community.

The SMTP protocol, responsible for e-mail transferences

between servers [4, 8] does not provide robust mechanisms

for authentication and access control. Amongst the current

problems present in e-mail systems are spams, virus and

scams, which compromises their performance, robustness,

security, and usability.

Many techniques are being used for spam control. The

main techniques are based on trustful and non-trustful

servers lists, or on screening received messages to find sus-

pect content:

• Black Lists: distributed RBL (Realtime Blackhole
Lists) servers keep lists of IP address from spam

spreaders or sources, which can queried by DNS to

verify the sender trustworthiness [7].

• White Lists: each e-mail server can keep a trusted
senders list; this list is commonly kept through a web-

based acknowledge mechanism [6].

• Anti-spam Filters: Programs that filter e-mail accord-
ing to its content, using statistical techniques, Bayesian

classification, neural networks, etc. [10, 15].

A second form of threat are virus and worms, which are

malicious programs that can spread though e-mail. An e-

mail virus normally is constituted by an e-mail with an ex-

ecutable file attached (or a HTML code able to load an exe-

cutable file stored in a remote server). This code, which can

be activated by the receiver or automatically loaded, aims to

reproduce the virus and to do other local actions, like dam-

aging system files, installing spyware applications, and so

on. Finally, the phishing scams or simply scams are fake

messages that use the SMTP protocol fragilities to build

social engineering attacks. Such attacks aim to deceive e-

mail receivers, convincing them to inform personal data like

bank informations, credit card numbers, etc.

3 Sender authentication

E-mail senders can be authenticated, in order to guaran-

tee the origin of a message. Many techniques have been

developed with this goal, like PGP (Pretty Good Privacy),

SPF (Sender Policy Framework), SenderID and DKIM.

PGP [14] is a cryptography package that makes use of pub-

lic keys and session keys to cypher documents. Thus, only

the person owning the private key can decrypt the session

key, guaranteeing then the privacy and integrity of a mes-

sage.

SPF [13] makes use of DNS servers to provide to a re-

ceiver server informations about the sender server. These

informations are described in a proper language and stored

in a specific DNS record. When the server receives a mes-

sage, it makes a DNS query to get information about the

origin domain, to verify the sender authenticity. SenderID

[12] is a SPF’s extension that improves the SPF language

and extends the SMTP protocol, to solve problems related

with forwarded messages authentication.

DKIM (Domain Keys Identified e-Mail) [5, 1] uses the

public key system to validate the authenticity of an e-mail

server. The private key is stored in a local database, and it is

used to generate a signature for every e-mail sent, included

in its header. The public key is stored in a DNS record and

can be requested by the receiver server, to validate the sig-

nature.

All these techniques provide sufficient information to

identify the sender of an e-mail, but they do not allow to

judge about his/her trustworthiness. Our proposal in this

paper is to combine one of such techniques to a trust model,

in order to provide more information about e-mail senders.

4 Trust relationships

In human relations, trust is the base for the construction

and maintenance of a group of individuals. Trust relations

define how a person acts regarding other known persons and

strangers. Trust relations can be classified as Hierarchic

trust, Social groups and Social networks [11].

Hierarchic trust considers all relationships as an hierar-

chic model, for instance the trust of a father on his son.

This trust relation can be represented as a tree, where all

nodes are individuals and the edges define the trust degree

between each pair of participants. Through transitivity, any

two participants can define a trust degree between them,

event if they have no direct connection.

Social groups define sets of individuals whose activities

are systematically related with a well-defined goal. Partic-

ipants of social groups are able to share common interest

information, propagating it to all other participants. Partic-

ipants can also make use of trust groups to start and keep

relationships with other participants. Social groups can be

represented as a graph, where all nodes are participants and

the edges are links between individuals.

The Relationship word will define the interaction be-

tween individuals, based on reciprocal perceptions. Social

networks are built from all relationships established by a

person. It is possible to walk on the social network to find

relationship paths between persons.

Computational systems can use the same principles of

interpersonal relationships to define trust levels between its

diverse elements [9]. In the following we will present a

proposal that applies concepts of trust relationships among

e-mail servers, aiming to diminishing the quantity of mali-

cious e-mails received by the servers in the group.

5 A trust model for a group of e-mail servers

This work defines an architecture able to create dynamic

and decentralized lists of trusted servers, using e-mail clas-

sification and e-mail server authentication techniques. We

consider that e-mail servers are organized in trust groups T ,
defined by their administrators. For example, considering

the e-mail servers present in figure 1, the trust group of s4

has s2, s3, s5 and s9 (T4 = {s2, s3, s5, s9}).

Figure 1. Trust groups

Servers that constitute a trust group cooperate between

each other to share information about outside servers known

by the group, using trust network techniques. As many

trust groups are distinct and partially overlapped, trust in-

formation will be gradually propagated, passing from a trust

group to another.

5.1 Architecture

The system architecture use concepts of trust networks,

anti-spam tools, anti-virus tools, and an authentication

model to build a trust management system among e-mail

servers (Mail Transport Agents - MTAs). Figure 2 repre-

sents all components that will be implemented/integrated in

each participating MTA.

• SMTP Server: responsible for messages reception;
implements the SMTP protocol.

• Sender authentication: implements a domain authen-
tication method, as SPF or DKIM.

• Anti-spam and anti-virus: analyses if a message is
legitimate or malicious. The filter results are used by

the trust management system.

• Trust management system: analyses and keeps the
trust on a given server, according to the messages re-

ceived from it.

Figure 2. Architecture model

When a SMTP communication is established between

two MTAs, the receiver server should execute the follow-

ing steps for each received message (as indicated in figure

2):

1. Authenticate the server: if the server is correctly au-

thenticated, go to next step, otherwise, reject the mes-

sage and close the connection;

2. Verify if the sender server can send messages, querying

the trust management system (the rules for this will be

defined in section 5.2). If the response is positive, the

system receives the message, otherwise the connection

is closed;

3. Submit the received e-mail to anti-spam and anti-virus

filters. These filters will inform whether the received

e-mail is legitimate or malicious;

4. Send the filters results to the trust management system,

to update the local trust information.

The architecture was divided in three modules: manage-

ment, storage and trust propagation, presented in the fol-

lowing.

5.2 Trust management

Each server from a trust group executes actions to main-

tain trust information about other e-mail servers external to

its group. For each external server, it maintains a local trust,

defined by internal information (received messages), and a

global trust, calculated using information provided by other

members from its trust group. The combination of these two

trusts define a final trust, used to determine the maximum

number of messages that can be received from this server

in during a given period. An external server exceeding this

limit will be banned, no more messages will be received

from it until the beginning of a new period. The period du-

ration is defined by the system administrator (in minutes,

hours, days, etc.). Main attributes involved on trust calcula-

tion are described in Table 1 (all trust values are between 0

and 1, or 0% and 100%).

Table 1. Trust calculation information
Entity Description

Ti Trust group of the SMTP server si.

Ki Set of external SMTP servers known by

si. Servers belonging to its trust group

are not external: Ki ∩ T = ∅.

tl
j

i (x) Local trust: last value known by si of

individual opinion of sj about a server

x ∈ Kj (each server si locally stores val-

ues tl∗i (x) ∀x ∈ Ki.

tgi(x) Global trust: shows the opinion of the

trust group about a server x, calculated

by si using all local trusts from its trust

group servers.

δt Trust variation stepping.

t0 Initial trust to be attributed to new

servers, empirically defined as 50%.

agei(x) age of data about server x kept by si.

age
max

maximum value for agei(x).
mmi(x) Number of malicious messages received

from x server by si in the current period.

mli(x) Number of legitimate messages received

from x server by si in the current period.

mmmax Number of malicious messages received

during a period to reduce by δt the trust

on a given server, considering a initial lo-

cal trust of 100%. This value is defined

by the system administrator.

banned i(x) indicates if server x was banned by si; if

true, all messages from x will be rejected

by si until the current period finishes.

lim Number of legitimate/malicious mes-

sages necessary to increase/decrease by

δt the local trust about a server.

tc Current trust, used on the lim calculation.

Defined as the geometry mean of local

trust tl and global trust tg.

The procedure 1 describes all actions realized by a server

si ∈ Ti when receive a connection of a SMTP server x 6∈ Ti

to deliver an e-mail.

Procedure 1 when si receives a connection from server x:

1: if x 6∈ Ki then

2: Ki ← Ki ∪ {x} // x becomes a known server

3: banned i(x)← FALSE
4: tgi(x)← t0 // initial trust

5: llii(x)← t0
6: agei(x)← 0
7: mii(x)← 0
8: mmi(x)← 0
9: end if

The local trust is reevaluated for each e-mail reception.

If the number of malicious messages received from a given

server exceeds a maximum limit, the server will be banned

until the end of current period. Procedure 2 describes the

actions performed by a server si ∈ Ti when it receives a

messagem from a SMTP server x 6∈ Ti:

Procedure 2 when si receives a messagem from server x:

1: if banned i(x) then
2: rejects the messagem

3: else

4: accepts the messagem

5: agei(x)← 0

6: tc ←
√

tgi(x)× tlii(x)
7: analyzesm contents

8: ifmsg legitimate(m) then
9: mii(x)← mii(x) + 1
10: lim ← tc ×mmmax

11: if (mii(x) ≥ lim) ∧ (tlii(x) < 1) then
12: tlii(x)← tlii(x) + δt

13: mii(x)← 0
14: send notify(x, tlii(x)) to trust group Ti

15: end if

16: else

17: mmi(x)← mmi(x) + 1
18: lim ← (1− tc)×mmmax

19: if (mmi(x) ≥ lim) ∧ (tlii(x) > 0) then
20: tlii(x)← tlii(x)− δt

21: mmi(x)← 0
22: banned i(x)← TRUE
23: send notify(x, tlii(x)) to the trust group Ti

24: end if

25: end if

26: end if

Procedure 2 shows that, when a local trust on x de-

creases, it is banned until the end of current period. The

adoption of dynamic thresholds (using the tc and lim at-

tributes) allows to decrease faster the trust on lowly-trusted

servers than increasing it, and to increase faster the trust on

highly-trusted servers than decreasing it. The limit lim on

the number of messages that the server si can accept from

the server x per period is calculated in line 10 (if the mes-

sagem is legitimate) or in line 18 (if not). In both cases, the

limit is calculated as a function of si’ current trust tc on the

server x.

Finally, when a period finishes, each server should exe-

cute the actions described in procedure 3. Such actions will

re-enable banned servers, restart counters and “forget” in-

formation about servers that no more sent e-mails to si for a

while. This forgetting mechanism is important, as it allows

to consider only the recent behavior of external servers.

Procedure 3 when si finishes a period:

1: for all x ∈ Ki do

2: banned i(x)← FALSE
3: mii(x)← 0
4: mmi(x)← 0
5: agei(x)← agei(x) + 1
6: if agei(x) = age

max
then

7: Ki ← Ki − {x} // “forget” server x

8: remove all local information about x

9: send notify(x, undef) to the trust group Ti

10: end if

11: end for

5.3 Trust storage

The trust information is locally stored in each e-mail

server belonging to a trust group. The following infor-

mation is maintained in si local database, for each known

server x ∈ Ki:

• domain of x;

• domain name of x (FQDN - Fully Qualified Domain

Name);

• x IP addresses;

• local trust tl∗i (x) and global trust tgi(x);

• counter of legitimate messages mii(x) and malicious
ones mmi(x) received from x during the current pe-

riod;

• Age agei(x) of the local information about x.

5.4 Trust propagation

The trust propagation mechanism spreads out informa-

tion about servers known by si to all members of its trust

group Ti. Trust groups are defined by the e-mail service

administrator and will indicate which servers should be in-

formed about trust updates on external servers (in this pro-

posal, trust groups are manually defined).

As defined in procedure 2, when a server updates its lo-

cal trust about an external server, it notifies its trust group

servers, using a notify message. When a server si receives

a message notify(x, t) from sj , it updates its local infor-

mation about x, as shown in procedure 4. Global trust is

defined as the mean of local trusts on x for the servers be-

longing to Ti ; it is reevaluated by si after each period (pro-

cedure 5). If any server sj ∈ Ti did not inform its opinion

about x (tl
j

i (x) = undef), its value will not be considered.

Procedure 4 when si receives notify(x, t) from sj :

1: if (j ∈ Ti) ∧ (x ∈ Ki) then

2: tl
j

i (x)← t

3: end if

Procedure 5 when si finishes a period:

1: for all x ∈ Ki do

2: tgi(x)← mean(tlji (x) 6= undef , ∀sj ∈ Ti)
3: end for

6 Implementation and results

We developed a prototype of our proposal (called Trust-

Mail) using Linux, the Postfix e-mail server, the SpamAssas-

sin anti-spam filter, and the Clamav anti-virus filter. In the

following, we will describe our implementation, the com-

munication system between e-mail server and other compo-

nents, and a short evaluation of the system’s behavior.

6.1 TrustMail prototype

The prototype was implemented using C language and

the SQLite database to store local trust information. Com-

munication between TrustMail and other parts of the sys-

tem (e-mail reception and filtering) is made through POSIX

message queues.

Postfix 2.2 was chosen as MTA due to its easiness of in-

tegration with other tools. The authentication system cho-

sen was SPF, because its implementation is simple and easy

to integrate with Postfix. The communication between the

MTA and SPF, and the communication with TrustMail, are

done by policyd, an open source SPF implementation (Pol-

icyd was modified to support communication with Trust-

Mail).

SpamAssassin was chosen as anti-spam filter, because

it is the de facto standard on Linux. The same applies to

the Clamav anti-virus, which has a huge virus signature

list. Both run as daemons, turning easy the integration with

other tools. The integration between Postfix and the mes-

sages filters was done by the Clamav-Filter script, modi-

fied to support malicious message notifications. The cur-

rent prototype implementation is illustrated in figure 3. In

this figure is possible to see that TrustMail does not depend

on the e-mail server implementation, authentication system,

nor messages filters. This way, the proposed model could be

easily integrated with other tools.

The following procedure is performed when receiving an

e-mail:

1. When receiving a RCPT TO SMTP command, Postfix

invokes policyd with the following parameters: sender

address, sender IP and domain.

Figure 3. The prototype architecture

2. Policyd makes a query to the DNS server of the e-mail

sender domain, in order to authenticate it. The query

return can be:

• Pass, Soft Fail, Neutral, Unknown or None: the
procedure can continue;

• Error: Returns the message “450 Temporary fail-
ure” to Postfix;

• Fail: Return an error and the connection should
be closed by Postfix.

3. If the server is authenticated, policyd calls TrustMail

to request if the connection can continue. TrustMail

calculates the maximum number of e-mails that can be

received from that server and responds to policyd. Pol-

icyd then sends back to Postfix the response received.

4. After the e-mail is received, Postfix invokes the

Clamav-Filter script, with the following parameters:

IP address, name and domain of the sender server.

5. Clamav-Filter then passes the e-mail through the Cla-

mav and SpamAssassin filters.

6. Next, the Clamav-Filter calls the TrustMailNotify

module, which notifies TrustMail that a malicious or

legitimate message was received.

7. Finally, Trustmail updates the trust information in

stored in a Trust Mail.db database.

6.2 Experimental results

The prototype was implemented and tested in a virtual

machine environment (using UML (User-Mode Linux). The

experiment used the topology shown in figure 4, in which

four virtual machines implement the trust group (s0 . . . s3).

Another virtual machine was used to simulate an external

e-mail server (e0), which sends e-mails to the servers in the

group

Figure 4. Experimental topology

On the experiment, the external server sends e-mails con-

tinuously and randomly (on average one e-mail each 15 sec-

onds), uniformly distributed among group servers. The ex-

ternal server has a distinct behavior concerning each server

in the group: it never sends a malicious e-mail to s0, but

25% of e-mails sent to s1, 50% sent to s2 and 75% sent to

s3 are malicious. The chosen period duration was 30 min-

utes, age
max

= 10 periods, t0 = 50%, δt = 10% and
mmmax = 10 messages. The total execution duration was
24 hours.

To evaluate the group influence on the decisions of each

each server, we observed the evolution of local and global

trust about e0 (tl
i
i(e0) and tgi(e0)) for each group mem-

ber, on two circumstances: without trust update notifica-

tions (that is, without group cooperation) and with such

notifications. This evaluation is presented in figure 5. It

is possible to see that, if there is no cooperation between

group members (curves tl(si, x)), each server will build its
own opinion (trust level) about the external server e0. When

notifications are used, cooperation between group members

occurs (curves tg(si, x)), and trust opinions on e0 converge

to similar values.

In the same experiment, we evaluated the quantity of

messages rejected by the banishment of non-trusted servers

(line 22 of procedure 2. The results are presented in figure

6. It is possible to see that, excepting s0 (that did not re-

ceive spam), all the other servers reject significant amounts

of the e-mails sent to them. This show that the banishment

mechanism limits the quantity of messages that an external

server can send to each group member, when the trust in it

is not 100%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

L
o
c
a
l
a
n
d
 g

lo
b
a
l
tr

u
s
t
(%

)

Time (sec)

Evolution of trusts on an external server

lt(s0,x)
lt(s1,x)
lt(s2,x)
lt(s3,x)

gt(s0,x)
gt(s1,x)
gt(s2,x)
gt(s3,x)

Figure 5. Local and global trust evolution

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

E
−

m
a
ils

Time (sec)

Number of sent/refused e−mails

sent to s0
sent to s1
sent to s2
sent to s3

refused by s0
refused by s1
refused by s2
refused by s3

Figure 6. Number of messages sent/rejected

by servers

7 Related works

Not much research was proposed using social networks

to fight spam. The following works are considered by us

most relevant.

The MailRank [3] system is a tool for global white-lists

construction. Data about user activity are evaluated and

grouped in a global social network. Each message sent by

an user to another is transformed in a trust vote, used to

build the social network. The system is compatible with

the current e-mail structure, and is composed by two ba-

sic elements: theMailRank Proxy, used as a proxy between

each e-mail client and its e-mail server, to extract informa-

tion from e-mails sent and received by each user, and the

MailRank Server, a central server that collects data from all

MailRank proxies, to create a global classification of users

based on their sent and received e-mails.

By other hand, the work presented in [2] shows the con-

struction of an anti-spam tool that extracts relationship in-

formation between e-mail users through the analysis of e-

mail headers (From, To, Cc, Bcc, etc.). This information

is used to build a huge graph of relationships among users.

This graph is then used to build white-lists for all users, us-

ing a social network property called agglomeration. Finally,

the agglomeration groups are analyzed to find spamming

behavior patterns.

Our work differs from both in some aspects: when they

classify users as spammers or not, our work concentrates on

e-mail servers behavior, allowing a better scalability; more-

over, our proposal presents a fully decentralized architec-

ture, while the other works need some centralized server for

the construction and analysis of the social network. Finally,

our proposal is compatible and can coexist with the standard

e-mail systems in use today.

8 Conclusion

This work proposed and evaluated a trust model for e-

mail servers. It defines trust groups whose members inter-

act to exchange “opinions” about external e-mail servers.

Each server in a group uses the other members’ opinions

to build a global trust, and use this information to limit the

quantity of e-mail received from an external server. Local

trust information is propagated to the trust group using a

social network model, decentralizing the maintenance and

evolution of trust information.

Other aspects of this work that can be explored in future

works are a) the definition of reputation between the mem-

bers of a trust group, allowing the automatic inclusion or

exclusion from members in a group; b) the definition of op-

timal values for the model’s constants; and c) a deeper study

of the trust spread mechanisms among distinct groups with

common servers, in a scalable way.

References

[1] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton,

and M. Thomas. RFC 4871: Domainkeys identified mail

(DKIM) signatures, May 2007.

[2] P. O. Boykin and V. P. Roychowdhury. Leveraging social

networks to fight spam. IEEE Computer, 38(4):61–68, 2005.

[3] P. A. Chirita, J. Diederich, and W. Nejdl. Mailrank: Us-

ing ranking for spam detection. ACM International CIKM

Conference, 2005.

[4] D. Crocker. RFC 822: Standard for the format of arpa inter-

net text messages, Aug. 1982.

[5] M. Delany and Yahoo. Domain-based email authentication

using public-keys: Advertised in the DNS (DomainKeys).

Internet Draft, 2004.

[6] R. J. Hall. How to avoid unwanted email. Communications

of the ACM, 41(3):88–95, 1998.

[7] J. Jung and E. Sit. An Empirical Study of Spam Traffic and

the Use of DNS Black Lists. In Internet Measurement Con-

ference, Taormina, Italy, October 2004.

[8] J. Klensin. RFC 2821: Simple mail transfer protocol, Apr.

2001.

[9] V. Krebs. The social life of routers: Applying knowledge of

human networks to the design of computer networks. Inter-

net Protocol, 3(4), Dec. 2000.

[10] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A

bayesian approach to filtering junk E-mail. In Learning for

Text Categorization: Papers from the 1998 Workshop, Madi-

son, Wisconsin, 1998. AAAI Technical Report WS-98-05.

[11] S. Wasserman and K. Faust. Social Networks Analysis:

Methods and Applications. Cambridge University Press,

1994.

[12] Wong, Microsoft, and Lentczner. The SenderID record: For-

mat interpretation. http://www.ietf.org/internet-drafts/draft-

ietf-marid-protocol-02.txt, 2004.

[13] M. Wong. Sender Policy Framework (SPF): A conven-

tion to describe hosts authorized to send SMTP traffic.

http://db.org/drafts/internet/mengwong/spf/00/, 2004.

[14] P. R. Zimmermann. The Official PGP User’s Guide. The

MIT Press, 1995.

[15] C. C. Zou, W. Gong, and D. Towsley. Code Red worm prop-

agation modeling and analysis. In 9th ACM conference on

Computer and Communications Security, pages 138–147,

2002.

