
CLEI ELECTRONIC JOURNAL, VOLUME 11, NUMBER 2, PAPER 1, DECEMBER 2008

A Trust Model for a Group of E-mail Servers

Leonardo B. de Oliveira and Carlos A. Maziero

Graduate Program in Computer Science

Pontifical Catholic University of Paraná

Curitiba – PR, Brazil

{bispo,maziero}@ppgia.pucpr.br

Abstract

E-mail services are essential in the Internet. However, the current e-mail architecture presents

problems that open it to several threats. Alternatives have been proposed to solve some prob-

lems related to e-mail services, offering reliability and scalability to such systems. This work

presents a distributed trust model, allowing to create dynamic and decentralized trusted server

lists, through the exclusion of servers recognized as spreaders of malicious messages. The

trust model uses a social network approach and defines strategies for trust information update,

propagation, and storage. A prototype was built to evaluate the proposed model’s effectiveness.

Keywords: e-mail service, spam, trust networks.

1. I
E-mail systems are commonly used due to their simplicity, flexibility, and low costs for their implementation and usage.

However, such systems suffer problems caused by fragilities in the protocols involved in the communication. Amongst

them, there are problems concerning the absence of a robust mechanism for sender authentication, poor confidentiality

and integrity mechanisms for message delivery, and also the lacking of a consistent reputation mechanism for users

and e-mail servers.

Recent research works in the e-mail domain are proposing methods to solve such fragilities. Content filtering and

classification algorithms are able to scan messages, looking for malicious patterns inside them. The use of crypto-

graphic schemes on e-mail clients allows to cypher and sign all messages sent, ensuring message privacy and integrity.

Finally, several methods for the authentication of e-mail servers have been recently proposed. All this research activity

resulted in important advances in the attempt to solve problems related with authentication, integrity and privacy, but

does not provide mechanisms to measure how trustful a server or domain is. In other words, server authentication

mechanisms by themselves are not able to minimize the sending of malicious messages (spam).

This work presents a distributed trust model for e-mail servers that uses e-mail classification techniques, a sender au-

thentication model, and social networks, to create an environment able to keep information about legitimate/malicious

e-mail servers using a decentralized strategy. Section 2 brings a short review of main threats in e-mail services. Section

3 describes the main techniques used to authenticate e-mail senders; section 4 describes the use of social networks

in a distributed environment. Section 5 shows the proposal architecture and details its functional aspects. Section 6

presents the model implementation and discusses some experimental results. Section 7 discusses some related work

and compare them with this proposal. Finally, section 8 concludes this work and delineates some perspectives of

continuity.

2. T  E- S
Current e-mail systems were designed to be simple, as their main target was restricted to a small and trustful environ-

ment, constituted basically by the academic community. The SMTP protocol, responsible for e-mail transfers between

servers [4, 11] does not provide robust mechanisms for authentication, privacy, and access control. Amongst the prob-

lems present in e-mail systems there are spams, virus and scams, which compromise their performance, robustness,

security, and usability.

The most preeminent problem in current e-mail systems is spam, or UCE (Unsolicited Commercial E-mail). Re-

cent estimates point that over 90% of all Internet e-mail traffic is spam. Many techniques are being used to control

spam dissemination. The main techniques are based in trustful and non-trustful servers lists, or in scanning received

messages to find suspect content:

• Black Lists: distributed RBL (Realtime Blackhole Lists) servers keep lists of IP address from spam spreaders or

sources, which can queried through DNS to verify the sender trustworthiness [10];

• White Lists: each e-mail server can keep a list of trusted senders; this list is commonly managed through a web-

based acknowledging mechanism [8]. A variant of this approach is greylisting [9], in which the list of trusted

senders is dynamically built and managed;

• Message Filters: theses are programs that filter e-mails according to their contents, using statistical techniques,

Bayesian classification, neural networks, header analysis, etc. [14, 20].

A second form of threat are virus and worms, which are malicious programs that can spread though e-mail messages.

An e-mail virus normally is constituted by an e-mail with an executable file attached (or a HTML code able to load an

executable file attached or stored in a remote server). This code, which can be unintentionally activated by the receiver

or automatically loaded, aims to reproduce the virus and to perform other local actions, like damaging system files,

installing spyware applications, and so on.

Finally, the phishing scams or simply scams are fake messages that use SMTP protocol fragilities to build social

engineering attacks. Such attacks aim to deceive e-mail receivers, convincing them to inform personal data like bank

account information, credit card numbers, etc. Scam prevention is usually done through e-mail content analysis.

3. S A
The very first step in e-mail security is sender authentication. It aims to guarantee that the source of a message is

surely known (i.e. the message source was not forged). Many techniques have been developed with this goal, like

PGP (Pretty Good Privacy), SPF (Sender Policy Framework), SenderID and DKIM. PGP [19] is a cryptography

package aimed at cyphering e-mail messages. Using PGP, an e-mail is cyphered using a symmetric session key, and

then this key is cyphered using the receiver’s public key. This procedure ensures that the e-mail is kept confidential,

as only the receiver can decrypt it. The sender’s public/private keys are also used, in order to identify her.

SPF [18] makes use of DNS servers to provide to a receiver server information about the sender server. Such informa-

tion is described using an specific language and stored in an extendedDNS record. When the server receives a message,

it performs a DNS query to get information about the origin domain, to verify the sender’s authenticity. SenderID [17]

is an SPF’s extension that improves the SPF language and extends the SMTP protocol, to solve problems related to

the authentication of forwarded messages.

DKIM (Domain Keys Identified e-Mail) [1, 5] uses a public key system to validate the authenticity of an e-mail server.

The sender’s private key is stored in a local database, and is used for generating a signature for all e-mails sent, which

is included in the e-mail header. The public key is stored in a DNS record that can be requested by the receiver server,

to validate the signature.

All these techniques provide sufficient information to identify the sender of an e-mail, but they do not allow to judge

about his/her trustworthiness. In this paper, our proposal is to combine one of such techniques with a distributed trust

model, in order to provide more information about e-mail senders.

4. T R
In human relations, trust is the base for the construction and maintenance of a group of related individuals. Trust

relations define how a person acts regarding other persons, known individuals and strangers. Trust relations can be

classified as Hierarchic trust, Social groups and Social networks [16]:

• Hierarchic trust considers all relationships as an hierarchic model, for instance, the trust of a father on his sons.

This trust relation can be represented as a tree, in which all nodes are individuals and the edges define the trust

degree between each pair of nodes. Through transitivity, any two participants can define a trust degree between

them, event if they have no direct connection.

• Social groups define sets of individuals whose activities are systematically related to a well-defined goal. Par-

ticipants of social groups are able to share common interest information, propagating it to all other participants.

Group participants can also make use of trust groups to start and keep relationships with other participants.

Social groups can be represented as graphs, in which all nodes are participants and the edges are links between

individuals.

• The Relationship word defines the interaction between individuals, based on reciprocal perceptions. Social

networks are built from all relationships established by a person. It is possible to “walk” on the social network

to find relationship paths between persons.

Computational systems can use the same principles of interpersonal relationships to define trust levels among their

distinct elements [12]. In the following, we will present a proposal that applies concepts of social groups to the

2

relationships among e-mail servers. Servers in a group share information about outsider servers, aiming to reduce the

quantity of malicious e-mails received by the servers in the group.

5. A TM   G  E- S
This work defines an approach to create dynamic and decentralized lists of trusted servers, using e-mail classification

and e-mail server authentication techniques. Each e-mail server receives messages, filters them and maintains a local

opinion about the servers that sent them. Such local opinion is propagated to other servers in its trust group, to help

them build a global opinion about the outsider servers. For that, we consider that e-mail servers are organized in trust

groups T , manually defined by their administrators1. For example, considering the e-mail servers present in figure 1,

the trust group of server s4 is composed by servers s2, s3, s5, and s9 (T4 = {s2, s3, s5, s9}).

Figure 1: Trust groups

Servers that constitute a trust group cooperate between each other to share their opinions about outside servers known

by the group, using trust network techniques. As there can be many distinct and partially overlapped trust groups, such

trust information is gradually propagated from a trust group to its neighbor groups.

5.1 Architecture

The system architecture use concepts of trust networks, anti-spam tools, anti-virus tools, and an authentication model

to build a trust management system among e-mail servers (Mail Transport Agents - MTAs). Figure 2 represents all

components that will be implemented/integrated in each MTA participating in a trust group.

• SMTP Server: responsible for messages reception; it implements the SMTP protocol.

• Sender authentication: implements a domain authentication method, like SPF or DKIM.

• Anti-spam and anti-virus: classifies messages legitimate or malicious. The filter results are used by the trust

management system.

• Trust management system: maintains trust information about outside servers, according to the messages re-

ceived from them.

When a SMTP communication is established between two MTAs, the receiver server should execute the following

steps for each message received (as indicated in figure 2):

1. Authenticate the server: if the server is correctly authenticated, go to next step, otherwise, reject the message

and close the connection;

2. Verify if new messages can be accepted from that server, by querying the trust management system (the rules

for this will be defined in section 5.2). If the answer is positive, the system receives the message, otherwise the

connection is closed;

3. Submit the received e-mail to anti-spam and anti-virus filters. These filters will inform whether the received

e-mail is legitimate or malicious;

1The automatic building of a trust group, although being a relevant research subject, is not considered here.

3

Figure 2: Architecture model

4. Send the filters results to the trust management system, to update the local trust information about that server.

The architecture was structured in three modules: management, storage and trust propagation, discussed in the fol-

lowing sections.

5.2 Trust Management

In a trust group, each server performs actions to build and maintain trust information about e-mail servers external to

the group. For each external server, it maintains a local trust, defined by its local perception (messages received from

that server), and a global trust, calculated using information provided by other members of its trust group(s). The

combination of these two distinct trusts defines a final trust, used to determine the maximum number of messages that

it will accept from the foreign server during a given time, defined here as a cycle2. An external server exceeding this

limit is banned, i.e. no more messages coming from it will be accepted during the current cycle. The cycle duration

is defined by the system administrator (in minutes, hours, days, etc.). Main attributes involved on trust calculation are

described in Table 1 (all trust values are reals between 0.0 and 1.0, or 0% and 100%).

Table 1: Trust calculation attributes

Entity Description

Ti Trust group of the SMTP server si.

Ki Set of external SMTP servers known by si. Servers belonging to its trust group are not

considered external: Ki ∩ T = ∅.

tl
j

i
(x) Local trust information: last value known by si of individual opinion of s j ∈ Ti about

a server x ∈ K j (each server si locally stores values tl∗
i
(x) ∀x ∈ Ki.

tgi(x) Global trust: shows the opinion of the trust group about a server x, calculated by si
using all local trusts from its trust group members.

δt Trust variation stepping.

t0 Initial trust to be attributed to new external servers, empirically defined as 50%.

agei(x) age of data about server x kept by si.

agemax maximum value for agei(x).

mmi(x) Number of malicious messages received from x server by si in the current cycle.

mli(x) Number of legitimate messages received from x server by si in the current cycle.

mmmax Number of malicious messages to be received during a cycle to reduce by δt the local

trust on a given server, considering an initial local trust of 100%. This value is defined

by the system administrator.

bannedi(x) indicates that server x was banned by si; if true, all messages from x will be rejected

by si until the end of the current cycle.

lim Number of legitimate/malicious messages necessary to increase/decrease by δt the

local trust on a server.

tc Current trust, used on the lim calculation. Defined as the geometric mean between the

local trust tl and the global trust tg.

2Each server locally controls its cycles, there is no need for global cycle synchronization.

4

Procedure 1 describes all actions performed by a server si ∈ Ti when receiving a connection from an external SMTP

server x < Ti to deliver an e-mail.

Procedure 1 when si receives a connection from server x:

1: if x < Ki then

2: Ki ← Ki ∪ {x} // x becomes a known server

3: bannedi(x)← FALSE

4: tgi(x)← t0 // default initial trust

5: lli
i
(x)← t0

6: agei(x)← 0

7: mii(x)← 0

8: mmi(x)← 0

9: end if

The local trust information is reevaluated each time an e-mail is received. If the number of malicious messages

received from a given server exceeds the maximum limit, that server will be banned until the end of the current cycle.

Procedure 2 describes the actions performed by a server si ∈ Ti when it receives a message m from an SMTP server

x < Ti:

Procedure 2 when si receives a message m from server x:

1: if bannedi(x) then

2: rejects the message m

3: else

4: accepts the message m

5: agei(x)← 0

6: tc←

√

tgi(x) × tl
i
i
(x)

7: analyzes m’s contents

8: if msg_legitimate(m) then

9: mii(x)← mii(x) + 1

10: lim← tc × mmmax

11: if (mii(x) ≥ lim) ∧ (tli
i
(x) < 1) then

12: tli
i
(x)← tli

i
(x) + δt

13: mii(x)← 0

14: send notify(x, tli
i
(x)) to trust group Ti

15: end if

16: else

17: mmi(x)← mmi(x) + 1

18: lim← (1 − tc) × mmmax

19: if (mmi(x) ≥ lim) ∧ (tli
i
(x) > 0) then

20: tli
i
(x)← tli

i
(x) − δt

21: mmi(x)← 0

22: bannedi(x)← TRUE

23: send notify(x, tli
i
(x)) to the trust group Ti

24: end if

25: end if

26: end if

Procedure 2 shows that, when the local trust on server x decreases, it can be banned until the end of current cycle. The

adoption of dynamic thresholds (using the tc and lim attributes) allows to decrease faster the trust on lowly-trusted

servers than increasing it, and to increase faster the trust on highly-trusted servers than decreasing it. The limit lim on

the number of messages that the server si can accept from the server x per cycle is calculated in line 10 (if the message

m is legitimate) or in line 18 (if not). In both cases, the limit is calculated as a function of si’s current trust tc on server

x.

Finally, when a cycle ends, each server should execute the actions described in procedure 3. Such actions will re-

enable banned servers, restart counters and “forget” information about servers that did not sent e-mails to si for a

while. This forgetting mechanism is important, as it allows to consider only the recent behavior of external servers.

5

Procedure 3 when si finishes a cycle:

1: for all x ∈ Ki do

2: bannedi(x)← FALSE

3: mii(x)← 0

4: mmi(x)← 0

5: agei(x)← agei(x) + 1

6: if agei(x) = agemax then

7: Ki ← Ki − {x} // “forget” server x

8: remove all local information about x

9: send notify(x, undef) to the trust group Ti
10: end if

11: end for

5.3 Trust Storage

Trust information is locally stored in each e-mail server belonging to a trust group. The following information is

maintained by si in a local database, for each known server x ∈ Ki:

• Domain name of x (FQDN - Fully Qualified Domain Name);

• IP address(es) of x;

• Local trust tl∗
i
(x) and global trust tgi(x);

• Counters of legitimate messages mii(x) and malicious ones mmi(x) received from x during the current cycle;

• Age agei(x) of the local information about x.

5.4 Trust Propagation

The trust propagation mechanism spreads out local information about servers known by si to all members of its trust

group Ti. Trust groups are defined by the e-mail service administrators and indicate which servers should be informed

about updates on trust information about external servers (in this proposal, trust groups are manually defined).

As defined in procedure 2, when a server updates its local trust about an external server, it notifies its trust group mem-

bers, using a notify message. When a server si receives a message notify(x, t) from s j, it updates its local information

about x, performing the steps defined in procedure 4. Global trust is defined as the mean of local trusts on x for the

servers belonging to Ti ; it is reevaluated by si after each cycle (procedure 5). If any server s j ∈ Ti did not inform its

opinion about x (tl
j

i
(x) = undef), its value is not considered.

Procedure 4 when si receives notify(x, t) from s j:

1: if (s j ∈ Ti) ∧ (x ∈ Ki) then

2: tl
j

i
(x)← t

3: end if

Procedure 5 when si finishes a cycle:

1: for all x ∈ Ki do

2: tgi(x)← mean(tl
j

i
(x) , undef ,∀s j ∈ Ti)

3: end for

6. I  R
We developed a prototype of our proposal (called TrustMail) using Linux, the Postfix e-mail server, the SpamAssassin

anti-spam filter, and the Clamav anti-virus filter. In the following, we will describe our implementation and the results

obtained from its evaluation.

6

6.1 TrustMail Prototype

The prototype was implemented using C language and the SQLite database to store local trust information. Com-

munication between TrustMail and other parts of the system (e-mail reception and filtering) is made through POSIX

message queues. The MTA Postfix 2.2 was chosen due to the easiness of its integration with other tools. The authen-

tication system chosen was SPF [18], because its implementation is simple and easy to integrate with Postfix. The

interaction between the MTA and SPF, and the communication with TrustMail, are done through policyd, an open

source SPF implementation (Policyd was modified to support communication with TrustMail).

SpamAssassin was chosen as anti-spam filter, because it is the de facto standard on Linux. The same applies to the

Clamav anti-virus, which has a large virus signature list. Both run as daemons, easing the integration with other

tools. The integration between Postfix and the messages filters was done through the Clamav-Filter script, modified to

support malicious message notifications. The current prototype implementation is illustrated in figure 3. In this figure,

is possible to observe that TrustMail does not depend on the e-mail server implementation, authentication system, nor

messages filters. Thus, the proposed model could be easily integrated with other tools.

Figure 3: Architecture of the implemented prototype

The following steps are performed by the system components when an e-mail is received:

1. When receiving an SMTP connection, Postfix invokes policyd with the following parameters: name, domain,

and IP address of the server requesting the connection.

2. Policyd makes a query to the DNS server responsible for the sender domain, to authenticate it. The query return

can be:

• Pass, Soft Fail, Neutral, Unknown or None: the procedure can continue;

• Error: Returns the message “450 Temporary failure” to Postfix;

• Fail: Return an error and the connection should be closed by Postfix.

3. If the server is correctly authenticated, policyd calls TrustMail to verify if the connection can continue. TrustMail

calculates the maximum number of e-mails allowed to be received from that server in the current cycle and

replies to policyd. Policyd then sends the response received back to Postfix.

4. After the e-mail is received, Postfix invokes the Clamav-Filter script, which following parameters: IP address,

name, and domain of the sender server.

7

5. Clamav-Filter then submits the e-mail through Clamav and SpamAssassin filters.

6. Next, the Clamav-Filter calls the TrustMailNotify module, which notifies TrustMail that a malicious or legiti-

mate message was received.

7. Finally, Trustmail updates the trust information stored in the local database Trust_Mail.db.

6.2 Experimental Results

The prototype was implemented and tested in a virtual machine environment using UML (User-Mode Linux [6]). The

experiment used the topology shown in figure 4, in which four virtual machines implement the trust group (s0 . . . s3).

Another virtual machine was used to simulate an external e-mail server (e0), which randomly sends e-mails to the

servers in the group.

Figure 4: Experimental topology

In the experiment, the external server sends e-mails continuously and randomly (in average one e-mail each 15 sec-

onds), uniformly distributed among the group servers. The external server has a distinct behavior concerning each

server in the group: it never sends a malicious e-mail to s0, but 25% of e-mails sent to s1, 50% sent to s2 and 75%

sent to s3 are malicious. The chosen cycle duration was 30 minutes, agemax = 10 cycles, t0 = 50%, δt = 10% and

mmmax = 10 messages. The total execution duration was 24 hours.

To evaluate the group influence on the decisions of each each server, we observed the evolution of local and global

trusts about e0 (tl
i
i
(e0) and tgi(e0)) for each group member, in two circumstances: without trust update notifications (that

is, without group cooperation) and with such notifications. This evaluation is presented in figure 5. It is possible to

see that, when there is no cooperation among group members (curves tl(si, x)), each server will build its own isolated

opinion (trust level) about the external server e0. When notifications are used, cooperation among group members

occurs (curves tg(si, x)), and trust opinions about e0 converge to similar values.

In the same experiment, we also evaluated the quantity of messages rejected by the banishment of non-trusted servers

(line 22 of procedure 2). The results are presented in figure 6. It is possible to see that, excepting s0 (that did not

receive spam), all the other servers reject significant amounts of the e-mails sent to them by e0. This result shows that

the banishment mechanism limits the quantity of messages that an external server can send to each group member,

when the trust about it is not 100%.

Finally, we also evaluated the number of notification messages notify(x, c) generated, compared to the number of e-

mails received from the external server e0. During the experiment, e0 sent 19250 e-mails, which triggered the sending

of 2072 notification messages by the trust group members. This amount of notifications means that one notification

was produced for each 9.3 e-mails received by the group, which is a reasonably low value.

7. RW
Not much research was proposed using social networks to fight spam. The following works are considered by us the

most relevant in this area.

The MailRank [3] system is a tool for global white-lists construction. Data about user activity are evaluated and

grouped in a global social network. Each message sent by an user to another is transformed in a trust vote, used to

build the social network. The system is compatible with the current e-mail structure, and is composed by two basic

elements: theMailRank Proxy, used as a proxy between each e-mail client and its e-mail server, to extract information

from e-mails sent and received by each user, and the MailRank Server, a central server that collects data from all

MailRank proxies, to create a global classification of users based on the e-mails they sent and received.

On the other hand, the work presented in [2] shows the construction of an anti-spam tool that extracts relationship

information between e-mail users through the analysis of e-mail headers (From, To, Cc, Bcc, etc.). This information is

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

L
o

c
a

l
a

n
d

 g
lo

b
a

l
tr

u
s
t

(%
)

Time (sec)

Evolution of trusts on an external server

lt(s0,x)
lt(s1,x)
lt(s2,x)
lt(s3,x)

gt(s0,x)
gt(s1,x)
gt(s2,x)
gt(s3,x)

Figure 5: Local and global trust evolution

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000

E
−

m
a

ils

Time (sec)

Number of sent/refused e−mails

sent to s0
sent to s1
sent to s2
sent to s3

refused by s0
refused by s1
refused by s2
refused by s3

Figure 6: Number of messages sent/rejected by servers

used to build a huge graph of relationships among users. This graph is then used to build white-lists for all users, using

a social network property called agglomeration. Finally, the agglomeration groups are analyzed to find spamming

behavior patterns.

The paper [9] proposes a reputation-based greylisting mechanism, in which the time between message delivery at-

tempts induced by the greylisting technique is modulated by a reputation value: higher reputed servers are imposed

small waiting times, while suspect servers should wait much more to deliver their messages. However, the reputation

is calculated using only local information.

In [15], the author explains the reputation system used in the popular GMail web-based e-mail service. Similarly to

our approach, they also use the number of legitimate/malicious messages sent by an authenticated sender to calculate

9

the reputation of her domain. However, all reputations are calculated using only data locally available on the server.

The paper [7] proposes a similar approach, in which the reputations are calculated for individuals rather than servers.

A distributed architecture is proposed in [13], in which agents collect information from e-mail servers and send it to

nomination servers to be classified. The nomination server generates signatures for spam messages and feeds them to

a trust evaluation system, which can be queried by the e-mail servers. All reputation calculations are centralized in

this component.

Our work differs from those in the following aspects: when they classify users as spammers or not, our work con-

centrates on the behavior of e-mail servers, allowing to a better scalability; moreover, our proposal presents a fully

decentralized architecture, in which a group of mutually trusted servers asynchronously cooperate to build global rep-

utations, while the other works need some centralized server for the construction and analysis of the social network.

Finally, our proposal is compatible and may coexist with the standard e-mail systems in use today.

8. C
This work proposed and evaluated a trust model for e-mail servers. It defines trust groups whose members interact to

exchange “opinions” about external e-mail servers. Each server in a trust group uses the other members’ opinions to

build a global trust, and uses this information to limit the quantity of e-mail received from an external server. Local

trust information is propagated to the trust group using a social network model, decentralizing the maintenance and

evolution of trust information.

It is important to observe that the proposed model does not substitute conventional e-mail security mechanisms like

sender authentication, anti-spam or anti-virus systems, but complements them. In this sense, it provides information on

how other trusted servers (the group members) consider third-party e-mail servers. In our proposal, such information

is used to regulate the message flow coming from suspect servers, but it could be used in other more creative ways,

like the one proposed in [9].

Other aspects of this work that can be explored in future works are a) the definition of a reputation measure between the

members in a trust group, allowing the automatic inclusion or exclusion from members of a group; b) the definition of

optimal values for the model’s constants; and c) a deeper study of the trust information spreading mechanisms among

distinct groups with common servers, in a scalable way.

References

[1] E. Allman, J. Callas, M. Delany, M. Libbey, J. Fenton, and M. Thomas. RFC 4871: DomainKeys identified mail

(DKIM) signatures, May 2007.

[2] P. O. Boykin and V. P. Roychowdhury. Leveraging social networks to fight spam. IEEE Computer, 38(4):61–68,

2005.

[3] P. A. Chirita, J. Diederich, and W. Nejdl. Mailrank: Using ranking for spam detection. ACM International CIKM

Conference, 2005.

[4] D. Crocker. RFC 822: Standard for the format of ARPA Internet text messages, Aug. 1982.

[5] M. Delany and Yahoo. Domain-based email authentication using public-keys: Advertised in the DNS (Do-

mainKeys). Internet Draft, 2004.

[6] J. Dike. A user-mode port of the Linux kernel. In Proceedings of the 4th Annual Linux Showcase & Conference,

Atlanta - USA, 2000.

[7] J. Golbeck and J. Hendler. Reputation network analysis for email filtering. In Conference on Email and Anti-

Spam – CEAS, 2004.

[8] R. J. Hall. How to avoid unwanted email. Communications of the ACM, 41(3):88–95, 1998.

[9] A. Janecek, W. Gansterer, and K. Kumar. Multi-level reputation-based greylisting. In 3rd Intl Conference on

Availability, Reliability and Security, 2008.

[10] J. Jung and E. Sit. An empirical study of spam traffic and the use of DNS black lists. In Internet Measurement

Conference, 2004.

[11] J. Klensin. RFC 2821: Simple mail transfer protocol, Apr. 2001.

[12] V. Krebs. The social life of routers: Applying knowledge of human networks to the design of computer networks.

Internet Protocol, 3(4), Dec. 2000.

10

[13] V. V. Prakash and A. O’Donnell. Fighting spam with reputation systems. ACM Queue, 3(9):36–41, 2005.

[14] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A bayesian approach to filtering junk E-mail. In Learning

for Text Categorization: Papers from the 1998 Workshop, Madison, Wisconsin, 1998. AAAI Technical Report

WS-98-05.

[15] B. Taylor. Sender reputation in a large webmail service. In 3rd Conference on Email and AntiSpam – CEAS,

2006.

[16] S. Wasserman and K. Faust. Social Networks Analysis: Methods and Applications. Cambridge University Press,

1994.

[17] Wong, Microsoft, and Lentczner. The SenderID record: Format interpretation. http://www.ietf.org/internet-

drafts/draft-ietf-marid-protocol-02.txt, 2004.

[18] M. Wong. Sender Policy Framework (SPF): A convention to describe hosts authorized to send SMTP traffic.

http://db.org/drafts/internet/mengwong/spf/00/, 2004.

[19] P. R. Zimmermann. The Official PGP User’s Guide. The MIT Press, 1995.

[20] C. C. Zou, W. Gong, and D. Towsley. Code Red worm propagation modeling and analysis. In ACM conference

on Computer and Communications Security, 2002.

11

