
A Grammar for Specifying Usage Control Policies
Rafael Teigão, Carlos Maziero, Altair Santin

Graduate Program in Computer Science
Pontifical Catholic University of Paraná

80215–901 Curitiba, Brazil
Email: {teigao,maziero,santin}@ppgia.pucpr.br

Abstract—Usage control goes beyond traditional access control,
addressing its limitations related to attribute mutability and
continuous usage permission validation. The recently proposed
UCONABC model establishes an underlying mathematical frame-
work to deal with the new needs of security and control systems.
That model was only described by a logic specification, and
this paper proposes implementing it as an LALR(1) grammar,
which is defined here. The proposed grammar is then used for
representing common access and usage control scenarios, showing
its expressiveness and usefulness. The proposed grammar is being
incorporated into a file usage control mechanism implemented
on a COTS operating system.

I. INTRODUCTION

Classic access control mechanisms are not suitable for the
vast amount of ways data (content) is available today. For
instance, Digital Rights Management (DRM) introduces the
necessity for control that goes beyond the simple one-step
access granting. That is also true when data are collected from
several independent sources, such as medical information from
patients of an hospital. Electronic commerce of digital items,
nowadays, brings with it the necessity of checking whether
some additional requirements have been met, like accepting
an End-User License Agreement (EULA) and so on.

Usage control (UCON), introduced by Park and Sandhu
[1] defines on-going checks of attributes/requirements (e.g.
permissions of a user to watch a movie) and consider the
mutability of that attributes during usage. Furthermore, the
authors presented models based on external information (not
considered in classic access control models) that is taken into
account in the model. The UCONABC model [2] is based on
the concepts of Authorization, oBligations, and Conditions,
supporting the current control needs while still supporting
classic access control. Access and usage controls are based on
rules that specify requirements to get access or usage rights
over objects, respectively. The set of rules defines a policy,
which is written in a policy language.

Based on the UCONABC logical specification [3], this paper
proposes a grammar for specifying UCON policies, which has
been conceived to be expressive enough in order to represent
authorization, obligation and condition statements. The aim of
this grammar is to allow a sysadmin to associate attributes
to users and requirements to objects, and to impose rules that
use these attributes and requirements to make access and usage
decisions. The grammar definition should avoid ambiguities:
each statement must have a single, unambiguous, and clear
semantics.

This paper is organized as follows. Section II brings an
overview of the UCONABC model; section III details the
proposed UCONABC grammar; section IV gives some details
of the implementation prototype; examples of the grammar
representing common usage and access control scenarios are
given in section V; section VI presents some related work;
finally, section VII summarizes this paper and present future
directions for this work.

II. THE UCONABC USAGE CONTROL MODEL

Every current access control mechanism relates user’s and
object’s attributes to make access decisions, but these attributes
are usually very specific to the mechanism they pertain to
and in most cases can only be changed by administrative
actions. UCONABC [1], [2] introduces attribute mutability,
which brings with it the possibility to influence current or
future actions based upon usage history, for example. It is
possible to correlate usage decisions based on attributes that
are altered on each access (take a credit based system for
example: with each access, the user credit is decremented
by some value and, when the user is out of credit, her
access can be denied). Beyond mutability, attributes are also
mechanism independent: Discretionary Access Control (DAC),
Mandatory Access Control (MAC) and Role-Based Access
Control (RBAC), among many others, can be implemented
within UCONABC, without changing attribute properties.

Authorization is only one aspect of UCONABC that can be
evaluated when making decisions. Obligations and conditions
may also be evaluated. While authorization encompasses tradi-
tional access controls, obligations permit verifying mandatory
actions a user has to perform before or during usage. Condi-
tions on the other hand are environmental requirements that
can be taken into account.

Rule evaluation can be performed before (pre) or during
(on) usage/access1. Attribute updates can be done before (1),
during (2) or after (3) usage, or they can never be updated
(0). For instance, if one were to denote an authorization (A)
process that is going to take place during usage (on), but
will only update attributes after usage (3), one could write
UCONonA3 . Table I shows the UCONonA3 model space. It is
important to notice that, since conditions are environmental

1Although authorizations and conditions usually relate to access control
and obligations to usage control, we avoid differentiating them, for the sake
of simplicity.

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

information (i.e. the system checking them have no influence
on their values), there are no attribute updates related to them.

TABLE I
THE 16 BASIC UCONABC MODELS [2]

0 1 2 3
immutable pre-update ongoing-update post-update

preA Y Y N Y
onA Y Y Y Y
preB Y Y N Y
onB Y Y Y Y
preC Y N N N
onC Y N N N

III. THE PROPOSED GRAMMAR

The objective of the grammar proposed here is to be as close
as possible to the UCON formal description, without loosing
the ability of being implemented in a real system. Also, the
grammar should be kept simple, in order to allow an efficient
(fast) implementation. Grammars may be described in a format
known as the Extended Backus-Naur-Form (EBNF) [4] and
they are composed of terminal and non-terminal symbols. We
are not concerned with the non-terminal symbols in this work
because they are of little help for understanding the grammar.
In addition, the complete formal description of the grammar
is too long to fit in this paper. So, it will be presented here
only informally.

A. Language requirements

For the description of control rules to be secure and efficient,
it has to follow some criteria, as detailed bellow:

• The language defined by the grammar should have no
ambiguities, and should clearly express the functional
predicates for authorizations, obligations, and conditions.
Ambiguous grammars have bigger processing and mem-
ory requirements, because more tokens should be looked-
ahead in order to solve ambiguities.

• The access should only be granted after all evaluated rules
returned true. Each rule expressed will have the ability
to altogether deny a usage request if it returns false,
but if there is not at least a single rule that explicitly
denies usage, the request should be granted. Therefore,
an empty rule-set does not have the power to deny access.
This approach was also used in [5].

• It should be possible to add new control rules without
modifying user’s attributes, provided that the required
attributes are already present.

• The evaluation process must be efficient, otherwise the
time required for making a decision may hinder the
user experience and degrade the system performance (i.e.
it should not take much longer than traditional access
control mechanisms to grant or deny access).

• The proposal should be fully implementable and should
be easy to integrate into existing environments.

B. Representing attributes, obligations, and conditions

It is important to observe that the parser for this grammar
is meant to be incorporated into a real system. Therefore it
must be practical and usable. This requirement introduces
some limitations such as controls to assure the integrity of
a policy file, for example. Other limitations are inherent to
the translation from the formal (mathematical) model to the
real implementation. The way we represent attributes, obliga-
tions and conditions are clear examples of these limitations.
Attributes are implemented as variables which may have two
different types: integer and string.

An Attribute variable is represented by a $ followed by its
name (e.g. $name). When a variable is created, a value must
be assigned to it. The value initially assigned to a symbol
define its type: if a symbol is first assigned as an integer value,
then it will always be treated as an integer.

Obligations and conditions have special needs regarding the
data that may be hold by the structures representing them.
As obligations and conditions relate to external information
(outside the policy enforcer), there is a security issue to be
considered, in order to avoid user-supplied code to be executed
during their evaluation. Since one cannot allow a code supplied
by the user to be run at the same security level as the enforcer,
we limit the amount and kind of data that can be used.
Obligations are presented as slots, data holders that can be
filled by an external program, and that can be read by the
enforcer. Such slots can be accessed by using the keyword
o$slot followed by the slot number (e.g. o$slot 37).

Similarly, a keyword is used to access information on
conditions. Only predefined conditions are available, in the
current prototype they are the time of day (c$time), amount
of CPU used (c$cpu_used), amount of free memory
(c$free_mem), and partition space (c$free_disk). These
specific conditions where selected to be implemented because
they relate strongly with the current prototype environment,
an operating system (cf. section IV). However, conditions can
easily be extended by adding new constructs to the grammar
relating a keyword to a function that returns the required
information.

C. Terminal Symbols

Grammar’s terminal symbols consist of variable names,
keywords, constant values, and operators. As it will be shown
in session III-B, the representation of some model aspects
is met with limitations, specially related to obligations and
conditions. The following tables present the terminal symbols:
table II shows those symbols related to variables and values,
and table III introduces the operators and their functionality
(the operators are shown in increasing precedence order).

Some operators may be used in sequence. For instance, it is
possible to test whether the value stored in a variable is greater
than the difference of two variables: $credit > $cost −
$discount.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

TABLE II
VARIABLES AND VALUES SYMBOLS

Symbol Type Description
$name integer

and
string

A named variable, beginning
with the $ symbol, followed by
its distinguishing name.

digits integer A constant integer value.
[string1, . . . , stringn] string A constant set of strings.

o$slot integer Keyword to access obligation val-
ues.

c$name integer Keyword to access a value for the
resource name, used to express
conditions.

TABLE III
OPERATOR SYMBOLS

Operator Type Functionality
= Assignment Assigns the value on the right to the

variable on the left.
== != < >
<= >=

Comparison Perform comparisons between left and
right operands.

& | Logical Logical operators AND and OR.
size Set operation Returns the number of elements in a set.
+ - * / Arithmetic Arithmetic operations between left and

right numeric operands.
+ * Set operation Union and intersection between left and

right set operands.
(expression) Precedence The inner-most expression should be

analyzed before the non-parenthesized
expression.

- Starts a comment.

IV. THE PROTOTYPE IMPLEMENTATION

The approach proposed in this paper is being implemented
as a proof-of-concept system, divided into a rule parser, a
reference monitor and a policy enforcer. The parser translates
the rules expressed by the grammar into an internal repre-
sentation to be used by the reference monitor. The process
of evaluating a policy consists on setting the semantic values
to the rules (associating requirements to objects) expressed in
the grammar, and deciding if the subject attributes meets the
objects’ required rights. If so, the request is allowed, otherwise
denied. If any rule fails, the reference monitor returns false
to the enforcer, which must take the appropriate actions to
revoke the active permissions (if there are any) and to prevent
the access or use of the given object.

The grammar proposed here was partially implemented as
a proof-of-concept prototype, which is being incorporated in
a Linux kernel, in order to allow a sysadmin to define usage
policies for file resources. The enforcement module intercepts
system calls used in file operations [6], such as open, close,
read, and write. The pre checks and attributes updating
are performed during open requests, while on-going actions
are performed in the read and write calls. Pos updates
are realized when the close is called, or when a previous
checks results in access denied. As the file usage is achieved
through the read and write operations2, mutable attributes
can be checked again before such operations are performed.

2For the sake of simplicity, we are not yet considering other file-related
operations, like lseek, mmap, and others.

Fig. 1. Prototype overview

This approach is consistent with the model presented in [3].
The enforcer is the entry point of the system. Each relevant

system call will trigger the enforcer, which will set the right
requested and consult the reference monitor for a decision.
The monitor will then evaluate each rule and the set of rights,
in order to decide granting or denying usage or access. When
the enforcer receives an answer from the monitor, it will take
the appropriate actions to allow or deny the access. Figure 1
illustrates this process.

The prototype is being implemented in C, using Bison [7]
for defining a LALR(1) grammar [8]. The implementation has
about 500 lines of C code, and the rule parser has 35 constructs
and 60 states. Each one of the requirements stated on section
III-A is being covered in our proposal:

• Ambiguity is avoided by assuring that the defined gram-
mar is LALR(1);

• Rules can be evaluated efficiently, by using few constructs
to define the grammar.

• By separating the rules and attributes into different files,
it is easy to add a new rule, simply by editing a single
file. It is not necessary to fuss with user’s attributes to
create a new rule, when all the required attributes are
already present.

• Since the semantic associated with a grammar construct
returns immediately a false value every time an evalu-
ated rule fails, any rule has the ability to altogether deny
a usage request, independently of the associated semantic
value of the other rules.

The next section will show some examples of policies that
can be described by the grammar defined here, in order to
show is expressiveness.

V. USING THE GRAMMAR

Policies are defined as combinations of attributes, integer
and string constants, obligations, conditions, and the operators
related to them. Each object has an attribute file and three
policy files associated to them (see Fig. 2):

• The attribute file holds the attributes initialization and
should be read before the other files.

• The first policy file contains the pre policies and the pre
updates.

• The second file holds the on policies and updates.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

Fig. 2. Files used to store the policies

• The third file holds the pos updates. Note that there are
no pos policies in the original model, but this grammar
does not enforce their exclusion from the third file.

Each user has only one file containing the user’s attributes,
and does not have policies directly associated to her. An
authorization policy could be as simple as:

$owner_id = 7503 # owner’s user ID (UID)
$usr_id == $owner_id # UID and owner’s ID must match

These statements are to be placed within the object’s first file
(pre), meaning that the access will be granted if the user’s id
matches the id of the object’s owner. Each one of the three rule
files are read and evaluated in sequence. If any rule returns
false, then the user has its usage request denied and the
remaining of the file is not evaluated. If the file being evaluated
describes a pre or on policy, then at least the file containing
the pos updates is also evaluated, assuring that the attributes
are correctly updated.

In this section we will describe some examples of poli-
cies defined using the language described by the proposed
grammar. For each example, the pre, on, and pos updates and
policies will be separated as necessary into the three different
files used for this purpose. It is interesting to contrast some
of the examples shown here against those on [2], in order
to evaluate the implementation compatibility with the formal
model.

A. DAC with ACL, using UCONpreA0

Discretionary Access Control [9] with Access Control Lists
is a very simple and straightforward control mechanism,
which only takes a few lines to be implemented within
this grammar. The user’s attributes should only contain her

identification: $usr_id = 5456. The enforcer will pass the
right requested as a integer, 0 for read and 1 for write access:
$right = 0. The object’s attributes file should look like:

set of all UIDs with read permission
$obj_read_perm = [1549 4334 5456 8997]

set of all UIDs with write permission
$obj_write_perm = [4456 5456 7896 8345]

These attributes are groups of users’ IDs that have read or
write permission. The pre policies file could simply contain:

($right == 0 & # attempting read access
the UID must belong to $obj_read_perm
(size ($usr_id * $obj_read_perm) != 0)

) |
($right == 1 & # attempting write access
the UID must belong to $obj_write_perm
(size ($usr_id * $obj_write_perm) != 0))

This policy basically states that if a user is requesting
read or write permission, the user’s ID should be present in
the $obj_read_perm or $obj_write_perm list, respec-
tively; otherwise, the access is denied.

B. MAC policies, using UCONpreA0

Mandatory Access Control [10] may be implemented by
considering clearance as an user’s attribute, and classification
as an object’s attribute. The user’s file could simply contain the
clearance level: $clearance = 5. Likewise, the object’s
attribute file could simply contain its classification level:
$classification = 3. To ascertain that to grant read
access, clearance must be greater or equal to classification,
and to grant write access, clearance must be lesser or equal to
classification, the pre policies file should state:

don’t read up
($right == 0 & ($clearance >= $classification))
|
don’t write down
($right == 1 & ($clearance <= $classification))

This assumes that the enforcer fills the variable indicating
the right required ($right), as it was done in the previous
example.

C. The user has to watch advertisements while exercising a
right, using UCONonB0

The user has to keep an advertisement window open all the
time a certain right over an object is exercised. An external
program, possibly the one controlling the window, will update
an obligation slot indexed by the user’s ID. The user’s attribute
file contains only this ID: $usr_id = 5899. The object has
only one file, containing the on policies, which is going to be
checked every time the right over the object is to be performed
(e.g. when reading the next seconds from a music file):

access to the slot indexed by UID
o$slot $usr_id == 1

The slot indexed by the user’s ID is created by the system
when the user requests access to the object. The external
program that controls the advertisement window writes 1 in
this slot once the window is opened, and changes it to 0 when
it is closed.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

D. Simultaneous accesses limits, controlled by time schedules,
using UCONpreA13preC0

A given object can be accessed at most by 10 simultaneous
users between 8am and 6pm and by 20 users after 6pm
and before 8am. Already accessing users will not have their
access revoked when the time shifts for a period admitting
a smaller number of simultaneous access, but no new user
will be accepted until their number drops and a vacancy is
created. The object’s attributes file contains the number of
simultaneous accesses accepted and the start and end times
for the reduction on the number of users:

$users = 0 # number of current users
$max_day = 10 # max users during the day
$max_night = 20 # max users during the night
$day_start = 8 # day starts 8 o’clock (8am)
$day_end = 18 # day ends 18 o’clock (6pm)

The pre policies file controls the number of simultaneous
users and updates the variable controlling this number:

(
(# it’s day period
(c$time >= $day_start) & (c$time <= $day_end))

& ($users < $max_day))
|
(

(# it’s night period
(c$time < $day_start) & (c$time > $day_end))

& ($users < $max_night))

increments current users total
$users = $users + 1

Note that at the last line, if the user is granted access, then
the number of users is updated. If the first rule fails, the parsing
of the file stops and the update is not performed. There should
also be a pos update file, for decreasing the number of current
users when an user stops accessing the object:

decreases current users total
$users = $users - 1

E. Limited number of simultaneous usages, revocation using
usage time, using UCONonA123

The user’s attribute file will have a variable to track its total
usage time and a variable to record the time of its last action:

$total_usage = 0 # total usage time (in hours)
$last_action = 0 # time of last action

The object should also have a variable to set the maximal
number of users it accepts, another variable to set the limit of
usage time (6 hours in this case) and a third one to track the
amount of simultaneous users:

$max_users = 10 # max number of users allowed
$max_usage = 6 # max number of hours per user
$users = 0 # number of current users

Now, the policies will have to be divided into three files.
The pre files will be:

$users < $max_users
$users = $users + 1

stores the time this action was performed
$last_action = c$time

The on file will be:

increments $total_usage by the amount of
time between this and the last action
$total_usage = $total_usage + (c$time-$last_action)

$max_usage must not be hit
$max_usage > $total_usage
$last_action = c$time

Finally, the pos file will be:

when the access ends, the variables must be reset
$total_usage = 0
$last_action = 0
$users = $users - 1

By zeroing the user’s attributes, she is able to release the
object and request it again, giving chance to others to have
their access granted without loosing the object if there are
no other users on the queue. This policy could be modified
to leave the total usage recorded, requiring an administrator’s
action to allow the user to access the object again.

F. Flat RBAC

Three of the requirements for Flat RBAC (Role-Based
Access Control, level 1) [11] is part of the user’s attributes:

roles available to this user
$roles = [director manager teller]

set of currently active roles
$active_roles = [manager teller]

These two variables provide many-to-many user-role as-
signment ($roles is a group of roles, and each role can be
assigned to other users), support for user-role assignment
review (one can ask for the contents of $role) and a user can
activate multiple roles simultaneously ($active roles is also a
group of roles). The actual access control is implemented as a
combination of object’s attributes and policies. A sole object’s
attribute is required:

$required_roles = [teller manager]

The pre policies should take care that at least one of the
required roles should be present on the user’s roles list, and
update the active roles to add this role:

object’s required roles and roles available
to the user must have a non-null intersection
size ($required_roles * $roles) != 0

mark the role as active
$active_role = $active_role +

($required_roles * $roles)

G. Constrained RBAC

Now we add what is necessary to reach RBAC level 3,
also known as Constrained RBAC: Separation of Duty (SoD)
support. This is basically a modification on pre and the
addition of on policies. The pre policies now should ascertain
that two conflicting roles cannot be activated at the same time:

size ($active_role * $required_roles) == 1

We are assuming that the roles listed on
$required_roles are mutually exclusive. If that

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

were not the case, we could simply add another variable to
the object’s attributes, listing conflicting roles. The following
on policy guarantee that, if a conflicting role is activated
by an access to another object (in which these roles are
non-conflicting ones) or if the required role is no longer
active, then this access will be revoked:

size($active_role * $required_roles) == 1

This rule is just the same added to the pre file, but since it
is verified during the access, it should be placed on its own
file.

VI. RELATED WORK

There are several languages proposed to address different
security and privacy needs. The Enterprise Privacy Authoriza-
tion Language (EPAL) [12] tries to unify the rules that control
how privacy sensitive information should be handled across
systems, by creating a universal mechanism for describing
required privacy policies.

In [13], the authors propose a modular authorization lan-
guage to support distributed authorization between cooperating
administrative teams, based mostly on RBAC. Woo and Lam
[5] also tackle distributed authorization by introducing a
language to encode authorization requirements, which they call
a Policy Base; on another paper [14] they further introduce the
formal syntax and semantics for a language called Generalized
Access Control List (GACL) for representing authorization
policies based upon ACL.

Since GACL is limited to ACL-based mechanisms, Ryutov
and Neuman [15] present a policy language that allows to
represent several control models (such as ACL, capabilities,
lattice-based and RBAC) and a generic authorization and
access-control API (GAA API) to facilitate integration of
authentication and authorization.

Finally, there are two application-specific implementations
of UCONABC. The first is the application of the model to B2B
systems [16] and the second is an extension to CORBASec to
integrate some UCONABC features [17].

Just like the UCONABC model is distinct from traditional
models by supporting modern needs of continuous usage
control and privacy, such as credit-based usage and DRM, the
language represented by our grammar differs from the above
presented languages by including means to express a more
abstract view of control.

VII. CONCLUSION

This paper presented a LALR(1) grammar for specifying
UCON policies. The proposed grammar is simple to under-
stand but expressive enough to describe a wide range of
policies, like DAC, MAC, RBAC, UCON, and DRM-like
policies, as shown in section sec:policies.

Apart from the limitations related to the representation of
obligations and conditions, it is not hard to bring the power
of UCONABC to a real system. There are other examples
[16], [17] of UCONABC implementations, but they are not
so complete and expressive as the work presented here.

We are now working to integrate the grammar and its
enforcer presented in this paper into a real operating system,
and also refining the grammar in the process as well. There are
still open issues to be solved, such as efficiently relating the
rules and attributes files to objects and creating and managing
obligation slots, which could be overlooked in our proof-of-
concept implementation, but are essential for a full functional
system.

We believe that having a grammar, such as the one presented
here, and an efficient enforcer, can ease the adoption of
UCONABC as a powerful access control, DRM, and data
protection solution.

REFERENCES

[1] J. Park and R. Sandhu, “Usage control: A vision for next generation ac-
cess control.” in 2nd International Workshop on Mathematical Methods,
Models, and Architectures for Computer Network Security, ser. Lecture
Notes in Computer Science, V. Gorodetsky, L. J. Popyack, and V. A.
Skormin, Eds., vol. 2776. Springer, 2003, pp. 17–31.

[2] ——, “The UCONABC usage control model,” ACM Transactions on
Information and System Security, vol. 7, no. 1, pp. 128–174, 2004.

[3] X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu, “A logical
specification for usage control,” in SACMAT ’04: Proceedings of the
9th ACM symposium on Access control models and technologies. New
York, NY, USA: ACM Press, 2004, pp. 1–10.

[4] International Organization for Standardization, ISO/IEC 14977:1996:
Information technology — Syntactic metalanguage — Extended BNF.
Genève, Switzerland: International Organization for Standardization,
1996.

[5] T. Y. C. Woo and S. S. Lam, “Authorization in distributed systems:
a formal approach,” in IEEE Symposium on Research in Security and
Privacy, 1992, pp. 33–51.

[6] T. Garfinkel, “Traps and pitfalls: Practical problems in in system call
interposition based security tools,” in Proc. Network and Distributed
Systems Security Symposium, February 2003.

[7] R. Stallman and C. Donnelly, Bison – The Yacc-compatible Parser
Generator. Free Software Foundation, Inc., 2005.

[8] F. DeRemer and T. Pennello, “Efficient computation of LALR(1) look-
ahead sets,” ACM Transactions on Programming Languages and Sys-
tems, vol. 4, no. 4, pp. 615–649, 1982.

[9] B. W. Lampson, “Protection,” SIGOPS Operating System Review, vol. 8,
no. 1, pp. 18–24, 1974.

[10] D. Bell and L. LaPadula, “Secure computer systems: Unified exposition
and multics interpretation,” MITRE Corporation, Massachusetts, USA,
Tech. Rep., March 1976.

[11] R. Sandhu, D. Ferraiolo, and R. Kuhn, “The NIST model for role-based
access control: towards a unified standard,” in RBAC ’00: Proceedings
of the fifth ACM workshop on Role-based access control. New York,
NY, USA: ACM Press, 2000, pp. 47–63.

[12] M. J. May, “Privacy system encoded using EPAL 1.2,” University of
Pennsylvania, Tech. Rep., August 2004.

[13] H. F. Wedde and M. Lischka, “Modular authorization and administra-
tion,” ACM Transactions on Information and System Security, vol. 7,
no. 3, pp. 363–391, 2004.

[14] T. Y. C. Woo and S. S. Lam, “Designing a distributed authorization
service,” in IEEE INFOCOM, 1998, pp. 419–429.

[15] T. Ryutov and C. Neuman, “Representation and evaluation of security
policies for distributed system services,” in DARPA Information Surviv-
ability Conference Exposition, Healton Head, South Carolina, January
2000.

[16] A. Camy, C. M. Westphall, and R. Righi, “Aplicação do modelo
UCONABC em sistemas de comércio eletrônico B2B,” in 5th Brazil-
ian Symposium on Information Security and Computing Systems (SB-
Seg). Brazilian Computing Society (SBC), September 2005, in Por-
tuguese.

[17] M. S. Higashiyama, L. C. Lung, R. Obelheiro, and J. da Silva Fraga,
“JaCoWeb-ABC: Integração do modelo de controle de acesso
UCONABC no CORBASec,” in 5th Brazilian Symposium on Infor-
mation Security and Computing Systems (SBSeg). Brazilian Computing
Society (SBC), September 2005, in Portuguese.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

	Select a link below
	Return to Main Menu

