

RBPIM: Enforcing RBAC policies in distributed
heterogeneous systems

Ricardo Nabhen, Edgard Jamhour, Carlos Maziero

PPGIA, Pontifícia Universidade Católica do Paraná (PUC-PR)
Rua Imaculada Conceição, 1155 – Prado Velho – Curitiba – PR

{rcnabhen,jamhour,maziero}@ppgia.pucpr.br

Abstract. This paper presents a PCIM-based framework for storing and
enforcing RBAC (Role Based Access Control) policies in distributed
heterogeneous systems. PCIM (Policy Core Information Model) is an
information model proposed by IETF. PCIM permits to represent network
policies in a standard form, allowing software from different vendors to read
the same set of policy rules. This paper describes a PCIM extension, called
RBPIM (Role-Based Policy Information Model), in order to represent network
access policies based on the RBAC model. A RBPIM implementation
framework based on the PDP/PEP (Policy Decision Point/Policy Enforcement
Point) approach is also presented and evaluated.

1. Introduction

Policy-based networking (PBN) is a management approach developped for simplifying
network administration. In PBN, a policy is a formal set of statements that define how
network resources are allocated among its clients. In order to implement PBN it is
important to define a vendor independent method for representing and storing policies
and network resources. An important work in this field, called CIM (Common
Information Model), was proposed by the DMTF [Distributed Management Task Force
1999]. The CIM model addresses the problem of representing network resources. PCIM
(Policy Core Information Model) is an information model proposed by IETF that
extends CIM classes in order to support policy definitions for managing these resources
[Moore, B. 2001]. PCIM is a generic policy model. Application-specific areas must be
addressed by extending the policy classes and associations proposed by PCIM. For
example, QPIM (QoS Policy Information Model) is a PCIM extension for describing
quality of service polices [Snir, Y., 2001]. In this context, this paper describes a PCIM
extension for access control, called RBPIM (Role Based Policy Information Model),
which permits to represent network access control policies based on roles, as well as
static and dynamic constraints, as defined by the proposed NIST RBAC standard
[Ferraiolo, D.F., 2001]. Typically, PCIM is implemented using a PDP/PEP approach
[Yavatkar, R., 2000]. The PDP (Policy Decision Point) is a network policy server
responsible for supplying policy information for network devices and applications. The
PEP (Policy Enforcement Point) is the policy client (usually, a component of the
network device/application) responsible for enforcing the policy. The communication
between the PDP and the PEP is implemented by the COPS protocol, defined by the
IETF [Durham, Ed., 2000].

 This paper extends our previous papers [Nabhen, R., 2003,1], [Nabhen, R.,
2003,2] and [Nabhen, R., 2003,3], with the inclusion of the RBPIM LDAP Mapping
(section 5) and a new version of the RBPDP algorithms (section 6.3), a more formal
version following the NIST proposed standard notation. The remaining of this paper is
organized as follows: Section 2 describes the RBAC model used in this paper. Section 3
reviews some related works. Section 4 presents the RBPIM information model. Section
5 presents the RBPIM LDAP Schema for using LDAP-based directory services as
RBPIM policy repositories. Section 6 presents the RBPIM framework implemented
using the outsourcing model, as defined by the COPS standard. Section 7 presents the
performance evaluation results of a prototype of the RBPIM framework under various
load conditions. Finally, the conclusion summarizes the main aspects in this project and
points to future works.

2. RBAC Model

RBAC models have received a broad support as a generalized approach to access
control, and are well recognized for their many advantages in performing large-scale
authorization control. The RBAC model adopted by the RBPIM framework is based on
proposed NIST (National Institute of Standards and Technology) Standard [Ferraiolo,
D.F., 2001]. The PEP implementation in the RBPIM framework (called RBPEP – Role
Based PEP) is based on APIs described in the proposed NIST RBAC functional. The
proposed NIST standard presents a RBAC reference model based on four components:
Core RBAC, Hierarchical RBAC, Static Separation of Duty Relations and Dynamic
Separation of Duty Relations. For a more complete description, please, refer to the
proposed NIST standard [Ferraiolo, D.F., 2001]. The RBPIM framework described in
sections 4, 5 and 6 supports all four elements of the proposed NIST standard and
proposes a more flexible method for defining UA relationships by combining the
explicit and implicit variables of the PCIMe model [Moore, B., 2003].

3. Related Work

Recent works starts exploring the advantages of the PDP/PEP approach for
implementing an authorization service that could be shared across a heterogeneous
system in a company. For example, the XACML (eXtensible Access Control Markup
Language), proposed by the OASIS consortium [OASIS 2003], is a XML based
language that describes both an access control policy language and a request/response
language. The request/response language is used for supporting the communication
between PEP clients and PDP servers. The RBPIM framework described in this paper
also uses the PDP/PEP approach. However, our approach differs from XACML because
(1) the RBPIM uses a standard COPS protocol for supporting the PEP/PDP
communication, (2) the information model used for describing policies is based on a
PCIM extension and (3) RBPIM has been implemented for supporting RBAC.

 Most of the research efforts found in the literature refer to the use of the PCIM
model and its extensions for developing policy management tools for QoS support
[Snir, Y., 2001]. However, a pioneer work for defining a PCIM extension for
supporting RBAC, called CADS-2, has been proposed by BARTZ, L.S. [Bartz, L.
2001]. The CADS-2 is a review of a previous work, called hyperDRIVE, also proposed
by BARTZ [Bartz, L. 1997]. The hyperDRIVE is a LDAP schema for representing
RBAC. This schema can be considered as a first step for implement RBAC using the

PDP/PEP approach. As hyperDRIVE, CADS-2 defines classes suitable to be
implemented in a directory-based repository, such as LDAP. The RBPIM model
described in the section 4 uses some ideas presented in the CADS-2 model, as the idea
of mapping roles to users using Boolean expressions. Note that this approach offers an
additional degree of freedom for creating RBAC policies because the UA (User
Assingment) relationship can be expressed through Boolean expressions instead of a
direct mapping between user and roles. However, the IETF publication PCIMe (PCIM
Extensions) proposes a different approach for representing Boolean expressions
[Moore, B., 2003]. The RBPIM framework adopts the PCIMe strategy. Also, many
features have been introduced in order to support the other elements of the RBAC
model, such as hierarchy of roles, DSD and SSD, not supported in the original CADS -2
model.

4. RBPIM: The Role-Based Policy Information Model

The RBPIM model is a PCIM extension for representing RBAC policies. The RBPIM
class hierarchy is shown in the Figure 1. The following classes have been introduced:
RBACPermission and RBACRole (specializations of PolicyRule), AssignerPermission
and AssignerOperation (specializations of PolicyAction), DSDRBAC and SSDRBAC
(specializations of Policy). The RBACPolicyGroup class is used to group the
information of the constrained RBAC model. The RBPIM model uses the
SimplePolicyCondition specializations as proposed by PCIMe.

-ConditionGroupNumber

PolicyCondition PolicyAction (abstract)

-TimePeriod

PolicyTimePeriodCondition

* *

* *

-RoleName
-InheritedRoles[]

RBACRole **

-PermissionName

RBACPermission **

RBACPolicyGroup **

-AssignedRBACPermission

AssignerRBACPermission **

-DSDName
-RoleSet[]
-Cardinality

DSDRBAC **

-AssignedOperation[]

AssignerOperation **

-DSDName
-RoleSet[]
-Cardinality

SSDRBAC **

**

*

*

SimplePolicyCondition

+ConditionListType
-RulePriority

PolicyRule

*

*

*

*

PolicyVariable

PolicyValue

*

1

*

1

**
RBPIM
classes

Figure 1. RBPIM class hierarchy.

As shown in Figure 2, the approach in the RBPIM model consists in using two
specializations of PolicyRule for building the RBAC model: RBACRole (for
representing RBAC roles) and RBACPermission (for representing RBAC permissions).
RBACRole can be associated to lists of SimplePolicyCondition,
AssignerRBACPermission and PolicyTimePeriodCondition instances. The instances of
SimplePolicyCondition are used to express the conditions for a user to be assigned to a
role (UA relationship). The instances of AssignerRBACPermission are used to express
the permissions associated to a role (PA relationship). The instances of
PolicyTimePeriodCondition define the periods of time a user can activate a role.
RBACPermission can be associated to a list of SimplePolicyCondition and
AssignerOperation instances. The instances of SimplePolicyCondition are used to
describe the protected RBAC objects and the instances of AssignerOperation are used to
describe approved operation on these

objects.

**

-RoleName
-InheritedRoles[]

RBACRole **

SimplePolicyCondition

-AssignedRBACPermission

AssignerRBACPermission **

-TimePeriod

PolicyTimePeriodCondition

-PermissionName

RBACPermission **

SimplePolicyCondition

-AssignedOperation[]

AssignerOperation **

* *

*

*
*

*

*

*

Figure 2. RBPIM class associations.

 The example in Figure 3 to il lustrates the use of the RBPIM model. The
RBACRole in the figure was called “ role1”. The attribute InheritedRoles is used for
expressing the Hierarchical RBAC, i.e., the role “ role 1” inherits the permissions of
roles “ role2” and “role3” . The UA relationship for “ role1” is defined as: IF
“PolicySourceIPv4Variable MATCH 192.168.10.0/24” AND
“Person.BusinessCategory MATCH CT*” AND “PolicyTimePeriodCondition MATCH
[20020701,20031201]” .

ConditionListType = DNF
RulePriority = 1
RoleName = role1
InheritedRoles[] = {role2,role3}

obj : RBACRole **

ConditionGroupNumber = 1

obj : SimplePolicyCondition

obj : PolicySourveIPv4Variable

IPv4AddrList[] = 192.168.10.0/24

obj : PolicyIPv4AddrValue

ConditionGroupNumber = 1

obj : SimplePolicyCondition

ModelClass = Person
ModelProperty = BusinessCategory

obj : PolicyExplicitVariable

StringList[] = CT*

Object1 : PolicyStringValue

AssignedRBACPermission = App_Directory

obj : AssignerRBACPermission **
ConditionListType = DNF
RulePriority = 1
PermissionName = App_Directory

obj : RBACPermission **

StringList[] = /etc/application

obj : PolicyStringValue

ModelClass = Directory
ModelProperty = Name

obj : PolicyExplicitVariable

AssignedOperation[] = {R,W}

obj : AssignerOperation **

ConditionGroupNumber = 1
TimePeriod = 20020701/20031201

obj : PolicyTimePeriodCondition

Figure 3. Object instances of the RBPIM model.

The PA relationship is defined by the reference to the permission object
“App_Directory” , shown in the Figure 3. This permission defines the operations { R,W}
are approved when Directory.Name MATH “ /etc/application” . Observe how the use of
explicit variables permits leveraging the information of existing CIM repositories.

5. RBPIM LDAP Mapping

As well as in PCIM, the RBPIM model is implementation neutral. RFC 3060 informs
that further works will propose specific-areas mappings. In this work we propose the
RBPIM mapping to LDAP according to the PCLS IETF standard [Strassner, J., 2002].
This RBPIM Schema wil l allow the adoption of LDAP-based directory services as
RBPIM policy information repositories. Table 1 presents the RBPIM LDAP Schema
main classes (Please, refer to [RBPIM 2003] for a complete list). Attributes and
superior classes are not being shown. The prefix “pcim” indicates a PCIM LDAP class
mapping from PCLS and the prefix “ rbpim” indicates a RBPIM LDAP class mapping
proposed by our work. A LDAP Schema can contain three classes types [Wahl, M.,
1997]: structural, abstract and auxili ary. In this Table, respectively, (s), (ab) and (ax).
A directory can only have objects (instances) from structural classes. Auxil iary classes
are used to extend the attribute list permited to be used by a directory object. In this

case, a auxiliary class could be attached to a directory instance in order to allow this
attribute list extension. Abstract classes are used to establish class hierarchy.

Table 1. RBPIM LDAP Schema (main classes)

LDAP Object Class
Derived

from

LDAP Object Class Derived from

rbpimRole (s) pcimRule (ab) rbpimSimplePolicyConditionClass (ax) pcimConditionAuxClass(ax)
rbpimPermission (s) pcimRule (ab) rbpimAssignerPermissionAuxClass (ax) pcimActionAuxClass(ax)
rbpimSSD (s) pcimPolicy (ab) rbpimAssignerOperationAuxClass(ax) pcimActionAuxClass(ax)
rbpimDSD (s) pcimPolicy (ab) rbpimPolicyVariable (ax) top (ab)
pcimRuleConditionAssociation (s) pcimPolicy (ab) rbpimPolicyValue (ax) top (ab)
pcimRuleActionAssociation (s) pcimPolicy (ab) rbpimPolicyExplicitVariable (ax) rbpimPolicyVariable (ax)
rbpimConditionAssociation (s) pcimPolicy (ab) rbpimPolicyImplicitVariable (ax) rbpimPolicyVariable (ax)
pcimRuleValidityAssociation (s) pcimPolicy (ab) pcimTPCAuxClass (ax) pcimConditionAuxClass(ax)

 RBAC Roles and Permissions are instances, respectively, from structural classes
rbpimRole and rbpimPermission. RBAC SSD and DSD constraints are from rbpimSSD
and rbpimDSD classes. As defined in [Strassner, J., 2002], a policy rule can be simple
or complex. In the former case, all conditions are ANDed and they can´t be grouped. In
the latter case, the conditions can be grouped following the DNF/CNF semantics. The
proposed RBPIM LDAP Schema uses the latter case, so rbpimRole and
rbpimPermission objects group their associated conditions in the DNF/CNF semantics.
For the relationship classes in PCIM, the PCLS suggests three different strategies of
mappings: using LDAP auxili ary classes, using attributes representing distinguished
name (DN) references, and using superior-subordinate relationships in the Directory
Information Tree (DIT containment). Figure 4 presents an example containing four
directory instances created through RBPIM LDAP Schema, respectively, role,
permission, SSD constraint and time period constraint objects. These directory entries
are in LDIF1 format.

 The directory entry o=Bank.net (organization object class) represents the folder
of a hypothetical financial institution and ou=Bureau1 (organizationaUnit object class)
is the entry where every policy object related to this branch is inserted. Note that the
entry o=Bank.net has a DIT containment association with the entry ou=Bureau1 and the
entry ou=Bureau1 has also a DIT containment association with the entry
rbpimRoleName=Accounter_I. The entry dn: rbpimRoleName=Accounter_I, ou= Bureau1,
o=Bank.net represents the role Accounter_I. Every object that represents a role is derived
from the hierarchy pcimPolicy, pcimRule and rbpimRole. Refering to Table 1, both
former object classes are abstract and the latter is a structural object class. The role
Accounter_I is enabled (pcimRuleEnabled = 1) and its condition will be in the DNF
semantics (pcimRuleConditionListType = 1). This role has two condition objects,
UsersCond1 and UsersCond2. Both conditions define the users whom the role
Accounter_I will be assigned (RBAC UA association). This role has also a permission
Permission1 (RBAC PA association) and a time period Period1 object for establishing
a validity period for role activation. The RBPIM framework presented next section uses
the definitions in [Howes, T., 1996] in order to construct LDAP queries to retrieve
policy objects from the LDAP repository. The entry rbpimSSDname=SSD01 creates a
static separation of duty relation envolving roles Accounter_I and Accounter_II. Due to

1 LDIF – LDAP Data Interchange Format – is a format for defining directory entries in text format.
LDIF files are used by directory services for importing entries.

cardinality 2 no user can be assigned to both roles user lists. As will be shown in section
6, the RBPIM framework uses the rbpimRole’s attribute pcimRulePriority (inherited
from pcimRule) in order to select higher priorities roles until matches the specified
cardinality.
dn: rbpimRoleName=Accounter_I, ou= Bureau1, o=Bank.net
objectClass: pcimPolicy
objectClass: pcimRule
objectClass: rbpimRole
rbpimRoleName: Accounter_I
pcimRuleEnabled: 1
pcimRuleConditionListType: 1
pcimRuleConditionList: pcimConditionName=UsersCond1, rbpimRoleName= Accounter_I, ou= Bureau1, o=Bank.net
pcimRuleConditionList: pcimConditionName=UsersCond2, rbpimRoleName= Accounter_I, ou= Bureau1, o=Bank.net
pcimRuleActionList: pcimActionName=Permission1, rbpimRoleName=Accounter_I, ou= Bureau1, o=Bank.net
pcimRuleValidityPeriodList: pcimValidityConditionName=Period1, rbpimRoleName= Accounter_I, ou= Bureau1, o=Bank.net
dn: rbpimPermissionName=App_Directory, ou= Bureau1, o=Bank.net
objectClass: pcimPolicy
objectClass: pcimRule
objectClass: rbpimPermission
rbpimPermissionName=App_Directory
pcimRuleConditionListType: 1
pcimRuleConditionList: pcimConditionName=Directory1, rbpimPermissionName= App_Directory, ou= Bureau1, o=Bank.net
pcimRuleActionList: pcimActionName=Operations1, rbpimPermissionName= App_Directory, ou= Bureau1, o=Bank.net
dn: rbpimSSDname=SSD01, ou= Bureau1, o=Bank.net
objectClass: pcimPolicy
objectClass: rbpimSSD
rbpimSSDname: SSD01
rbpimRoleSet: rbpimRoleName=Accounter_I, ou= Bureau1, o=Bank.net
rbpimRoleSet: rbpimRoleName=Accounter_II, ou= Bureau1, o=Bank.net
rbpimCardinality: 2
dn: pcimValidityConditionName=Period1, rbpimRoleName= Accounter_I, ou= Bureau1, o=Bank.net
objectClass: pcimRuleValidityAssociation
objectClass: pcimTPCAuxClass
pcimValidityConditionName: Period1
pcimTPCTime: 20020701T000000/20020831T240000

Figure 4. Example: RBPIM Policy Objects in LDIF format

6. RBPIM Framework

6.1. Introduction

Several IETF works describes the implementation of policy-based network management
tools using the PDP/PEP approach [Yavatkar, R., 2000] [Snir, Y., 2001]. The
PDP/PEP approach is a client-server model, where the PDP (Policy Decision Point) is a
server responsible for supplying policy information for one or more PEP (Policy
Enforcement Point) clients. Usually, the PEP is embedded in a network node
responsible for enforcing the policy. For example, the PEP can be embedded in a QoS
router. The IETF defines that the PEP and the PDP communicates using the COPS
(Common Open Policy Service) protocol [Durham, Ed., 2000]. The COPS protocol
defines two models of operation: outsourcing and provisioning. The outsourcing model
assumes the PEP receives events that must be resolved based on policy criteria, e.g., the
PEP is a router receiving a RSVP message asking for a reservation. In the outsourcing
model, the PDP receives policy requests from a network device, and determines
whether or not to grant these requests. Therefore, in the outsourcing model, the policy
rules are evaluated by the PDP. By the other hand, in the provisioning model, rather
than responding to PEP events, the PDP prepares and "pushes" configuration
information to the PEP.

6.2. Overview

Figure 5 il lustrates the main elements in the RBPIM framework. RBPIM framework
adopts the PDP/PEP model using a “pure” outsourcing approach, i.e., the PDP carries
most of the complexity and the PEP is comparatively light. In the RBPIM framework,
the PEP is called Role-Based PEP (RBPEP). The Role-Based PDP (RBPDP) is a
specialized PDP responsible for answering RBPEP questions. Observe that the RBPDP
has an internal database (called State DataBase) used for storing the state information of
the RBPEP. The CIM/Policy Repository is a LDAP server that stores objects that
represent network information such as users, services, network nodes and policies. The
Policy Management Tool is the interface for updating CIM/Policy repository
information and for administrating the PDP service.

Network Node TCP PORT
(3288)

COPS
Protocol

RBPEP RBPDP

State
DataBase

RBAC
Outsourcing
Algorithms

CIM/Policy
Repository

(LDAP)

Policy Management
Tool

LDAP

LDAPRBA C
API

application

Network Node

RBPEPRBA C
API

application

Figure 5. RBPIM Framework Overview

6.3. RBPEP and RBAC API’ s

The RBPEP is basically a software library that simpli fies the task of building “RBAC-
aware” applications. It offers a high level programming interface for mapping the
RBAC APIs to COPS messages addressed to the RBPDP. The COPS is an object-
oriented protocol that defines a generic message structure for supporting the exchange
of policy information between a PDP and its clients (PEPs). The RBAC API’s used in
the RBPIM framework are based on the RBAC functional specifications described in
the proposed NIST standard [Ferraiolo, D.F., 2001]. Based on the supporting system
functions proposed by NIST, the RBPIM framework defines a set of f ive API’ s:
RBPEP_Open (), RBPEP_CreateSession(user:string; out session:string, roleset[]:string,
usessions:int) , RBPEP_SelectRoles (session: string, roleset[]:string; out
result:BOOLEAN), RBPEP_CheckAccess(session: string, operation:string,
objectFilter[]:string; out result:BOOLEAN) and RBPEP_CloseSession(session:string).
The RBPEP_Open establishes the connection between the PEP and the PDP. The
RBPEP_CreateSession API establishes a user session for the user and returns the set of
roles assigned to the user that satisfies the SSD constraints. The user must explicitly
activate the desired roles received from this call i n a subsequent call called
RBPEP_SelectRoles API. This modification avoids the need of the user to drop
unnecessarily activated roles in order to satisfy DSD constraints. The
RBPEP_CheckAccess API is similar to the standard CheckAccess function proposed by
the NIST. The RBPEP_CloseSession terminates the user session, and informs to the
RBPDP that the information about the session in the “state database” is no longer
needed. The RBPEP_APIs are currently implemented in Java, and throws exceptions
for informing the applications about the errors returned by the PDP. Examples of
exceptions are: “RBPEP_client not supported”, “non -existent session”, “user not valid”,
etc. (Please refer to [Nabhen, R., 2003,1] for a complete description). These API calls
are mapped to COPS messages. For example, the RBPEP_CheckAccess call is mapped

to the COPS REQ (Request), DEC (Decision) and RPT (Report) messages. (Please, also
refer to [Nabhen, R., 2003,1] for a complete description of this COPS mapping)

6.4. The RBPDP Outsourcing Algorithms

The RBPDP module implements a set of algorithms triggered by the COPS messages
sent by the RBPEPs. These algorithms interpret the RBAC policies stored in the
CIM/Policy repository and the state information of the RBPEP sessions (stored in a
relational state-database), and answer the RBPEP using the COPS protocol. Note that
the state-database is a database internal to the RBPDP and its information is not
described in the RBPIM model. The most important algorithms implemented by the
RBPDP are those related to the RBPEP_CreateSession, RBPEP_SelectRoles and
RBPEP_CheckAccess. Some obvious error treatment have been omitted in order to
simplify the presentation of the algorithms. These algorithms were written based on the
same notation of the NIST RBAC standard.

6.4.1. Algorithm for RBPEP_CreateSession:

The algorithm for the RBPEP_CreateSession API determines the set of RBAC roles
assigned to the user, free of SSD constraints. Presently, the approach defined by the
RBPIM framework consists in using a RBACPolicyGroup object for grouping the
RBAC objects (this approach must be reviewed to be in conformance with the new
PCIMe standard). In the CIM/Policy repository, the RBACPolicyGroup objects are
associated to “organization units” by DIT contai nment. By using the attribute
organizational unit (“OU”) in the CIM Person object, the algorithm determines the
corresponding RBACPolicyGroup object associated to the user. The algorithm for the
RBPEP_CreateSession API is defined as follows:
Step 1: If the session already exists in the state database then returns a <Error> object in the DEC message.

Otherwise, go to Step 2.
Step 2: Let RolesInDomain(pg : RBACPolicyGroup) ={r : RBACRole | r ∈ pg}, be the list of role objects

associated to the RBACPolicyGroup of the user.
Step 3: Determine AssignedUsers(r) as the list of users that satisfies the conditions associated to a role r.

This function is implemented by creating a LDAP filter based on the conditions
(SimplePolicyCondition) associated to the role r grouped in CNF or DNF form, as defined by the
attribute ConditionListType of the role object r.
• AssignedUsers(r: RBACRole)={u: cim_Person | u satisfies the conditions of r ∈

RolesInDomain(pg)}
Step 4: Determine AssignedRoles(user) as the subset of RolesInDomain(pg) that includes only the roles r ∈

RolesInDomain(pg) assigned to the user.
• AssignedRoles(user:cim_Person) ={r : RBACRole |

r ∈ RolesInDomain(pg) ^ user ∈ AssignedUsers(r) }
Step 5: Determine EnabledRoles(user) as the subset of AssignedRoles(user) that includes only the roles that

can be activated at the current time.
• EnabledRoles(user : cim_Person)={r : RBACRole |

r ∈ AssignedRoles(user) ^ current time ∈ ActivationIntervals(r)}
The function ActivationIntervals(r) returns the set of activation intervals defined by the
PolicyTimePeriodCondition objects associated to the role r.

Step 6: Determine InheritedRoles(user)as the disjoint union of all inherited roles indicated by the attribute
InheritedRoles of all enabled roles of the user. The InheritedRoles that can’t be activated at the
current time are excluded from the union.

• InheritedRoles(user : cim_Person) = Υ*

)(
.

useresEnabledRolr
oles[]InheritedRr

∈ .

Step 7: Determine AuthorizedRoles(user) as the disjoint union of EnableRoles(user) and
InheritedRoles(user).
• AuthorizedRoles(user : cim_Person)={r : RBACRole |

r ∈ EnabledRoles(user) ∪* InheritedRoles(user)}

Step 8: Let SsdRoleSets(pg : RBACPolicyGroup)={ssd : SSDRBAC | ssd ∈ pg } be the list of SSDRBAC
objects associated to the RBACPolicyGroup of the user.

Step 9: Determine FreeSsdAuthorizedRoles(user) by removing from AuthorizedRoles(user) the roles that are
constrained by SsdRoleSets(pg). The roles with lowest priority (RulePriority attribute inherited by
RBACRole from PolicyRule) are removed first, until the Cardinality attribute of all SsdRoleSets(pg)
constraints is satisfied.
• FreeSsdAuthorizedRoles(user : cim_Person) ={ r : RBACRole | ∀ssd ∈ SsdRoleSets(pg) •

|ssd.RoleSet ∩∩∩∩ FreeSsdAuthorizedRoles(user)| < ssd.Cardinality }
Step 10: Create in the state database a record with the session, user, the roleset[] defined by

FreeSsdAuthorizedRoles(user) and status=Phase1 and sends a DEC message with the parameters
roleset and usessions encapsulated in <Decision> objects.

6.4.2. Algorithm for RBPEP_SelectRoles:

The RBPEP_SelectRoles API activate in a session the set of roles defined by the
roleset[] argument. The SelectRoles API will activate the roles only if all roles in
roleset[] are presented in the session database and all of them are free of DSD
constraints. The algorithm for the RBPEP_SelectRoles API is defined as follows:
Step 1: If the session already exists in the state database with status=Phase1 go to Step 2. If it doesn’t, then

returns a <Error> object in the DEC message.
Step 2: Let AuthorizedSessionRoles(session) be the list of role objects associated to the session in the state

database.
• AuthorizedSessionRoles(session) ={r : RBACRole | r is authorized in the session}

Step 3: If roleset[] ⊄ AuthorizedSessionRoles(session) then sends a DEC message indicating the operation has
been denied. Otherwise, go to Step 4.

Step 4: Let DsdRoleSets(pg : RBACPolicyGroup))={dsd : DSDRBAC | dsd ∈ pg } be the list of DSDRBAC
objects associated to the RBACPolicyGroup of the user.

Step 5: If roleset[] violates the DsdRoleSets(pg) constraints then sends a DEC message indicating the operation
has been denied. Otherwise, go to Step 6. The DSD constraints are vialoted if:
• ∀ dsd ∈ DsdRoleSets(pg) •••• |dsd.RoleSet[] ∩∩∩∩ roleset[]| ≥ dsd.Cardinality

Step 6: Update the state database by storing roleset[] as the list of active roles in the session and define
status=Phase2. Then, sends a DEC message with result=true encapsulated in a <Decision> object.

6.4.3. Algorithm for RBPEP_CheckAccess:

Some considerations are necessary before presenting the algorithm for the
RBPEP_CheckAccess API. First, remember that the objectfilter[] parameter in the API
may contain conditions based on implicit and/or explicit variables. Explicit variable
conditions may define one or more CIM objects. For example,
{“DataFile.Readable=true”, “ DataFile.Name=* .doc”} will problably define a set of
objects instead of a single object. Say ΦΦΦΦ as the set of objects defined by the
objectfilter[] in the RBPEP_CheckAccess API. The CIM objects in the ΦΦΦΦ can be
retrieved by a single LDAP query which filter is based on the objectfilter[] conditions.
By the other hand, the RBACPermission objects associated to the roles activated by the
user may also contain conditions based on implicit and explicit variables and, therefore,
define another set of CIM objects, say ψψψψ, also retrieved by a single LDAP query. The
RBPEB_CheckAccess API will return true if ΦΦΦΦ

⊆ ψψψψ. Because ψψψψ can be very large, the
condition ΦΦΦΦ ⊆ ψψψψ is replaced by the equivalent expression ΦΦΦΦ ⊆ θθθθ, where θθθθ = ψψψψ ∩ ΦΦΦΦ. The
θθθθ set can also be determined by a single LDAP query, by defining a LDAP filter that
combines the conditions presented in the objectfilter[] and the RBACPermission
associated conditions. The implicit variables conditions such as
{“ PolicyDestinationIPv4Variable=192.168.2.3”} are not used for creating the LDAP
queries, because implicit variables doest no correspond to objects in the CIM
repository. Instead, they are used for eliminating the RBACPermission objects that does

not satisfy the implicit variables in the objectfilter[] vector. The algorithm for the
RBPEP_CheckAccess API is defined as follows:
Step 1: Verify if the session exists in the state database with status=Phase2. If it doesn’t than returns an

<Error>. Otherwise, go to Step 2.
Step 2: Let ActiveSessionRoles(session) be the list of active role objects associated to the session in the state

database.
• ActiveSessionRoles(session) ={r : RBACRole | r is an active role in the session}

Step 3: Determine EnabledSessionRoles(session) as the subset of ActiveSessionRoles(session) that includes
only the roles that can be activated at the current time.
• EnabledSessionRoles(session) ={r : RBACRole |

r ∈ ActiveSessionRoles(session) ^ current time ∈ ActivationIntervals(r)}
The function ActivationIntervals(r) returns the set of activation intervals defined by the
PolicyTimePeriodCondition objects associated to the role r.

Step 4: Determine SessionPermissions(session) as the set of permission objects corresponding to the
disjoint union of the RBACPermission objects associated to all roles
r ∈ EnabledSessionRoles(session). The RBACPermission objects associated to the role r are
determined by the multi-valued attribute AssignedRBACPermission[] of r.
• SessionPermissions(session) = {p ∈ RBACPermission |

p ∈ Υ*

)(
.

sessionsionRolesEnabledSesr
on[]ACPermissiAssignedRBr

∈ }

Step 5: Determine EnabledSessionPermissions(session, objectfilter[]) as the subset of
SessionPermissions(session) that includes only the permission objects p which implicit conditions
are satisfied by the conditions presented in the objectfilter.
• EnabledSessionPermissions(session) = {p : AssignerRBACPermission |

p ∈ SessionPermissions(session)^ ImplicitObjectFilter (p,objectfilter[]) == true}
Where ImplicitObjectFilter (p, objectfilter[]) evaluates the logical expression formed only by the
implicit conditions of the permission object p, considering the implicit conditions presented in the
objectfilter[] as true.

Step 6: Determine SessionPermissionsIncludingOperation(session, operation) as the subset of
EnabledSessionPermissions(session, objectfilter[]) that includes only the permissions objects that
contains the operation passed by the RBPEP_API.
• SessionPermissionsIncludingOperation(session, operation) = {p : AssignerRBACPermission |

p ∈ EnabledSessionPermissions(session, objectfilter[]) ^ operation ∈
PermissionOperations(p) }

Where PermissionOperations(p) is the list of operations of the permission object p.
Step 7: Determine ExplicitPermissionObjectFilter(session) as the logical expression formed by combining

the explicit conditions of all object permissions p ∈ SessionPermissionsWithOperation(session,
operation) using CNF or DNF.
• ExplicitPermissionObjectFilter(session)=)(pjectFilterrmissionObExplicitPe

p∨ , for ∀ p

∈ SessionPermissionsIncludingOperation(session, operation)

Where ExplicitPermissionObjectFilter is the logical expression formed by combining the explicit
conditions of the object permission p.

Step 8: Determine ExplicitObjectFilter(objectfilter[]) formed by grouping the explicit conditions in the
objectfilter[] using the AND (^) operator.

Step 9: Determine ΦΦΦΦ = {CIM} as the list of CIM objects retrieved by the LDAP query corresponding to the
expression ExplicitObjectFilter(objectfilter[]).

Step 10: Determine θθθθ ={CIM}, as the list of CIM objects retrieved by the LDAP query corresponding to the
expression ExplicitPermissionObjectFilter(session) ∧ ExplicitObjectFilter(objectfilter[]).

Step 11: Sends a DEC message with result = true if ΦΦΦΦ ⊆ θθθθ, otherwise, sends result=false.

7. Evaluation

This section present the evaluation we have made based on a case study that considers
a typical security policy applied in bank bureaus. The security policy takes into account
individuals, positions, authorization schemes, activities and privileges used in the
organization. The Bank Bureau uses a great number of applications to support its
business procedures. The RBPIM will be used for establishing access policies in order

to control the access to each operation provided by those applications.

In order to evaluate the performance the RBPIM framework, a Java based
RPPDP and a RBPEP scenario simulator was implemented. This prototype is available
for download in [RBPIM 2003]. In the evaluation scenario, twenty RBPEP clients
request the RBPIM policy service provided by a single PDP. Each RBPEP keeps a
distinct COPS/TCP connection with the PDP. The RBPEP clients simulate typical
access control scenarios created by text input files. Each line of these input files
corresponds to an API call presented in section 6.3. Several user sessions were created
in the context of each RBPEP connection. For each connection served, the RBPDP
generates an output file containing all COPS messages associated with the
correspondent API call in the input file and the elapsed time from the instant of
receiving the RBPEP’s COPS message to the PDP’s decision. In order to simulate
different load scenarios, we have introduced a uniformly distributed random delay
between each API call contained in the input files. By varying the range of the random
delay, we have created six load scenarios as shown in Figure 6. The load scenario “1” is
the lightest scenario and the number “6” is the heaviest one. The former makes the PDP
to receive 2.7 requests/second (average) and the latter increases this number to 40
requests/second (average). The Figure 6 presents the results obtained with the Java
prototype, using a Pentium IV 1.5 Ghz 256 Mb RAM for hosting the PDP, and other
identical machine for hosting the 20 RBPEP clients.

 The results of the evaluation tests show the number of role objects as the most
important parameter affecting the response time in the RBPIM framework. The results
also show reasonable response times considering the Java implementation and the CPU
capacity of the machines used in the simulation. A response time of 50 ms for
RBPEP_CreateSession (100 ms with twenty roles) in scenario 4 is a reasonable result
for an API that is evocated only once in a session. Also, the RBPEP_CheckAccess
average response time API has presented reasonable results for applications that
requires decisions based on user events, and is not significantly affected by the number
RBAC policy objects.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

RBPEP_CreateSession

RBPEP_SelectedRoles

RBPEP_CheckAccess

Average response time (ms) Maximum response time (ms)
Load
Scenario

Delay
Range

API
calls/s

1 5 to 10 s 2.7
2 4 to 8 s 3.3
3 3 to 6 s 4.4
4 2 to 4 s 6.7
5 1 to 2 s 13.3
6 0 to 1 s 40.0

** the x scale is not linear (see the scenario table)

Figure 6. RBPDP decision time x API calls.

8. Conclusion

This paper has presented a complete policy based framework for implementing RBAC
policies in heterogeneous and distributed systems. This framework, called RBPIM, has
been implementing in accordance with the IETF standards PCIM and COPS, and also,
the proposed NIST RBAC standard. The framework proposes a flexible RBAC model,
which permits specifying the relationship between users, roles, permissions and objects
by combining Boolean expressions. The performance evaluation of the outsourcing

model indicates that this approach is suitable for supporting RBAC applications that
requires decisions based on user events. This paper does not discuss the problems that
could rise if the PDP breaks. Future works must evaluate alternative solutions for
introducing redundancy in the PDP service. These studies will be carried out in parallel
with the evaluation of provisioning and hybrid approaches for implementing the
RBPIM framework. Also, some important PCIMe modifications must be taken into
account in a revised version of the RBPIM information model. Finally, some studies are
being developed for evaluating the use of the RBPIM framework for QoS management
based on RBAC rules.

9. References
[Bartz, L. 1997] “LDAP Schema for Role Based Access Control”, IETF Internet Draft, October.
[Bartz, L. 2001] “CADS -2 Information Model”, not published, IRS: Internal Revenue Service.
[Distributed Management Task Force 1999] “Common Information Model (CIM) Specification”,

URL: http://www.dmtf.org.
[Distributed Management Task Force 2000] “Guidelines for CIM -to-LDAP Directory Mappings”,

whitepaper, May 8th, URL: http://www.dmtf.org.
[Durham, Ed.,Boyle, J., Cohen, R.,Herzog, S., Rajan, R., Sastry A. 2000] The COPS (Common Open

Policy Service) Protocol, IETF RFC 2748, January.
[Ferraiolo, D.F., Sandhu, R., Serban, G. 2001] “A Proposed Standard for Role -Based Access Control”,

ACM Transactions on Information System Security, Vol. 4, No. 3, August, pp. 224-274.
[Howes, T., Smith, M. 1996] A LDAP URL Format. Request For Comments 1959, June.
[Moore, B., Elleson, E., Strasser, J., Westerinen, A. 2003] “Policy Core Information Model

Extensions”, IETF RFC 3460, January.
[Moore, B.,Elleson, E., Strasser, J., Westerinen, A. 2001] “Policy Core Information Model”, IETF

RFC 3060, February.
[Nabhen, R., Jamhour, E., Maziero C. 2003,1] “ RBPIM: A PCIM-Based Framework for RBAC”,

Proceedings for the 28th Annual IEEE International Conference on Local Computer Networks,
October, Germany.

[Nabhen, R., Jamhour, E., Maziero C. 2003,2] “Policy-Based Framework for RBAC”, Proceedings for
the fourteenth IFIP/IEEE International Workshop on Distributed Systems: Operations &
Management, October, Germany.

[Nabhen, R., Jamhour, E., Maziero C. 2003,3] “A Policy Based Framework for Access Control”,
Proceedings for the Fifth International Conference on Information and Communications Security,
October, China.

[OASIS 2003] "eXtensible Access Control Markup Language (XACML) –Version 1.03”, OASIS
Standard, 18 February, URL: http://www.oasis-open.org.

[RBPIM 2003] Project WebSite. URL: http://www.ppgia.pucpr.br/~jamhour/RBPIM, April.
[Snir, Y.,Ramberg, Y.,Strassner, J.,Cohen, R.,Moore B. 2001] "Policy QoS Information Model", IETF

internet-draft, November.
[Strassner, J.,Ellesson, E.,Moore, R. 2002] "Policy Core LDAP Schema", Internet Draft, January.
[Wahl, M., Coulbeck, A., Howes, T. , Kille, S. 1997] “Lightweight Directory Access Protocol (v3):

Attribute Syntax Definitions”, RFC 2252, December.
[Yavatkar, R.,Pendarakis, D.,Guerin R. 2000] “A Framework for Policy -based Admission Control”,

IETF RFC 2753, January.
[Yeong, W.,Howes, T., Killie, S. 1995] “LightWeight Directory Access Protocol”, RFC 1777, March.

