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Abstract The performance of an intrusion detector depends on several factors, like

its internal architecture and the algorithms it uses. Thus, distinct detectors can be-

have distinctly when submitted to the same inputs. The project diversity theory has

been successfully used in the fault tolerance domain, and can also bring benefits to

the intrusion detection area. The objective of this paper is to propose and evaluate a

mathematical model, based on the fuzzy set theory, for the composition of hetero-

geneous intrusion detectors analyzing the same event flow. This model intends to

combine the individual detectors’ results into a more accurate global result. Experi-

mental results show the usefulness of this approach.

1 Introduction

In most facilities where it is necessary to detect unauthorized access to sensitive

resources and data, usually only one intrusion detection system (IDS) is deployed,

for practical reasons. In some cases, there is more than one IDS program working

collaboratively; when it happens, IDSs are generally located in distinct strategic

places in the system, to detect and to analyze distinct events.

It can be difficult to deploy several IDS programs in the same installation, due

to difficulties in tuning the software and consolidating data from different sources.

On the other hand, replicating several copies of the same IDS program can lead to

biased results, because the chosen IDS may replicate the same errors, warning about

events that are not attacks (false positives) or ignoring attacks (false negatives).

The concept of project diversity [1] has proven to be very helpful in the fault

tolerance and security areas [13]; it can also be applied to intrusion detection. In
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[14] it was shown that the detection capacity of a specific IDS software is related to

several factors, which include its internal architecture and algorithms. So, distinct

detectors can perform distinctly when submitted to the same event flow. By applying

project diversity to intrusion detection, we can obtain a composite IDS, based on

individual detectors that can have distinct behaviors, not replicating the same errors,

and with complementary results. This can potentially lead to better detection results.

This work introduces a mathematical model based on the Set Theory that lever-

ages the results of individual heterogeneous intrusion detection programs, allowing

us to build a composite intrusion detection system (CIDS) based on project diver-

sity. This model is capable of mapping and evaluating the results of each individual

IDS, and consolidating them in a final result which is more accurate and reliable

than the individual results.

This article is divided in 6 sections: Section 2 introduces the CIDS concept; Sec-

tion 3 presents some basic definitions and develops simple models, based on the

traditional Set Theory; in Sect. 4 the model is extended through the use of the Fuzzy

Set Theory and the alarm relevance concept is introduced; Section 5 shows some

experiments that validate the proposition; Section 6 presents some possible exten-

sions to the model; Section 7 discusses some related work; finally, Sect. 8 concludes

the paper and discusses possibilities for future research.

2 Composition of Intrusion Detection Systems

Traditionally, the use of an IDS composition aims to cover a large distributed system

whose size surpasses the capacity of any individual detectors. This approach, called

Distributed IDS, consists of deploying detectors in distinct regions of the system,

whose responsibility is to capture and analyze events in that part of the system. As

the number of alarms each detector can generate may be huge, several techniques for

managing and using such data were introduced, like standard alarm representations

[3], centralized configuration [10], and alarm data correlation [4, 5, 6].

Another possibility of IDS composition is demonstrated by [2], who introduces

the Collaborative Intrusion Detection System concept. It aggregates three different

levels of detectors (network, kernel and application) and a level of components that

help consolidating individual results. The aggregation of complementary detectors

is also discussed in [7] and [9].

Recent studies have shown that distinct detectors can have distinct detection

capabilities, which are sometimes complementary. For instance, [14] shows that

anomaly-based detection algorithms are bound to “blind spots”, and proposes to

combine IDS programs based on algorithm diversity. The precision of IDS results

is also discussed in [15], involving, among other things, the detection capacity, the

probability of raising false alarms versus the probability of detecting a real attack,

the strength against attacks to the IDS host itself, the scalability, and the capacity of

detecting new attacks.
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In the following sections, a mathematical model that combines the results of N

distinct IDS programs treating the same event flow is proposed. It is important to

stress that each detector is considered as a black box, so its internal architecture and

internal algorithms are considered irrelevant for the composition. In this generic

model, the input data can be packets from a network, system calls in an operating

system, log files, and so on. A knowledge base stores rules that define known at-

tacks (for a signature-based IDS) or the parameters that define a normal behavior

(for abnormal behavior-based detectors). The detector applies the rules from the

knowledge base in the input data and raises alarms when necessary.

3 A simple composition model

The mathematical approach used in this work will be based on the traditional set

theory at first. Our intention is to point out each subset of entities occurring when an

IDS is at work. A similar model was proposed by [11], but this one was restricted

to a single IDS; our model considers N detectors.

3.1 Some definitions

Before introducing the model, some concepts should be defined, like events and

attacks:

• Event (ek): an action that occurs inside a host, between two hosts, or between a
host and an user, which can be captured by an intrusion detector (such as packets

in a network, system calls, and log files entries).

• Attack (ak) : any event aiming at exploiting a vulnerability in a given system.
• Normal event (nk): any event that is not an attack.
• Intrusion detector (di): a black-box capable of classifying input events as normal
events or attacks1.

• Composite IDS (CIDS): a group of N intrusion detectors d1,d2, . . . ,dN analyzing
the same input event flow.

As our model is based on the set theory, some sets will also be defined, and shown

in Fig. 1:

• Universe set (U): comprises all possible events in any system, i.e. any access or
operation in a computer-based system.

• Normal events (N): comprises all events expected by a system, to which it is
prepared to respond (i.e. they are in the system specification).

1 We only consider stateless intrusion detection, in which individual input events are classified

either as attacks or normal events. Stateful intrusion detection, in which specific sequences of

input events can constitute an attack, is not considered here.
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• Events targeted to the system (T): comprises all events targeted to a system, in-
cluding normal events and attacks. We assume that N∩T 6= /0 , as this does not
change the results and leads to a richer analysis.

• Attacks (Ai): comprises all events classified by an intrusion detector di as attacks.

Fig. 1 The U, N, and T sets.

3.2 Modeling a single IDS

The first model considers a system with only a single detector d1, which can detect

the attacks defined in the A1 ⊂ T event set. As d1 is not perfect, some events it

classifies as attacks may be normal events (i.e. false positive detections) and some

attacks may be misclassified as normal events (i.e. false negative detections). This

behavior is represented in the Venn diagram of Fig. 2.

Fig. 2 Venn diagram for a

single detector.

On the diagram shown in Fig. 2 it is possible to identify four subsets of interest:

• True positive alerts: TP1 = A1−N contains all attacks correctly detected by d1 ;

this area, in gray in Fig. 2, corresponds to the correct behavior expected from d1 ;
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• False positives alerts: FP1 = A1∩N contains all normal events erroneously clas-

sified as attacks by d1 ;

• True negatives: TN1 = (N∩T)−A1 contains all normal events targeted to the

system that were correctly identified by d1 .

• False negatives: FN1 = T− (A1∪N) contains all attacks targeted to the system
that were not recognized by d1 ;

An ideal intrusion detector di should present FPi = FNi = /0 (in other words,
no classification errors). However, real detectors can fail, giving false positive or

negative results.

3.3 Modeling a composite IDS

A model considering two detectors is presented in Fig. 3, in which the set of events

perceived by each detector di is represented as Ai .

Fig. 3 Venn diagram for two

detectors.

All Ai sets, generated by each di detector, can be combined together to generate

a compound result Ac , in two basic approaches:

a) by considering the attacks detected by both detectors: Ac = A1∩A2

b) by considering the attacks detected by any detector: Ac = A1∪A2

Their generalization for N detectors are, respectively:

Ac =
N
⋂

i=1

Ai or Ac =
N
⋃

i=1

Ai (1)

The subsets of interest for the compound IDS are defined as:

TPc = Ac−N (2)

FPc = Ac∩N (3)
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TNc = (N∩T)−Ac (4)

FNc = T− (Ac∪N) (5)

The approach a is restrictive, because only attacks detected by all detectors will

be considered as attacks (i.e. an event e is considered as an attack iff ∀di e ∈ Ai).

This leads to a smaller Ac set, and consequently to a smaller FPc set. However,

attacks not recognized by all detectors may be ignored in the final result, leading to

false negative errors (i.e. a bigger FNc set). So, it lowers false positive rates, but rises

false negative rates (i.e. discards attacks that could have been detected only by some

IDS). Therefore, if only one detector of the CIDS detects a given attack, this attack

will not be in Ac , but it does not necessarily mean that this event is unimportant.

This approach is depicted in Fig. 4.

Fig. 4 Intersection of the

individual results.

On the other hand, approach b is more comprehensive, as even attacks detected

by just one detector are considered as attacks (i.e. an event e is an attack iff ∃di | e ∈
Ai). This leads to a bigger Ac set, and consequently to a smaller FNc set. However,

there is a higher risk of false positive alerts (i.e. a bigger FPc set). This approach is

depicted in Fig. 5.

Fig. 5 Union of the individual

results.

Both approaches represent extreme situations. In the next section, fuzzy sets are

used to propose an intermediate model, mixing characteristics of both solutions.
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4 A fuzzy composition model

The first CIDSmodel presented in Sect. 3 can discard important attacks not observed

by all detectors. The second model considers a larger attack set, but increases the

uncertainty on the results. Therefore, they should be improved to grasp the best of

both worlds: the first model’s accuracy and the second model’s comprehensiveness.

For that, some Fuzzy Set concepts are used to build a more general model. In this

new model, the binary result of each detector (whether an event is an attack or not)

will have some meaning in the collective result.

To consider all individual detector results, we need to define the relevance of a

given event e as r(e), meaning how much e is considered as an attack, according to
the number of IDSs that detected it and the total number of detectors in the compo-

sition. Attacks detected by a larger number of detectors will have a bigger relevance

than attacks detected by a smaller number of detectors. The relevance r(e) of an
event e can be seen as the membership function of a fuzzy set2. Thus, the relevance

function r(e) should satisfy the following properties:

a) it informs how much the event e can be considered as an attack: if r(e) = 0, e is
a normal event (not an attack), and if r(e) = 1, e is surely an attack;

b) its input parameters are the number of detectors in the CIDS and the number of

those that detected the event as an attack;

c) the number of elements in the CIDS should influence the result: it is better to have

100% of detection in a CIDS with 5 detectors than to have a 100% detection in a

CIDS with just one detector;

d) it should have a negative exponential behavior, growing faster for the first val-

ues and tending to 1 as the number of detections increase; this provides a better

sensibility in larger CIDS compositions.

Each intrusion detector di provides as output a binary result on each input event:

for di, e is an attack (e ∈ Ai) or e is not an attack (e 6∈ Ai). From this, it is possible to

define an alarm count c(e), which indicates how many detectors in a CIDS consider
the event e as an attack:

c(e) =
N

∑
i=1

{

0,e /∈ Ai

1,e ∈ Ai

}

(6)

A first candidate for the relevance function would be r(e) = c(e)/N . However,
although it satisfies the properties a and b, properties c and d are not satisfied. The

exponential function f (x) = 1−1/(x+1) satisfies properties c and d. The combi-
nation of both equations results in:

r(e) =
c(e)

N
×

(

1−

(

1

c(e)+1

))

=
c(e)2

N(c(e)+1)
(7)

2 A fuzzy set is defined as a pair (S,µ) where S is a set and µ : S→ [0,1]∈R is a real function. For

each x ∈ S , µ(x) represents how much x belongs to S. If µ(x) = 1 , x belongs totally to S, whereas
if µ(x) = 0 , x does not belong to S at all [8].
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The expected behavior of this r(e) function can be seen in Table 1, which shows
the relevance values for various CIDS configurations and detection levels. It shows

that r(e) values consider both the number of detectors in the CIDS and how many
detectors classified e as an attack.

Table 1 Event relevance r(e) in a CIDS with up to 6 detectors

Detections Detectors in the CIDS (N)

c(e) 1 2 3 4 5 6

0 0.000 0.000 0.000 0.000 0.000 0.000

1 0.500 0.250 0.167 0.125 0.100 0.083

2 - 0.667 0.444 0.333 0.267 0.222

3 - - 0.750 0.563 0.450 0.375

4 - - - 0.800 0.640 0.533

5 - - - - 0.833 0.694

6 - - - - - 0.857

To interpret r(e) values, we propose defining a relevance threshold (rt). This
threshold defines the minimum relevance level for an event to be considered as an

attack by the CIDS. For a given CIDS, its threshold should be tuned for the best

results (as presented in the next section). Obviously, the CIDS behavior depends

on the rt threshold. For instance, considering rt = 0.5, a CIDS with 4 detectors
will consider an event as relevant only if all detectors detect it, but a CIDS with 6

detectors will do so if at least 4 detectors detect it. The next section presents the

application of this model in a real scenario, and its evaluation.

5 Model evaluation

The proposed model was analyzed using data extracted from some controlled ex-

periments. The CIDS performance was compared with individual detectors’ perfor-

mances using ROC curves [16], a technique frequently used to evaluate data classi-

fication algorithms.

The setup used for evaluating the proposed model consisted in a hub-based local

area network with four distinct IDSs and an “attack generator”. The DARPA Data

Sets [12], commonly used for evaluating intrusion detectors, were not used here

because they contain the MAC addresses of the target machines; some detectors we

used only recognize attacks targeted specifically to the MAC addresses of the hosts

they are installed in.

The IDSs used in our experiments are KFSensor 4.2.0 (from KeyFocus Ltd.),

X-Ray (from GroundZero Security Research), HoneyBOT (from Atomic Software

Solutions), and Snort 2.4.3 build 26 (from Sourcefire, Inc.), all updated and patched

up to the date of the experiment. In order not to make direct comparisons, they will

be referred here randomly as d1, d2, d3, and d4. The attack generator consisted in

a computer running the Nessus vulnerability scanner, version 3.0.4 (from Tenable
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Network Security, Inc). As the number of vulnerabilities scanned by Nessus is huge,

we selected 25 distinct attacks that we found to be representative of frequent situa-

tions. Such attacks are presented in Table 2.

Table 2 Attacks used in the evaluation

Attack Attack name Nessus category

a1 BackOrifice Backdoors

a2 BugBear

a3 DeepThroat

a4 FingerBackdoor

a5 IISPossibleCompromise

a6 PortalOfDoom

a7 Sygate BackDoor

a8 MyDoom

a9 IISFPDoS DoS

a10 PFPImageFile

a11 Winlogo.exe DoS

a12 Personal Web Sharing

a13 NetStat Useless Services

a14 Windows Terminal Service

a15 Telnet

a16 WriteSrv

a17 FrontPage Passwordless WebServers

a18 IISRemoteCommExecution

a19 CyDoor detection Windows

a20 GatorDetection+Gain

a21 I-Nav ActiveX BufferOverflow

a22 IE VersionCheck

a23 FTP Shell DoS Vuln FTP

a24 RPC Port Mapper RPC

a25 AliBaBa Port Climbing Remote File Access

Two independent experiments were performed. The first one aimed at identify-

ing the detection capabilities of each detector against such attacks, i.e. true positives

(attacks correctly identified) and false negatives (attacks not detected). The second

experiment analyzed the behavior of the detectors in the presence of a valid, nor-

mal background network traffic, in order to identify false positive detections. Both

experiments are described next.

5.1 Experiment 1

In this experiment, each IDS was submitted to the 25 attacks of Table 2, one at

a time. Each attack was tested against each IDS three times. Between two tests,

the computer running the IDS was restarted, in order to prevent any cross-effects.

During the tests, the network was isolated and there was no background traffic. The

detection results are presented in Table 3 (each “•” corresponds to a raised alert).
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This experiment allowed us to identify attacks correctly detected by the detectors

(true positives) and attacks not detected by them (false negatives).

Table 3 Individual IDS alerts

Attack d1 d2 d3 d4 r(ai) Attack d1 d2 d3 d4 r(ai) Attack d1 d2 d3 d4 r(ai)
a1 • • • - 0.563 a11 • • • - 0.563 a21 • • - - 0.333
a2 • • • - 0.563 a12 • • • • 0.800 a22 • • - - 0.333
a3 - - - - 0.000 a13 - • • - 0.333 a23 - • - - 0.125
a4 - - - - 0.000 a14 • • - - 0.333 a24 • • • - 0.563
a5 • • • - 0.563 a15 - • • - 0.333 a25 • • • - 0.563
a6 • - - - 0.125 a16 - - • - 0.125
a7 • • - - 0.333 a17 • - • - 0.333
a8 • • • - 0.563 a18 • • • - 0.563
a9 • - • - 0.333 a19 • • - - 0.333
a10 • - • - 0.333 a20 • • - • 0.563

5.2 Experiment 2

This experiment was conducted to identify false positive alerts generated by the de-

tectors. For that, the detectors were deployed in a local area network with real traffic

(DNS, HTTP, SMTP, POP, IMAP, Windows Terminal Service, NetBios, SNMP, and

FTP traffic). The four detectors were deployed and their detections observed during

some hours. Each generated alert was manually analyzed to verify its validity. False

alerts were classified as false positives (only one instance of each type of event was

counted for each detector). Results obtained from this experiment are summarized

in Table 4 (each “•” corresponds to a raised alert).

Table 4 Individual false positive alerts

Event Activity d1 d2 d3 d4 r(ni) Event Activity d1 d2 d3 d4 r(ni)
n1 TCP 139 • • - - 0.333 n6 UDP 138 - • - - 0.125

n2 TCP 3088 • - - - 0.125 n7 UDP 1027 - • - - 0.125

n3 TCP 3089 • - - - 0.125 n8 UDP 2967 - • - - 0.125

n4 TCP 3090 • - - - 0.125 n9 UDP 38293 - - • - 0.125

n5 UDP 137 - • - - 0.125 n10 ICMP • • - - 0.333

5.3 ROC analysis

ROC (Receiver Operation Characteristic) analysis appeared in the 1950’s, to help

understanding radio signals contaminated by noise. It is frequently used in the med-
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ical area, to evaluate the efficiency of medical tests [16]. In computer science, it is

used to evaluate data classification algorithms. A ROC analysis basically consists in

comparing the sensitivity of a classifier (a value related to its True Positives count)

with its specificity (a value related to its False Positives count). According to [16]:

Sensitivity =
TP

TP+FN
(8)

Specificity =
TN

TN+FP
(9)

TP Rate = Sensitivity (10)

FP Rate = 1−Specificity (11)

When drawing the curve of specificity × sensitivity for a classifier (its ROC
curve), it can be shown that its best operating point, in which it presents the best

compromise between FP and TP rates, is the point nearest to [0,1] in the curve
(where FP= 0 and TP= 1).
An IDS can be considered as a classifier, as it classifies input events as attacks

or normal events. So, it is possible to plot ROC curves from the values gathered

in experiments 1 and 2, in order to evaluate our model and to identify the event

relevance threshold rt , as defined in Sect. 4. Table 5 presents the event relevance

levels calculated for the attacks listed in Table 2 and the false positives listed in Table

4. Values were calculated according to the r(e) definition in Sect. 4, and results are
presented in increasing r(e) order.

Table 5 Ordered event relevance

Event r(e) Event r(e)
a3 a4 0.000 n9 n2 n3 n4 n5 n6 n7 n8 0.125

a6 a16 a23 0.125 n1 n10 0.333

a7 a9 a10 a13 a14 a15 a17 a19 a21 a22 0.333

a1 a2 a5 a8 a11 a18 a20 a24 a25 0.563

a12 0.800

Table 6 shows the FP, TN, FN, and TP counts, and the corresponding calculated

FP/TP rates. Here, false/true positives and negatives are counted according to the

CIDS point of view:

• TNC: normal events ni for which r(ni) < rt
• FPC: normal events ni for which r(ni) ≥ rt
• TPC: attacks ai for which r(ai) ≥ rt
• FNC: attacks ai for which r(ai) < rt

FP and TP rates can then be plotted in a ROC curve representing the CIDS be-

havior (Fig. 6). The points in the ROC curve correspond to rows in Table 6.

The best operating point for our CIDS is D, because it is the point nearest to

the [0,1] coordinates. So, we can adopt rt = 0.333 as the detection threshold for
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Table 6 FP and TP rates for the CIDS

r(e) TNC FPC TPC FNC FP rate TP rate
A 1.000 10 0 0 25 0.00 0.00

B 0.800 10 0 1 24 0.00 0.04

C 0.563 10 0 10 15 0.00 0.40

D 0.333 8 2 20 5 0.20 0.80

E 0.125 0 10 23 2 1.00 0.92

F 0.000 0 10 25 0 1.00 1.00

Fig. 6 ROC curve for the

composite IDS.

the best detection results, in this case. Table 7 shows a comparison of CIDS results

(operating at point D) with the individual detectors’ results. Is shows clearly that (a)

CIDS presents a smaller amount of false results (considering both false negatives

and false positives), and (b) its true positive results are also better than any of the

individual detectors.

Table 7 Comparing CIDS with individual detectors

Detector CIDS d1 d2 d3 d4
FN 5 4 5 8 21

FP 2 5 6 1 0

FN+FP 7 9 11 9 21

TP 20 19 18 15 2

To complement this comparison, we plotted the operating points for the individ-

ual detectors in the ROC space, using the experiments’ data (Fig. 7). It can be seen

that the CIDS operating point is closer to the [0,1] ideal point than the individual

detectors. It also shows that the best individual detector would be d3, in this case.
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Fig. 7 ROC operating points

for all the detectors

6 Model extensions

The experiments presented in Sect. 5 showed that detectors may have distinct de-

tection performances. Consequently, the relevance function r(e) could be adjusted
to consider this. It is possible to define an “efficiency” factor 0 ≤ αi ≤ 1 for each
detector di based on its performance, leading to a new c(e) definition:

c(e) =
N

∑
i=1

{

0,e /∈ Ai

αi,e ∈ Ai

}

(12)

The efficiency αi of a given detector can be estimated from its FP and TP rates
on the ROC curve. Usually, the euclidean distance from a detector’s operating point

[FPi,TPi] to the y= x diagonal is a good indicator of its efficiency [16]. In the ROC
space, the y= x line represents operating points in which FP and TP rates are equal.
In such points, the detector’s results are not better than random guesses. Thus, the

y= x line is also called the “random guess line”.
Another possible extension to our model would be to define a “confidence” 0 ≤

γki ≤ 1 of each detector di on each event ek it classifies as an attack. This would be
taken into account into c(ek) as:

c(ek) =
N

∑
i=1

{

0,ek /∈ Ai

αi× γki ,ek ∈ Ai

}

(13)

However, this extension considers that each detector can inform its confidence

on the alarms it produces, which it is not always the case. The manual definition of

individual alarm confidences for each detector would not be feasible, either.
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7 Related work

We identified some works that used mathematical models to represent and/or an-

alyze intrusion detectors, some of them using fuzzy logic. Paper [11] defines a

methodology to build anomaly-based IDSs called BSEADS (Behavioral Secure En-

clave Attack Detection System). That methodology combines several data sources,

like network traffic and user behavior, to identify anomalous behaviors. BSEADS

analysis was done using a model similar to that presented in Sect. 3.2 (Fig. 2).

Article [18] presents Vismath, a geometric model that visually represents the

variations in a computer environment. The model uses graphical structures called

spicules to create vectorial representations of monitored variables, like processor

usage, number of processes, and number of open files. Once the normal behavior

of the system is defined, spicules monitoring allows identifying abrupt changes and

anomalous behaviors.

Paper [17] is the closest one to our approach. It presents a method to evaluate the

performance of an IDS using ROC curves and a cost-based decision-tree analysis.

They also propose to build a composite IDS by the combinations of two individ-

ual detectors, but there are several differences between that work and ours. First,

the behavior of their composite IDS is determined only by superposing the ROC

curves obtained from individual detectors, instead of defining a generic composi-

tion model that would have its own ROC curve. Also, in the decision-tree approach

they propose, the results obtained by a CIDS can be equivalent to those obtained by

an individual IDS (if only the corresponding IDS in the CIDS detects the attack).

This behavior is close to those for the simpler models presented here, in Sect. 3.3.

8 Conclusion

This article proposes building a Composite IDS (CIDS) from individual heteroge-

neous detectors, according to the project diversity principles. A first model allows

us to treat the results of a CIDS in two possible ways: in the first, more restrictive,

only attacks detected by all IDSs are considered; the second, more comprehensive,

considers all attacks detected by any of the detectors. In order to use the best of both

worlds, we propose another model, based on the fuzzy sets theory.

The proposed model was evaluated using two experiments, in which four indi-

vidual detectors were tested against an “attack generator” (a vulnerability scanner).

The results showed that the CIDS results are better than individual detector results,

giving less false results and more true results for the attacks under consideration.

During our experiments, two instances of the same IDS, running in exactly the

same operating system, but in distinct hardware, behaved distinctly and produced

distinct results. This issue was also observed between instances of the same IDS

running in the same hardware, but on top of distinct operating systems. This leads

us to conclude that project diversity is not only a matter of IDS implementation, but

also of running environment diversity (hardware and operating systems).
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Possible future research includes a deeper analysis of the composition model,

using the DARPA Intrusion Detection Evaluation Data Sets [12]. We intend also to

evaluate the effectiveness of the extensions proposed in Sect. 6.
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