
Some Guidelines for Proportional Share CPU Scheduling
in General-Purpose Operating Systems

John Regehr
School of Computing

University of Utah
regehr@cs.utah.edu

Abstract

Our premise is that since there already exists a large,
mature body of literature on real-time scheduling in
general-purpose operating systems, it is time to spend more
effort deciding which of these algorithms should be used
and when, and less effort on generating new algorithms. In
this paper we focus on proportional share schedulers. We
introduce the notion ofpessimism—the proportion of over-
reservation required for an application to meet real-time
deadlines when scheduled by proportional share schedulers
that have bounded allocation error. We study the implica-
tions of pessimism and its effect on the selection of schedul-
ing algorithm and scheduling quantum size, and also the
interaction of quantum size and context switch overhead.
Finally, we examine the implications of these tradeoffs for
the design of applications and schedulers.

1. Introduction

There are compelling reasons to use proportional share
scheduling techniques to support multimedia and other
soft real-time applications on general-purpose operating
systems. First, proportional share (PS) schedulers are
a good match for existing infrastructure such as a peri-
odic timer interrupt and mechanisms for assigning priori-
ties to applications—priorities can be mapped to shares in
a proportional-share environment. Second, PS schedulers
provide stronger guarantees to applications than do tradi-
tional time-sharing schedulers: they allocate a specific frac-
tion of the CPU to each thread, and some schedulers provide
error bounds on the allocation rate. Third, PS schedulers
have clear semantics during underload: excess CPU time
is allocated fairly, in contrast with some reservation-based
schedulers that must idle or back off to a secondary schedul-
ing policy once all application budgets are exhausted.

2. Fairness and Allocation Error

An important property of PS scheduling techniques is
that they characterize threads with a single parameter, a
share, and do not make a distinction between the rate at
which a thread requires CPU time and the granularity at
which it must receive that rate. Consequently, PS schedulers
are often primarily evaluated based on the level of fairness
that they can provide. Secondary evaluation criteria include
implementation complexity and run-time efficiency. Sched-
ulers such as EEVDF [8] areoptimally fair in the sense that
a thread’s allocation, measured over any time interval, never
deviates more than a single time quantum from its ideal (in-
finitely fine-grained) allocation. This is provably the small-
est allocation error that a PS scheduler can provide; other PS
schedulers, such as start-time fair queuing [3], have larger
error bounds. So, although PS schedulers may bound allo-
cation error, the bound is a function of the scheduler and the
quantum size—threads being scheduled don’t get to choose
it directly.

The predominant model for real-time task execution [5]
requires that each periodic task receive a certain amount
of CPU time during each period. This model can be
straightforwardly applied to the many multimedia and other
soft real-time applications that are becoming popular on
general-purpose operating systems. These include voice
recognition, software signal processing [4], and the presen-
tation of audio and video, which may be stored or live, and
local or remote. Mapping PS guarantees into the periodic
task model requires taking the error bound into account. If
a task with worst-case execution time (WCET)c and pe-
riod p receives shares of the CPU from a PS scheduler with
error boundd then, as Stoica et al. [7] have observed, the
inequality

sp− d > c (1)

must hold if the task is to be guaranteed to meet all dead-
lines.

We define the pessimismP of a particular PS guarantee



to besp/c, the amount of CPU time reserved for a thread
divided by the amount of time it actually requires. The ideal
level of pessimism, 1.0, can only be achieved by a guarantee
satisfying the above inequality whend is zero. If the pes-
simism of a guarantee is 1.5, then 50% of the CPU time al-
located to the associated thread is being wasted in the sense
that it cannot be guaranteed to another thread.

3. Managing Pessimism

Since the periodp and execution timec are fixed for a
given real-time application and reserved shares is not an
independent variable, the available mechanism for reduc-
ing pessimism is to minimize the allocation errord. There
are two ways to do this. First, we can choose a scheduling
algorithm with a low error bound, such as EEVDF. For pur-
poses of this paper we assume that EEVDF or an equivalent
optimal algorithm is used, and consequently that the alloca-
tion error bound is the same as the quantum size. Second,
we can reduce the size of a scheduling quantum. A typical
value for general-purpose operating systems is 10–30 ms,
but quantum size can be reduced almost arbitrarily. In prac-
tice, the desire for small quanta must be balanced with the
associated overheads of periodic timer interrupts and con-
text switches. Since a very fair scheduler like EEVDF will
usually cause a context switch at every timer interrupt, from
this point forward we will only consider the cost of context
switches, which dominate overall cost.

If we turn the inequality in Equation 1 into an equal-
ity and solve for share, we gets = (c + d)/p. Substi-
tuting this into the formula for pessimism, we getP =
((c+d)/p)(p/c). This simplifies toP = (c+d)/c, implying
that the pessimism of an application’s guarantee does not
depend on its period, but only on the allocation error and the
amount of time it requires per period. Figure 1 shows pes-
simism as a function of scheduling quantum size for three
application WCETs: 3 ms, 10 ms, and 30 ms. Pessimism is
bounded below by 1.0, and we clip the top of the graph at
4.0 under the assumption that guaranteeing an application
more than four times the CPU that it actually requires is
completely unacceptable.

Figure 1 shows that for applications with small process-
ing requirements, such as an audio player that requires 3 ms
of CPU time every 50 ms in order to decode data and hand
it to a sound device, even fairly short scheduling quanta im-
ply a large degree of pessimism in guarantees. On the other
hand, for real-time applications with large processing re-
quirements per period, such as a vision algorithm that re-
quires 30 ms of CPU time during every 100 ms period in
order to process 10 frames per second, quantum sizes in the
10–30 ms range result in levels of pessimism that are not too
large.

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30

P
es

si
m

is
m

Scheduling quantum size (ms)

3 ms
10 ms
30 ms

Figure 1. Pessimism as a function of quantum
size

4. Managing Context Switch Overhead

In the previous section we showed that it is possible to
minimize the amount of pessimism required to make real-
time guarantees to applications using PS schedulers if the
scheduler quantum size can be made to be small. In this
section, we explore the consequences of reducing the quan-
tum size.

By preempting a thread at the end of each quantum, a
scheduler incurs a certain amount of overhead. For ex-
ample, on a 500 MHz Pentium III running Windows 2000,
we have measured the median cost of executing the path
through the kernel context switch code at 7.1µs. However,
the actual cost of a context switch can easily exceed this
nominal cost because a newly scheduled application will
often be running on a cold cache, and will be forced to wait
on memory reads as its working set is paged into the level
2 cache. In previous work [6, Ch. 10] we have shown that
on the platform described above, which has 512 KB of L2
cache memory, the actual cost of a context switch is an order
of magnitude larger than the nominal cost for applications
with a working set of 8 KB, and two orders of magnitude
larger for applications with a working set of 79 KB. The
cost of a context switch continues to increase with working
set size, up to a maximum of about 2.5 ms for working sets
near 512 KB.

Figure 2 shows the amount of overhead caused by con-
text switches for different scheduling quantum sizes, as-
suming that a context switch occurs at each quantum bound-
ary. The lowest line—corresponding to the nominal 7.1µs
cost of the kernel context switch code path—indicates that
this is not a significant source of overhead, even for quan-
tum sizes well below 5 ms. The other lines, however, show



0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30

C
on

te
xt

 s
w

itc
h 

ov
er

he
ad

 (
%

)

Scheduling quantum size (ms)

7.1 us / switch
71 us / switch

710 us / switch
2500 us / switch

Figure 2. Context switch overhead as a func-
tion of quantum size

that for applications that make good use of the cache, even
quantum sizes in the 10–30 ms range can cause significant
overhead. It is therefore necessary to exercise caution when
reducing quantum size.

5. Implications for Application Design

Although the period, and the amount of CPU time re-
quired per period, are inherent properties of a real-time ap-
plication, in some cases good design can reduce dependen-
cies on precise scheduling behavior from the operating sys-
tem. For example, a video player can buffer a number of de-
coded frames rather than decoding each frame just in time.
This increases the effective period of the decoder, ensur-
ing that short-term allocation error will not impact playback
quality.

A video player that must produce 33 frames per second
has a period of 30 ms. However, if it buffers 10 decoded
frames, its effective period becomes 300 ms. Assuming that
10 ms of CPU time are required to decode each frame, when
scheduled using EEVDF on a machine with a scheduling
quantum 5 ms long the unbuffered video player must be
scheduled withs = 0.5 to be guaranteed to not drop any
frames. This reservation has a pessimism value of 3. The
same player, when configured to buffer 10 frames, must be
scheduled withs = 0.35, for a pessimism value of 1.05—a
significant reduction.

6. Implications for Scheduler Design

Since PS schedulers are not aware of application dead-
lines, they can be too fair. Abeni et al. [2] have shown
that constant bandwidth allocation (CBA) does not have this

problem. The strength and weakness of CBA and similar
CPU reservation mechanisms is that they explicitly sched-
ule applications to meet deadlines. By making a distinction
between the amount of CPU time that an application re-
quires and the granularity at which that amount is delivered,
they can greatly reduce the number of unnecessary context
switches. On the other hand, they require that applications
specify their periods as well as worst-case execution times
per period, placing a larger burden on developers. However,
the period of an application is often much easier to deter-
mine than the WCET, which is strongly platform dependent
and may depend on data as well. In fact, tasks often implic-
itly inform the operating system of their periods by using a
timer service to be awakened at the beginning of each pe-
riod.

Limiting the fairness of scheduling for applications that
do not require it can be regarded as a throughput optimiza-
tion. A further optimization is to entirely eliminate periodic
timer interrupts, replacing them with a precisely settable
interrupt. This is useless on systems with PS schedulers
and fixed-size scheduling quanta, but can be used to pro-
vide low-jitter, precisely enforced CPU allocation on sys-
tems that support CPU reservations.

The properties of some PS schedulers have been worked
out in the context of variable-sized scheduling quanta. Al-
though allowing applications to request different quantum
sizes permits a decoupling between scheduling rate and
granularity, it also sacrifices two of the main benefits of
PS schedulers—that they require only one parameter per
thread, and that they can reuse the existing periodic timer
interrupt facility that general-purpose operating systems use
to make thread preemption decisions. In fact, for a fixed
set of CPU-bound applications, we believe that the sched-
ules produced by a proportional share scheduler with vari-
able quantum size and a work-conserving CPU reservation
algorithm such as the constant bandwidth server are the
same [1].

7. Conclusions

This work is part of our ongoing research in real-time
scheduling techniques for general-purpose operating sys-
tems. This domain is very demanding in the sense that the
real-time subsystem must not complicate the programming
model seen by application developers, and it must not sig-
nificantly impact operating system throughput for any im-
portant workload.

We have introduced the notion ofpessimism—the pro-
portion of over-reservation required for an application to
meet real-time deadlines when scheduled by proportional
share schedulers that have bounded allocation error. We
have studied the implications of pessimism and its effect
on the selection of scheduling quantum size, and also the



interaction of quantum size and context switch overhead.
Finally, we have examined the implications of these trade-
offs for the design of applications and schedulers.

We conclude that there exists a false dichotomy be-
tween schedulers based on proportional share techniques
and schedulers based on the Liu and Layland task model.
The important question is not which class of algorithms is
better, but rather, for a given operating system and set of
applications, (1) to what degree must existing infrastructure
such as a periodic timer interrupt and system for manipulat-
ing priorities be utilized; (2) how much pessimism and con-
text switch overhead is acceptable; and, (3) what scheduling
parameters can the developers of real-time applications be
reasonably expected to provide?

References

[1] Luca Abeni. Personal communication, June 2001.

[2] Luca Abeni, Giuseppe Lipari, and Giorgio Buttazzo.
Constant bandwidth vs proportional share resource al-
location. InProc. of the IEEE International Conference
on Multimedia Computing and Systems, Florence, Italy,
June 1999.

[3] Pawan Goyal, Xingang Guo, and Harrick M. Vin. A
hierarchical CPU scheduler for multimedia operating

systems. InProc. of the 2nd Symposium on Operating
Systems Design and Implementation, pages 107–121,
Seattle, WA, October 1996.

[4] Michael B. Jones and Stefan Saroiu. Predictable
scheduling for a soft modem. Technical Report MSR-
TR-2000-88, Microsoft Research, December 2000.

[5] C. L. Liu and James W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environment.
Journal of the ACM, 20(1):46–61, January 1973.

[6] John Regehr.Using Hierarchical Scheduling to Sup-
port Soft Real-Time Applications on General-Purpose
Operating Systems. PhD thesis, University of Virginia,
May 2001.

[7] Ion Stoica, Hussein Abdel-Wahab, and Kevin Jeffay.
On the duality between resource reservation and pro-
portional share resource allocation. InProc. of Mul-
timedia Computing and Networking 1997, pages 207–
214, San Jose, CA, February 1997.

[8] Ion Stoica, Hussein Abdel-Wahab, Kevin Jeffay, San-
joy K. Baruah, Johannes E. Gehrke, and C. Greg Plax-
ton. A proportional share resource allocation algorithm
for real-time, time-shared systems. InProc. of the 17th
IEEE Real-Time Systems Symposium, pages 288–299,
Washington DC, December 1996.


