2026/01/31 13:50 1/7

UNIX: Uso avangado do Shell

UNIX: Uso avancado

Neste texto sao apresentados os principais co

do Shell

nceitos associados a entradas e saidas padrao, como

redirecionamentos e pipes. Também sao vistos uma série de programas simples (os filtros), que podem ser
muito Uteis quando associados através de pipes.

Entradas e saidas padrao

A maioria dos comandos UNIX pode comunica
conhecidos como entradas e saidas padrao. E

¢ Entrada padrao (stdin - standard inpu

r-se com o sistema através de descritores de arquivos especiais
les sao:

t): onde o comando vai ler seus dados de entrada. No Bash, esse

arquivo é referenciado pelo descritor 0.
¢ Saida padrdo (stdout - standard output): onde o comando vai escrever seus dados de saida. No Bash,

esse arquivo é referenciado pelo descri

tor 1.

e Saida de erro (stderr - standard error): onde o comando vai escrever mensagens de erro. No Bash, esse
arquivo é referenciado pelo descritor 2.

Quando um comando é lancado sem indicar s

processo

stderr

eu arquivo de trabalho, ele busca seus dados da entrada padrao.

Por default, o shell onde o comando foi lancado associa o processo ao seu terminal, ou seja: a entrada padrao
do processo é associada ao teclado e as saidas padrdo e de erros a tela da sessdo corrente.

stdin

stdout

processo

stderr

=

A
shell

stderr stdout

teclado

terminal

Um exemplo de uso da entrada e saida padra

0 é o comando rev, que escreve em sua saida padrao as linhas de

texto lidas em sua entrada padrao, invertendo-as:

$ rev

vamos fazer um teste

etset mu rezaf somav

temos que achar um palindromo
omordnilap mu rahca euq somet
opoetaamaateopo

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

Last update: 2024/11/21 17:50 unix:shell_avancado https://wiki.inf.ufpr.br/maziero/doku.php?id=unix:shell_avancado

opoetaamaateopo *

~D
$

No exemplo, as linhas marcadas com * indicam as saidas geradas pelo comando rev. O caractere "D (Control-D)
no final indica o final da entrada padrao (ou seja, o fim de arquivo). Ao receber esse caractere, o comando rev
encerra sua execucao, pois chegou ao final de seu arquivo de entrada (que neste caso é o teclado). Outro
exemplo de uso da entrada e saida padrao é comando sort:

$ sort

joao

maria

antonio

carlos

manoel

~D

antonio carlos joao manoel maria

$

Normalmente o shell direciona a entrada padrao para o teclado e a saida padrao para a tela da sessao do
usuario, mas ele pode ser instruido para redireciona-las para arquivos ou mesmo para outros programas, como

sera visto na sequéncia.

Redirecao para arquivos

0 shell pode redirecionar as entrada e saidas padrao de comandos para arquivos normais no disco, usando
operadores de redirecdo, como mostra a figura abaixo:

stdin stdeut

processo

stderr

= =

"
shell

stdout

stderr

v

arguivos

A sintaxe de redirecao é especifica para cada shell, isto é, ndao é a mesma entre o C-Shell e o
Bourne Shell; aqui sera apresentada a sintaxe do shell Bash.

Os principais operadores de redirecdo para arquivos sao:

e Saida em arquivo: a saida padrao (stdout) do comando é desviada para um arquivo usando o operador >:

$ ls > listagem.txt

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/31 13:50

2026/01/31 13:50 3/7 UNIX: Uso avangado do Shell

¢ Entrada de arquivo: a entrada padrao (stdin) pode ser obtida a partir de um arquivo usando o operador <:
$ rev < listagem.txt

¢ Uso combinado: os dois operadores podem ser usados simultaneamente.
$ rev < listagem.txt > listrev.txt

e Concatenacao: a saida padrao pode ser concatenada a um arquivo existente usando-se o operador >>,
como mostra o exemplo:

$ ls /etc >> listagem.txt

¢ Saida de erros: a saida de erros (stderr) também pode ser redirecionada, através do operador 2> (que faz
referéncia ao descritor 2):

$ ls /xpto > teste.txt
ls: /xpto: No such file or directory

$ 11 /xpto 2> erro.txt
$ cat error.txt
1s: /xpto: No such file or directory

¢ As saidas padrao e de erro podem ser redirecionadas de forma independente:

$ 11 /xpto /etc/passwd > acerto.txt 2> erro.txt

$ cat error.txt
ls: /xpto: No such file or directory

$ cat acerto.txt
-rw-r--r-- 1 root root 2136 Mai 14 17:02 /etc/passwd

e Além disso, a salda de erro pode ser sobreposta a saida padrao:

$ L1 /xpto /etc/passwd > acerto.txt 2>&1

$ cat acerto.txt
-rw-r--r-- 1 root root 2136 Mai 14 17:02 /etc/passwd ls: /xpto: No such file or
directory

e Forcar um desvio: Caso a saida seja redirecionada para um arquivo ja existente, o shell recusa a
operacdo indicando o erro (somente se a varidvel noclobber estiver setada através do comando set -
C). Essa operacao pode ser forcada através do operador !:

$ 1ls > teste.txt
teste.txt: File exists.

$ 1s >! teste.txt

$ 1ls >> novo.txt
novo.txt: No such file or directory

$ 1ls >>! novo.txt

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

Last update: 2024/11/21 17:50 unix:shell_avancado https://wiki.inf.ufpr.br/maziero/doku.php?id=unix:shell_avancado

Redirecao usando pipes

O shell permite a construcdo de comandos complexos através da combinacdo de varios comandos simples. O
operador |, conhecido como pipe, ou tubo, permite conectar a saida padrao de um comando a entrada padrao
de outro. Com isso, um mesmo fluxo de dados pode ser tratado por diversos comandos consecutivamente,
como mostra a figura:

stdeut

stdin stdauk stdlin

Processo pProcesso

stderr stdearr

= =y

N
shell

L.

stdin stderr pipe stderr stdout

teclado

) tela
terminal

E importante ressaltar que os comandos conectados sdo lancados simultaneamente pelo shell e executam ao
mesmo tempo. O shell controla a execugao de cada um para que nao haja acumulo de dados entre os
comandos (a cada pipe é associado um buffer de tamanho limitado).

A sintaxe usada para redirecdo é simples. Eis alguns exemplos:

$ ls -1 /etc | more

$ ls -1 /tmp | sort | more

$ ls -1 /usr/bin | cut -c31-40 | sort | more

0 mecanismo de redirecao de entrada/saida é genérico, ou seja, funciona para qualquer programa que use as

entradas e saidas padrao, em qualquer linguagem de programacao.

Filtros

Um filtro é basicamente um programa que Ié dados da entrada padrao, realiza algum processamento e escreve
os dados resultantes na saida padrdo. Um exemplo simples de filtro seria:

filtro.c

#include <stdio.h>
#include <stdlib.h>

// lé caracteres em stdin e escreve em stdout, convertendo
// vogais mindsculas em '*' e vogais maiusculas em '#'.

int main
char c

c = getchar

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/31 13:50

https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=unix:shell_avancado&codeblock=11
http://www.opengroup.org/onlinepubs/009695399/functions/getchar.html

2026/01/31 13:50 5/7 UNIX: Uso avangado do Shell

C EOF
C
Ial
Iel
Iil
IOI
Iul

C I*I

break
IAI
IEI
III
IOI
IUI

C I#I

break

putchar (c

c = getchar

Para compilar esse filtro basta digitar: gcc -Wextra -o filtro filtro.c. Uma vez compilado, o arquivo
executavel filtro pode ser usado nas linha de comando UNIX, como qualquer outro filtro.

Existe um grande nimero de comandos UNIX bastante simples, cujo uso direto é pouco Util, mas que podem ser
de grande valia quando associados entre si através de pipes. Esses comandos sao chamados filtros, porque
funcionam como filtros para o fluxo de dados. Eis alguns filtros de uso corrente:

e cat : concatena diversos arquivos na saida padrao

¢ tac:idem, mas inverte a ordem das linhas

e more : permite a paginacao do fluxo de dados

e tr:troca de caracteres entre dois conjuntos

¢ head : seleciona as n linhas iniciais do fluxo de dados

e tail : seleciona as n linhas finais do fluxo de dados

e wC : conta o numero de linhas, palavras e bytes do fluxo

e sort : ordena as linhas segundo critérios ajustaveis

e uniq: remove linhas repetidas, deixando uma sé linha

e sed : para operagdes complexas de strings (trocas, etc)

e grep : seleciona linhas contendo uma determinada expressao

¢ cut : seleciona colunas do fluxo de entrada

¢ rev : reverte a ordem dos caracteres de cada linha do fluxo de entrada

e tee : duplica o fluxo de entrada (para um arquivo e para a saida standard)
e ...:qualquer programa que leia dados de stdin e escreva sua saida em stdout pode ser usado como filtro

Para conhecer melhor cada um dos comandos acima, basta consultar suas respectivas paginas de manual.

Exercicios

1. Usando comandos e pipes, determine o niUmero de linhas da pagina de manual do shell Bash.
2. Determine gquanto arquivos normais (nao diretérios nem links) existem em /usr.

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

http://www.opengroup.org/onlinepubs/009695399/functions/putchar.html
http://www.opengroup.org/onlinepubs/009695399/functions/getchar.html

Last update: 2024/11/21 17:50 unix:shell_avancado https://wiki.inf.ufpr.br/maziero/doku.php?id=unix:shell_avancado

3.

11.

12.

13.

Monte uma linha de comandos usando pipes para identificar todos os usuarios proprietarios de arquivos
ou diretérios a partir de /tmp, colocando o resultado no arquivo users-tmp.txt. Siga 0s seguintes
Passos:

o Use o comando find para listar os proprietarios de todos os arquivos dentro de /tmp (dica: use a

opgao -printf do comando find).

o QOrdene a listagem obtida, usando o comando sort

o Remova as linhas repetidas, usando o comando uniq

o Direcione a saida para o arquivo indicado users-tmp. txt.
Use o comando cut na saida de um comando Is -| para mostrar apenas as permissdes dos arquivos no
diretério /etc. Depois use sort e unig para mostrar quantas permissoes diferentes existem naquele
diretoério.
Quantos arquivos invisiveis (iniciados com .) ha na sua drea HOME?
Quantos diretérios hd na sua drea HOME?
Liste todos os atributos de todos os arquivos de um diretdrio e utilize o cut para mostrar apenas suas
permissdes e seu nome.
Liste todos os arquivos e seus atributos (somente os arquivos, diretérios ndo devem aparecer) do
diretério /etc, ordenando a saida por data do arquivo, e guarde a saida no arquivo teste.txt na sua area.
Mostre apenas o vigésimo arquivo do diretério /etc

. Mostre apenas os arquivos e diretérios para 0s quais vocé tem permissao de execucao na sua area

HOME.

Acesse o servidor ssh.inf.ufpr.br. Utilize o comando finger para mostrar o Login de todos usuarios cujo
primeiro nome seja Daniel.

Execute os comandos a seguir como usudrio normal. Determine o que é stdin, stdout e stderr para cada
comando (o contelido de cada fluxo para cada comando):

cat nonexistentfile

file /sbin/ifconfig

grep root /etc/passwd /etc/nofiles > grepresults

/etc/init.d/sshd start > /var/tmp/output

/etc/init.d/crond start > /var/tmp/output 2>&1

Confira seu resultado repetindo os comandos e atribuindo stdout para $HOME/saida.txt e stderr
para $HOME/erro. txt.

Observe as seguintes sequéncias de comandos e responda as perguntas:

oukwnNH

$ mkdir vazio

$ cd vazio

$cpab

cp: cannot stat 'a': No such file or directory
$ cpab=>a

1. Por que nao ha mensagem de erro ap6s o segundo comando cp? Qual o conteldo do arquivo a?

$ date >a
$ cat a
Wed Feb 8 03:01:21 EST 2012

$cpab
$ cat b
Wed Feb 8 03:01:21 EST 2012

$ cp ab >a
$ cat b

2. Por que o0 arquivo b estd vazio? O que ha no arquivo a?

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/31 13:50

2026/01/31 13:50 717 UNIX: Uso avangado do Shell

From:
https://wiki.inf.ufpr.br/maziero/ - Prof. Carlos Maziero

Permanent link:
https://wiki.inf.ufpr.br/maziero/doku.php?id=unix:shell avancado

Last update: 2024/11/21 17:50

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

https://wiki.inf.ufpr.br/maziero/
https://wiki.inf.ufpr.br/maziero/doku.php?id=unix:shell_avancado

	UNIX: Uso avançado do Shell
	Entradas e saídas padrão
	Redireção para arquivos
	Redireção usando pipes
	Filtros
	Exercícios

