
2026/01/31 13:50 1/7 UNIX: Uso avançado do Shell

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

UNIX: Uso avançado do Shell

Neste texto são apresentados os principais conceitos associados a entradas e saídas padrão, como
redirecionamentos e pipes. Também são vistos uma série de programas simples (os filtros), que podem ser
muito úteis quando associados através de pipes.

Entradas e saídas padrão

A maioria dos comandos UNIX pode comunicar-se com o sistema através de descritores de arquivos especiais
conhecidos como entradas e saídas padrão. Eles são:

Entrada padrão (stdin - standard input): onde o comando vai ler seus dados de entrada. No Bash, esse
arquivo é referenciado pelo descritor 0.
Saída padrão (stdout - standard output): onde o comando vai escrever seus dados de saída. No Bash,
esse arquivo é referenciado pelo descritor 1.
Saída de erro (stderr - standard error): onde o comando vai escrever mensagens de erro. No Bash, esse
arquivo é referenciado pelo descritor 2.

Quando um comando é lançado sem indicar seu arquivo de trabalho, ele busca seus dados da entrada padrão.
Por default, o shell onde o comando foi lançado associa o processo ao seu terminal, ou seja: a entrada padrão
do processo é associada ao teclado e as saídas padrão e de erros à tela da sessão corrente.

Um exemplo de uso da entrada e saída padrão é o comando rev, que escreve em sua saída padrão as linhas de
texto lidas em sua entrada padrão, invertendo-as:

$ rev
vamos fazer um teste
etset mu rezaf somav *
temos que achar um palindromo
omordnilap mu rahca euq somet *
opoetaamaateopo

Last update: 2024/11/21 17:50 unix:shell_avancado https://wiki.inf.ufpr.br/maziero/doku.php?id=unix:shell_avancado

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/31 13:50

opoetaamaateopo *
^D
$

No exemplo, as linhas marcadas com * indicam as saídas geradas pelo comando rev. O caractere ^D (Control-D)
no final indica o final da entrada padrão (ou seja, o fim de arquivo). Ao receber esse caractere, o comando rev
encerra sua execução, pois chegou ao final de seu arquivo de entrada (que neste caso é o teclado). Outro
exemplo de uso da entrada e saída padrão é comando sort:

$ sort
joao
maria
antonio
carlos
manoel
^D
antonio carlos joao manoel maria
$

Normalmente o shell direciona a entrada padrão para o teclado e a saída padrão para a tela da sessão do
usuário, mas ele pode ser instruído para redirecioná-las para arquivos ou mesmo para outros programas, como
será visto na seqüência.

Redireção para arquivos

O shell pode redirecionar as entrada e saídas padrão de comandos para arquivos normais no disco, usando
operadores de redireção, como mostra a figura abaixo:

A sintaxe de redireção é específica para cada shell, isto é, não é a mesma entre o C-Shell e o
Bourne Shell; aqui será apresentada a sintaxe do shell Bash.

Os principais operadores de redireção para arquivos são:

Saída em arquivo: a saída padrão (stdout) do comando é desviada para um arquivo usando o operador >:

$ ls > listagem.txt

2026/01/31 13:50 3/7 UNIX: Uso avançado do Shell

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

Entrada de arquivo: a entrada padrão (stdin) pode ser obtida a partir de um arquivo usando o operador <:

$ rev < listagem.txt

Uso combinado: os dois operadores podem ser usados simultaneamente.

$ rev < listagem.txt > listrev.txt

Concatenação: a saída padrão pode ser concatenada a um arquivo existente usando-se o operador >>,
como mostra o exemplo:

$ ls /etc >> listagem.txt

Saída de erros: a saída de erros (stderr) também pode ser redirecionada, através do operador 2> (que faz
referência ao descritor 2):

$ ls /xpto > teste.txt
ls: /xpto: No such file or directory

$ ll /xpto 2> erro.txt
$ cat error.txt
ls: /xpto: No such file or directory

As saídas padrão e de erro podem ser redirecionadas de forma independente:

$ ll /xpto /etc/passwd > acerto.txt 2> erro.txt

$ cat error.txt
ls: /xpto: No such file or directory

$ cat acerto.txt
-rw-r--r-- 1 root root 2136 Mai 14 17:02 /etc/passwd

Além disso, a saída de erro pode ser sobreposta à saída padrão:

$ ll /xpto /etc/passwd > acerto.txt 2>&1

$ cat acerto.txt
-rw-r--r-- 1 root root 2136 Mai 14 17:02 /etc/passwd ls: /xpto: No such file or
directory

Forçar um desvio: Caso a saída seja redirecionada para um arquivo já existente, o shell recusa a
operação indicando o erro (somente se a variável noclobber estiver setada através do comando set -
C). Essa operação pode ser forçada através do operador !:

$ ls > teste.txt
teste.txt: File exists.

$ ls >! teste.txt

$ ls >> novo.txt
novo.txt: No such file or directory

$ ls >>! novo.txt

Last update: 2024/11/21 17:50 unix:shell_avancado https://wiki.inf.ufpr.br/maziero/doku.php?id=unix:shell_avancado

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/31 13:50

Redireção usando pipes

O shell permite a construção de comandos complexos através da combinação de vários comandos simples. O
operador |, conhecido como pipe, ou tubo, permite conectar a saída padrão de um comando à entrada padrão
de outro. Com isso, um mesmo fluxo de dados pode ser tratado por diversos comandos consecutivamente,
como mostra a figura:

É importante ressaltar que os comandos conectados são lançados simultaneamente pelo shell e executam ao
mesmo tempo. O shell controla a execução de cada um para que não haja acumulo de dados entre os
comandos (a cada pipe é associado um buffer de tamanho limitado).

A sintaxe usada para redireção é simples. Eis alguns exemplos:

$ ls -l /etc | more
$ ls -l /tmp | sort | more
$ ls -l /usr/bin | cut -c31-40 | sort | more

O mecanismo de redireção de entrada/saída é genérico, ou seja, funciona para qualquer programa que use as
entradas e saídas padrão, em qualquer linguagem de programação.

Filtros

Um filtro é basicamente um programa que lê dados da entrada padrão, realiza algum processamento e escreve
os dados resultantes na saída padrão. Um exemplo simples de filtro seria:

filtro.c

#include <stdio.h>
#include <stdlib.h>

// lê caracteres em stdin e escreve em stdout, convertendo
// vogais minúsculas em '*' e vogais maiúsculas em '#'.

int main ()
{
 char c ;

 c = getchar () ;

https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=unix:shell_avancado&codeblock=11
http://www.opengroup.org/onlinepubs/009695399/functions/getchar.html

2026/01/31 13:50 5/7 UNIX: Uso avançado do Shell

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

 while (c != EOF)
 {
 switch (c)
 {
 case 'a':
 case 'e':
 case 'i':
 case 'o':
 case 'u':
 c = '*' ;
 break ;
 case 'A':
 case 'E':
 case 'I':
 case 'O':
 case 'U':
 c = '#' ;
 break ;
 }
 putchar (c) ;
 c = getchar () ;
 }
 return (0);
}

Para compilar esse filtro basta digitar: gcc -Wextra -o filtro filtro.c. Uma vez compilado, o arquivo
executável filtro pode ser usado nas linha de comando UNIX, como qualquer outro filtro.

Existe um grande número de comandos UNIX bastante simples, cujo uso direto é pouco útil, mas que podem ser
de grande valia quando associados entre si através de pipes. Esses comandos são chamados filtros, porque
funcionam como filtros para o fluxo de dados. Eis alguns filtros de uso corrente:

cat : concatena diversos arquivos na saída padrão
tac : idem, mas inverte a ordem das linhas
more : permite a paginação do fluxo de dados
tr : troca de caracteres entre dois conjuntos
head : seleciona as n linhas iniciais do fluxo de dados
tail : seleciona as n linhas finais do fluxo de dados
wc : conta o número de linhas, palavras e bytes do fluxo
sort : ordena as linhas segundo critérios ajustáveis
uniq : remove linhas repetidas, deixando uma só linha
sed : para operações complexas de strings (trocas, etc)
grep : seleciona linhas contendo uma determinada expressão
cut : seleciona colunas do fluxo de entrada
rev : reverte a ordem dos caracteres de cada linha do fluxo de entrada
tee : duplica o fluxo de entrada (para um arquivo e para a saída standard)
… : qualquer programa que leia dados de stdin e escreva sua saída em stdout pode ser usado como filtro

Para conhecer melhor cada um dos comandos acima, basta consultar suas respectivas páginas de manual.

Exercícios

Usando comandos e pipes, determine o número de linhas da página de manual do shell Bash.1.
Determine quanto arquivos normais (não diretórios nem links) existem em /usr.2.

http://www.opengroup.org/onlinepubs/009695399/functions/putchar.html
http://www.opengroup.org/onlinepubs/009695399/functions/getchar.html

Last update: 2024/11/21 17:50 unix:shell_avancado https://wiki.inf.ufpr.br/maziero/doku.php?id=unix:shell_avancado

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/31 13:50

Monte uma linha de comandos usando pipes para identificar todos os usuários proprietários de arquivos3.
ou diretórios a partir de /tmp, colocando o resultado no arquivo users-tmp.txt. Siga os seguintes
passos:

Use o comando find para listar os proprietários de todos os arquivos dentro de /tmp (dica: use a
opção -printf do comando find).
Ordene a listagem obtida, usando o comando sort
Remova as linhas repetidas, usando o comando uniq
Direcione a saída para o arquivo indicado users-tmp.txt.

Use o comando cut na saída de um comando ls -l para mostrar apenas as permissões dos arquivos no4.
diretório /etc. Depois use sort e uniq para mostrar quantas permissões diferentes existem naquele
diretório.
Quantos arquivos invisíveis (iniciados com .) há na sua área HOME?5.
Quantos diretórios há na sua área HOME?6.
Liste todos os atributos de todos os arquivos de um diretório e utilize o cut para mostrar apenas suas7.
permissões e seu nome.
Liste todos os arquivos e seus atributos (somente os arquivos, diretórios não devem aparecer) do8.
diretório /etc, ordenando a saída por data do arquivo, e guarde a saída no arquivo teste.txt na sua área.
Mostre apenas o vigésimo arquivo do diretório /etc9.
Mostre apenas os arquivos e diretórios para os quais você tem permissão de execução na sua área10.
HOME.
Acesse o servidor ssh.inf.ufpr.br. Utilize o comando finger para mostrar o Login de todos usuários cujo11.
primeiro nome seja Daniel.
Execute os comandos a seguir como usuário normal. Determine o que é stdin, stdout e stderr para cada12.
comando (o conteúdo de cada fluxo para cada comando):

cat nonexistentfile1.
file /sbin/ifconfig2.
grep root /etc/passwd /etc/nofiles > grepresults3.
/etc/init.d/sshd start > /var/tmp/output4.
/etc/init.d/crond start > /var/tmp/output 2>&15.
Confira seu resultado repetindo os comandos e atribuindo stdout para $HOME/saida.txt e stderr6.
para $HOME/erro.txt.

Observe as seguintes sequências de comandos e responda às perguntas:13.

$ mkdir vazio
$ cd vazio
$ cp a b
cp: cannot stat 'a': No such file or directory
$ cp a b >a

Por que não há mensagem de erro após o segundo comando cp? Qual o conteúdo do arquivo a?1.

$ date >a
$ cat a
Wed Feb 8 03:01:21 EST 2012

$ cp a b
$ cat b
Wed Feb 8 03:01:21 EST 2012

$ cp a b >a
$ cat b

Por que o arquivo b está vazio? O que há no arquivo a?2.

2026/01/31 13:50 7/7 UNIX: Uso avançado do Shell

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

From:
https://wiki.inf.ufpr.br/maziero/ - Prof. Carlos Maziero

Permanent link:
https://wiki.inf.ufpr.br/maziero/doku.php?id=unix:shell_avancado

Last update: 2024/11/21 17:50

https://wiki.inf.ufpr.br/maziero/
https://wiki.inf.ufpr.br/maziero/doku.php?id=unix:shell_avancado

	UNIX: Uso avançado do Shell
	Entradas e saídas padrão
	Redireção para arquivos
	Redireção usando pipes
	Filtros
	Exercícios

