2026/01/13 02:56 1/9 Simpatica

Simpatica

[English version]
SIMPATICA é uma pequena biblioteca de simulagao a eventos discretos. Suas principais caracteristicas sao:

e Escrita em linguagem C ANSI.

¢ Estrutura interna simples, de facil compreensao e amplamente comentada, permitindo seu uso didatico.

¢ Extensivamente testada em ambientes Linux 32 e 64 bits.

¢ Baseada no paradigma atores/mensagens.

¢ Concebida visando um baixo consumo de memdria, 0 que permite criar simulacées com dezenas de
milhares de entidades ativas (suportou 150.000 tarefas simultaneas em um computador com 4 GB de
memoria).

* Excelente desempenho, por usar threads leves implementadas pela prépria biblioteca, que ndo
dependem do escalonador do sistema operacional.

¢ A fila do escalonador é implementada usando um heap binério, o que permite alcancar um bom
desempenho em simulagdes de larga escala.

e Software aberto de livre acesso (licenca GNU).

A biblioteca SIMPATICA permite construir simulacdes a eventos discretos com modelos baseados no paradigma
atores/mensagens. Segundo esse paradigma, um modelo de simulacdo é composto por um conjunto de atores
ou tarefas que se comunicam por mensagens. Esta biblioteca suporta trés tipos de entidades:

e Tarefa: uma tarefa é uma entidade ativa, que tem seu comportamento definido por uma funcao, da
mesma forma que uma thread (threads de usudrio sao usadas para implementar as tarefas). Cada tarefa
tem um identificador Unico no sistema. As tarefas podem produzir e consumir mensagens, que sdo
transferidas através de filas.

e Fila: é um depdsito de mensagens ordenado por data de chegada (ordem FIFO). Tarefas podem
depositar mensagens nas filas ou retirar mensagens delas. Filas e tarefas sao independentes: qualquer
tarefa pode consumir/produzir mensagens em qualquer fila.

e Mensagem: mensagens sdo estruturas em C (struct) com conteldo definido pelo programador, o que
proporciona uma boa flexibilidade de modelagem.

L IK] L IR JN
L
[
L L
L I J
Arquivos
e Versao 0.7
Interface

Esta biblioteca oferece um conjunto de funcées em C ANSI para a construcao de modelos de simulacao. Por

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

https://wiki.inf.ufpr.br/maziero/doku.php?id=software:simulation
http://en.wikipedia.org/wiki/Actor_model
http://en.wikipedia.org/wiki/Actor_model
https://wiki.inf.ufpr.br/maziero/lib/exe/fetch.php?media=software:simpatica-0.7.tgz

Last update: 2020/08/18 22:48 software:simulacao https://wiki.inf.ufpr.br/maziero/doku.php?id=software:simulacao

convengao, a maioria das funcdes aborta a execucao do modelo em caso de erro, enviando uma mensagem de
erro para stderr e retornando um status 1 para o sistema operacional. Esta abordagem “radical” foi adotada
para minimizar o risco de erros nao detectados que possam interferir nos resultados da simulacao. Por essa
mesma razao, a maior parte das fungfes da biblioteca ndo tem valor de retorno (ou seja, retorna void).

void init simulation (int maxTasks, int maxQueues

Inicializa as estruturas internas necessarias para cada simulacdo. Esta funcao deve ser chamada somente uma
vez, sempre no inicio do programa principal (fungdo main) do modelo. Os parametros maxTasks e maxQueues
definem o numero maximo de tarefas e de filas que poderao ser criadas pelo modelo (definem o tamanho das
estruturas de dados a alocar).

void run simulation (double maxTime

Executa a simulacdo até que o reldgio de simulacao atinja o valor maxTime. Deve ser chamada assim que todas
as tarefas tenham sido definidas. Caso esta funcao seja chamada novamente apds a conclusao de uma
simulacao, a simulacdo é retomada a partir do ponto onde havia parado na chamada anterior; isso permite
executar uma simulacgao por etapas:

// inicializa e cria tarefas

run_simulation // executa a simulacdo no intervalo t = [0 - 1000)
// trata resultados parciais

run_simulation // continua a simulacao no intervalo t = [1000 - 2000)
// trata resultados parciais

void kill simulation

Encerra uma simulacao, limpando todas as definicdes de tarefas, mensagens e estruturas de dados alocadas
em memdria. Esta chamada permite reiniciar a biblioteca e assim realizar varias simulagdes dentro do mesmo
programa C.

void trace interval (double startTime, double stopTime

Gera mensagens de tracing quando o relégio de simulacao estiver dentro do intervalo [startTime, stopTime].
As mensagens de tracing informam dados sobre os eventos processados pela biblioteca, e sdao enviadas para a
saida padrao (stdout).

ATENCAO: a biblioteca usa as funcdes C printf e sprintf para gerar as mensagens de tracing. Essas
funcdes podem ter um consumo elevado de memdria, mais precisamente da pilha alocada para cada tarefa
(pois o tracing é feito dentro do contexto das tarefas). Assim, caso o programa com tracing se torne instavel,
talvez seja necessdrio aumentar o tamanho das pilhas das tarefas.

uint task create (void (*taskBody) (void
void* startArg
int stackPages

Cria uma nova tarefa. O parametro taskBody indica uma funcao que contém o cddigo da tarefa; essa funcdo
receberd o parametro startArg ao iniciar sua execuc¢do. Cada tarefa é identificada no modelo por um ID
inteiro positivo Unico (o retorno desta chamada). O parametro stackPages indica o nimero de paginas de
memoria a alocar para a pilha da tarefa e seu valor deve ser maior que 0 (zero). Retorna o ID da tarefa recém-
criada. Os IDs sao inteiros positivos criados em seqiiéncia (1, 2, 3, ...).

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/13 02:56

2026/01/13 02:56 3/9 Simpatica

E importante observar que pilhas muito pequenas podem levar a erros de acesso & meméria ou comportamento
erratico do modelo, enquanto pilhas muito grandes consomem mais memdria e assim limitam o ndmero
maximo de tarefas que o modelo pode criar. O tamanho da pilha deve ser estimado em funcao do
comportamento da tarefa: quantidade de variaveis locais, funcdes chamadas pela tarefa, etc. Modelos simples
geralmente funcionam bem com pilhas com 1 a 3 paginas de meméria, mas isso deve ser estimado caso a caso.

Obs: a funcdo printf e suas congéneres podem usar muito espaco de pilha; tarefas que imprimam muito
podem precisar de pilhas maiores. Caso a funcionalidade de Tracing seja utilizada, todas as tarefas precisarao
de mais espaco de pilha (esse problema devera ser sanado em futuras versoes).

void task exit

Encerra a tarefa corrente (em execucdo), liberando seus recursos. Deve ser chamada no final do cédigo de cada
tarefa, para liberar os recursos por ela utilizados.

void task destroy (int task id

Destrdi a tarefa indicada como parametro, liberando os recursos utilizados por ela.
void task sleep (double t

A tarefa corrente vai dormir durante t unidades de tempo simulado.

void task passivate

A tarefa corrente vai dormir indefinidamente, até ser acordada por outra tarefa através da chamada
task activate (vide abaixo).

void task activate (int task id, double waitTime

Acorda a tarefa indicada por task dentro de waitTime unidades de tempo simulado, a partir do instante atual.
O parametro waitTime pode ser zero, para acordar a tarefa no instante atual. Esta chamada somente acorda
tarefas que foram dormir através da chamada task passivate, ndo tendo efeito sobre as demais tarefas.

int task id

Retorna o ID (identificador Unico) da tarefa corrente, que é um inteiro positivo (1, 2, 3, ...). Se chamada fora de
uma tarefa (por exemplo, no programa principal ou no escalonador), retorna 0.

double time now
Informa o valor atual do relégio simulado.
int queue create (int capacity, int policy

Cria uma nova fila com a capacidade (nimero maximo de mensagens) e politica de ordenamento indicadas. Na
versdo atual, ambos os parametros sao ignorados: todas as filas sdo ilimitadas e tém comportamento FIFO.

int queue destroy (int queue id

Destrdi a fila indicada, eliminando todas as mensagens nela contidas e as estruturas de dados que a
representam.

void queue stats (uint queue id
uint *size

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

Last update: 2020/08/18 22:48 software:simulacao https://wiki.inf.ufpr.br/maziero/doku.php?id=software:simulacao

uint *max
double *mean
double *var
ulong *put
ulong *got

Fornece informac0es estatisticas relativas a fila indicada, computadas a partir do inicio da simulacdo:

e size: nimero de mensagens atualmente na fila

¢ max: nUmero maximo de mensagens na fila

e mean: nUmero médio de mensagens na fila

e var: variancia da média de mensagens na fila

e put: nimero de mensagens depositadas na fila (via msg_put)
e got: nimero de mensagens retiradas da fila (via msg_get)

Para cada informacao, deve ser informado o endereco da variavel que ira recebé-lo, ou NULL (0) para ignora-la.
Por exemplo, a chamada abaixo informa o nimero atual de mensagens na fila q1:

queue stats (ql, &size
void* msg create (short size

Cria uma nova mensagem com tamanho size bytes. Cada mensagem criada recebe um ID Unico no sistema. O
tipo da mensagem é definido pelo usudrio, e pode conter as informacdes que este bem desejar. Normalmente
mensagens sdo definidas como struct contendo os campos necessarios ao modelo de simula¢do. Caso nao
haja necessidade de conteldos especificos, o parametro size pode ser igual a zero. Internamente, a biblioteca
mantém varias informagdes em cada mensagem, que podem ser consultadas através da funcdo msg attr
(vide abaixo).

Retorna um ponteiro para a mensagem criada.

void msg destroy (void *msg

Destréi a mensagem indicada. Todas as mensagens devem ser destruidas ao encerrar sua vida (til, para liberar
a memodria utilizada e assim permitir simulacdes maiores e/ou mais longas, sem esgotar a meméria do
computador.

void msg put (int queue id, void* msg

Coloca a mensagem indicada no final da fila indicada.

void* msg get (void *msg

Retira a mensagem indicada da fila onde ela se encontra, retornando um ponteiro para a mensagem.

void* msg wait (int queue id, double timeQut

Espera uma mensagem na fila indicada. A tarefa fica suspensa até receber uma mensagem ou esgotar o tempo
de espera timeOut (para esperar indefinidamente, basta informar um valor de time-out muito elevado, usando
a constante INFINITY). Retorna um ponteiro para a mensagem recebida ou NULL, no caso de ocorrer um time-
out. Importante: a mensagem recebida nao é retirada da fila.

void* msg first (int queue_ id

void* msg last int queue id
void* msg prev (void* msg

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/13 02:56

2026/01/13 02:56 5/9 Simpatica

void* msg next (void* msg

Permitem navegar em uma fila de mensagens. Retornam um ponteiro para uma mensagem na fila ou NULL,
caso ndo exista a mensagem solicitada.

void msg attr (void *msg
long *id
double *birth
double *sent
long *creator
long *sender
int *queue

Informa os seguintes atributos da mensagem indicada:

e id : identificador Gnico da mensagem (ID)

¢ birth: data de criacao da mensagem

e sent: data de Ultimo envio da mensagem

e creator: ID da tarefa que criou a mensagem

e sender: ID da tarefa que enviou a mensagem por Gltimo

¢ queue: ID da fila onde a mensagem se encontra, ou 0 (em nenhuma fila)

Para cada atributo, deve ser informado o endereco da varidvel que ird recebé-lo, ou NULL para ignora-lo (vide
chamada queue_ stats).

Forma de uso

0 uso desta biblioteca é bastante simples: basta escrever um programa C, usando as funcdes da biblioteca para
definir o modelo e os parametros da simulacado, compilar o programa junto com a biblioteca e executar:

$ cc simpatica.c modelo.c
$ a.out

0 arquivo simpatica.c contém a implementacdo das chamadas da biblioteca e o gerenciamento do
escalonador. O arquivo model. c contém o modelo de simulacdo em si.

Exemplo de simulacao

Eis abaixo um exemplo de simulagao no qual 1000 tarefas source enviam mensagens a uma mesma fila
queue; a tarefa sink retira as mensagens da fila, calcula o tempo decorrido entre a producao e o consumo da
mensagem e a destréi. Ao final da simulacao, o programa calcula o tempo médio decorrido entre a producao e o
consumo das mensagens e informa o tamanho médio e desvio da fila de mensagens. O cédigo-fonte do modelo
(arquivo modelo. c):

modelo.c

#include <stdio.h>
#include <stdlib.h>
#include "simpatica.h"

int queue

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=software:simulacao&codeblock=25

Last update: 2020/08/18 22:48 software:simulacao https://wiki.inf.ufpr.br/maziero/doku.php?id=software:simulacao

// variaveis para o calculo do tempo medio entre geracao e consumo das msgs
long num_msgs 0
double soma_tempos = 0.0

// mensagens sao structs com conteudo definido pelo programador
typedef struct msg t

int value
msg t

// corpo das tarefas "source"
void sourceBody (void *arg

msg_t *msg
for

// cria uma nova mensagem
msg msg t msg create (sizeof (msg t

// preenche a mensagem com um valor aleatorio
msg->value random

// coloca a mensagem na fila "queue"
msg put (queue, msg

// dorme durante um tempo aleatorio
task sleep (15 random 5

// corpo da tarefa "sink"
void sinkBody (void *arg

msg t *msg
double data criacao

for

// espera uma mensagem na fila e a retira
msg msg_t msg _get (msg wait (queue, INFINITY

// obtem a data de criacao da mensagem
msg_attr (msg, O, &data criacao, 0, 0, 0, 0

// simula o tempo gasto no tratamento da mensagem
task sleep (1

// acumula tempos
soma_tempos time now data criacao
num_msgs

// destroi a mensagem recebida (libera recursos)
msg _destroy (msg

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/13 02:56

2026/01/13 02:56 7/9

Simpatica

int

main

int i
double media, variancia

// prepara a simulacao para 1001 tarefas e uma fila
init simulation (1001,1

// cria 1000 tarefas "source"
i=0; i< 1000; i
task create (sourceBody, NULL, 2

// cria uma tarefa "sink"
task create (sinkBody, NULL, 2

// cria uma fila "queue"
queue = queue create (0, 0

// executa a simulacao ate 50000 segundos
run_simulation (50000

// imprime resultados obtidos
printf ("Tempo medio entre producao e consumo das mensagens: %0.3f\n"
soma_tempos num_msgs

// imprime o tamanho medio da fila e seu desvio padrao
queue stats (queue, 0, 0, &media, &variancia, 0, ©
printf ("Tamanho da fila: media %0.3f, variancia %0.3f\n", media

variancia

// libera os recursos da simulacao
kill simulation

exit (0

A compilacao do modelo é feita através da seguinte linha de comando:

$ cc simpatica.c modelo.c

A execucao do modelo gera os seguintes resultados:

$ a.out

-- Simulation initialized, Simpatica version 0.7, 06/0out/2007 (mem: 16Kb)
-- Simulation in interval t=[0.000, 50000.000), 1001 tasks

-- Simulation time: 5000.000, 299593 events, 10% done in 1 secs (mem:
43693Kb)

-- Simulation time: 10000.000, 598584 events, 20% done in 1 secs (mem:
66271Kb)

-- Simulation time: 15000.000, 897715 events, 30% done in 2 secs (mem:
88859Kb)

-- Simulation time: 20000.000, 1196897 events, 40% done in 3 secs (mem:
111451Kb)

-- Simulation time: 25000.000, 1496007 events, 50% done in 3 secs (mem:

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/exit.html

Last update: 2020/08/18 22:48 software:simulacao https://wiki.inf.ufpr.br/maziero/doku.php?id=software:simulacao

134038Kb)
-- Simulation time: 30000.000, 1795129 events, 60% done in 4 secs (mem:
156626Kb)
-- Simulation time: 35000.000, 2094218 events, 70% done in 4 secs (mem:
179211Kb)
-- Simulation time: 40000.000, 2393259 events, 80% done in 5 secs (mem:
201792Kb)
-- Simulation time: 45000.000, 2692314 events, 90% done in 6 secs (mem:
224375Kb)
-- Simulation time: 50000.000, 2991445 events, 100% done in 6 secs (mem:
246963Kb)

-- Simulation completed in 6 seconds (mem: 246963Kb)

Tempo medio entre producao e consumo das mensagens: 24583.696
Tamanho da fila: media 1445994.474, variancia 696500121941.198
-- Simulation killed (mem: OKb)

No exemplo acima, as linhas que iniciam com “- -" contém mensagens de acompanhamento da simulacao
geradas automaticamente pela biblioteca. Todas as mensagens geradas pela biblioteca sao enviadas para o
arquivo de saida de erro padrao stderr, e podem ser desviadas usando redirecdes de shell. Além disso, uma
opcao de compilacao permite inibir a geracao dessas mensagens (vide abaixo).

Opcoes de compilacao

Existem algumas opcdes de compilacao que permitem ativar testes e mensagens adicionais. Essas opcdes sao
Uteis para a depuracdo das funcionalidades e mecanismos internos da biblioteca em si, ndao tendo muita
utilidade para a depuracao dos modelos de simulagao.

HEAPCHECK: verifica a integridade da fila do escalonador a cada operacao.

HEAPDEBUG: gera mensagens na tela sobre as operacdes efetuadas na fila do escalonador.
STACKCHECK: verifica a integridade da pilha da tarefa corrente a cada operacao.

STACKDEBUG: gera mensagens detalhadas sobre uso da pilha da tarefa corrente.

NOTESTS: inibe todos os testes de consisténcia. Pode ser usado para melhorar um pouco o desempenho
da simulacao, assim que ela estiver plenamente testada e sem erros.

QUIET: inibe a geragao de mensagens de acompanhamento em stderr.

A forma de uso dessas opcdes é a seguinte:

$ cc -DQUIET -DNOTESTS simpatica.c modelo.c

Concorréncia

Em sistemas com tarefas executando simultaneamente, existe um risco de operacdes concorrentes sobre as
mesmas estruturas de dados apresentarem condicdes de corrida, produzindo erros ou resultados
inconsistentes. Nesta biblioteca, as tarefas sao implementadas como threads leves cooperativas. De acordo
com essa técnica de implementacdo, a execucao de uma thread s6 é suspensa em pontos especificos do
cédigo, quando estritamente necessario.

Nesta biblioteca, uma tarefa em execucdo sé perde o processador quando solicita uma operacao que possa
fazer avancar o tempo simulado, ou seja: task sleep e msg wait. Todas as demais operacdes sao realizadas
sem bloqueio ou perda do processador, portanto sem risco de concorréncia com as outras tarefas do modelo.
Portanto, o estado (conteldo) das filas e de varidveis globais s6 poderd mudar durante a execucao dessas duas
operacg0es, e nunca no restante do cddigo.

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/13 02:56

2026/01/13 02:56 9/9 Simpatica

From:
https://wiki.inf.ufpr.br/maziero/ - Prof. Carlos Maziero

Permanent link:
https://wiki.inf.ufpr.br/maziero/doku.php?id=software:simulacao

Last update: 2020/08/18 22:48

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

https://wiki.inf.ufpr.br/maziero/
https://wiki.inf.ufpr.br/maziero/doku.php?id=software:simulacao

	Simpatica
	Arquivos
	Interface
	Forma de uso
	Exemplo de simulação
	Opções de compilação
	Concorrência

