
2026/01/30 08:13 1/8 Funções

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

Funções

este módulo apresenta o uso de funções na linguagem C. Funções são o principal elemento de modularização
de código nesta linguagem, são muito versáteis e extensivamente usadas.

Declaração

Em C, uma função é declarada da seguinte forma geral:

<return type> function_name (<type parameter>, ...)
{
 <function body>
 return <value> ;
}

Um exemplo trivial: uma função para somar dois inteiros:

soma.c

#include <stdio.h>

int soma (int a, int b)
{
 return (a + b) ;
}

int main ()
{
 printf ("soma (2, 5): %d\n", soma (2, 5)) ;
 return (0) ;
}

Um exemplo de função para calcular o fatorial de um número inteiro:

fatorial.c

#include <stdio.h>

long fatorial (int n)
{
 int i ;
 long fat ;

 if (n <= 1) // por definição
 fat = 1 ;
 else
 {
 fat = 1 ;
 for (i = 2; i <= n; i++)
 fat *= i ;
 }

https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=c:funcoes&codeblock=0
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=c:funcoes&codeblock=1

Last update: 2023/09/05 16:17 c:funcoes https://wiki.inf.ufpr.br/maziero/doku.php?id=c:funcoes

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/30 08:13

 return (fat) ;
}

int main ()
{
 printf ("fat (10): %ld\n", fatorial (10)) ;
 return (0) ;
}

Obviamente, a função fatorial também pode ser definida de forma recursiva:

fatorial.c

long fatorial (int n)
{
 long fat ;

 if (n <= 1)
 fat = 1 ;
 else
 fat = n * fatorial (n - 1) ;

 return fat ;
}

Ou:

fatorial.c

long fatorial (int n)
{
 if (n <= 1)
 return 1 ;
 else
 return (n * fatorial (n - 1)) ;
}

Ou ainda:

fatorial.c

long fatorial (int n)
{
 return (n <= 1 ? 1 : n * fatorial (n - 1)) ;
}

A linguagem C não aceita funções aninhadas (definidas dentro de outras funções). Assim
todas as funções são definidas no mesmo nível hierárquico. Observe que isso não impede de
chamar uma função dentro de outra função.

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=c:funcoes&codeblock=2
https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=c:funcoes&codeblock=3
https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=c:funcoes&codeblock=4

2026/01/30 08:13 3/8 Funções

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

Cabe observar que não é obrigatório usar o valor de retorno de uma função. Por exemplo, o código abaixo é
perfeitamente válido (apesar de ser inútil):

fatorial (20) ;

O valor de retorno de uma função pode ser de qualquer tipo suportado pela linguagem C (tipos numéricos,
ponteiros, chars, structs, etc), exceto arrays (vetores e matrizes) e funções. Todavia, essa limitação pode ser
contornada através do uso de ponteiros para dados desses tipos. Funções que não retornam nenhum valor
podem ser declaradas com o tipo void:

void hello ()
{
 printf ("Hello!\n") ;
}

Protótipos

Em princípio, toda função em C deve ser declarada antes de ser usada. Caso o compilador encontre uma função
sendo usada que não tenha sido previamente declarada, ele pressupõe que essa função retorna um int e
emite um aviso no terminal.

Em algumas situações não é possível respeitar essa regra. Por exemplo, se duas funções diferentes se chamam
mutuamente, teremos:

char patati (int a, int b)
{
 ...
 c = patata (x, y, z) ; // precisa declarar "patata" antes de usar
 ...
}

char patata (int a, int b, int c)
{
 ...
 x = patati (n1, n2) ;
 ...
}

Para evitar problemas, é possível declarar um “protótipo” da função antes de sua definição completa:

// protótipos das funções "patati" e "patata"
char patati (int a, int b) ;
char patata (int a, int b, int c) ;

// implementação da função "patati" (deve respeitar o protótipo)
char patati (int a, int b)
{
 ...
 c = patata (x, y, z) ; // ok, patata tem um protótipo definido
 ...
}

// implementação da função "patata" (deve respeitar o protótipo)
char patata (int a, int b, int c)

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2023/09/05 16:17 c:funcoes https://wiki.inf.ufpr.br/maziero/doku.php?id=c:funcoes

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/30 08:13

{
 ...
 x = patati (n1, n2) ; // ok, patati tem um protótipo definido
 ...
}

Um protótipo de função pode ser visto como a sua “interface”, porque define o nome da
função, o número e tipos dos parâmetros de entrada e o tipo do valor de retorno. Essas
informações são suficientes para a compilação de qualquer código que use essa função. Por
isso, protótipos são muito usados em arquivos de cabeçalho (.h).

Parâmetros

Em C, os parâmetros das funções são transferidos sempre por valor (ou por cópia), pois os valores fornecidos
na chamada da função são copiados para dentro da pilha (stack) e ficam à disposição do código interno da
função. Em consequência, alterações nos parâmetros efetuadas dentro das funções não têm impacto fora dela.

Por exemplo:

paramcopia.c

#include <stdio.h>

void inc (int n)
{
 n++ ;
 printf ("n vale %d\n", n) ;
}

int main ()
{
 int a = 0 ;
 printf ("a vale %d\n", a) ;
 inc (a) ;
 printf ("a vale %d\n", a) ;
 return (0) ;
}

A execução deste código resulta em:

a vale 0
n vale 1
a vale 0

Parâmetros por referência

Para que as ações de uma função sobre seus parâmetros sejam visíveis fora da função, esses parâmetros
devem ser informados por referência. C não suporta nativamente a passagem de parâmetros por referência,
mas se considerarmos que um ponteiro é uma referência a uma variável, basta usar parâmetros de tipo

https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=c:funcoes&codeblock=9
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/01/30 08:13 5/8 Funções

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

ponteiro para obter esse efeito:

paramref.c

#include <stdio.h>

void inc (int *n)
{
 (*n)++ ;
}

int main ()
{
 int a = 0 ;
 printf ("a vale %d\n", a) ;
 inc (&a) ; // informar a referência (endereço) de a
 printf ("a vale %d\n", a) ;
 return (0) ;
}

E a execução fica:

a vale 0
a vale 1

Deve-se observar que o ponteiro *n recebe uma cópia do endereço de a, ou seja, a transferência de
parâmetros propriamente dita continua sendo feita por cópia.

Um exemplo clássico de passagem de parâmetros por referência é a troca de valores entre duas variáveis. O
código abaixo implementa essa função:

troca.c

#include <stdio.h>

// troca os valores de dois inteiros entre si
void troca (int *a, int *b)
{
 int aux ;

 aux = *a ;
 *a = *b ;
 *b = aux ;
}

int main ()
{
 int i, j ;

 i = 21 ;
 j = 76 ;
 printf ("i: %d, j: %d\n", i, j) ;

 troca (&i, &j) ;
 printf ("i: %d, j: %d\n", i, j) ;

https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=c:funcoes&codeblock=10
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
https://wiki.inf.ufpr.br/maziero/doku.php?do=export_code&id=c:funcoes&codeblock=11
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update: 2023/09/05 16:17 c:funcoes https://wiki.inf.ufpr.br/maziero/doku.php?id=c:funcoes

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/30 08:13

 return (0) ;
}

O que acontece no código acima se chamarmos troca (&i, NULL)? Como resolver isso?

Parâmetros vetoriais

A passagem de vetores e matrizes como parâmetros de funções tem algumas particularidades que devem ser
observadas:

Como o nome de um vetor representa o endereço de seu primeiro elemento, na prática vetores são
passados à função por referência;
Em consequência, o conteúdo de um vetor pode ser alterado em uma chamada de função.

Um exemplo simples de chamada de função com parâmetros vetoriais:

#define SIZE 100

// "limpa" um vetor de n posições com zeros
void clean_vect (int n, int v[]) // ou "int v[SIZE]" ou ainda "int *v"
{
 int i ;
 for (i = 0 ; i < n; i++)
 v[i] = 0 ;
}

int main ()
{
 int vector[SIZE] ;
 int num ;

 ...
 clean_vect (num, vector) ;
 ...
}

No caso de matrizes (vetores multidimensionais), deve-se informar ao compilador os tamanhos máximos das
várias dimensões, para que ele possa calcular a posição onde cada elemento da matriz foi alocado na memória.
Por exemplo:

#define MAXLIN 100
#define MAXCOL 50

void clean_mat (int l, int c, int m[][MAXCOL]) // ou "int m[MAXLIN][MAXCOL]"
{
 int i, j ;
 for (i = 0 ; i < l; i++)
 for (j = 0 ; j < c; j++)
 m[i][j] = 0 ;
}

2026/01/30 08:13 7/8 Funções

Prof. Carlos Maziero - https://wiki.inf.ufpr.br/maziero/

int main ()
{
 int mat[MAXLIN][MAXCOL] ;
 int lin, col ;

 ...
 clean_mat (lin, col, mat) ;
 ...
}

Uso do return

A estrutura “ortodoxa” de código com a chamada a return somente no final da função pode levar a um código
longo e cansativo de ler (e de programar). O exemplo a seguir apresenta uma função que compara dois inteiros
e retorna -1 (se a<b), 0 (se a=b) ou +1 (se a>b):

int compara (int a, int b)
{
 int result ;

 if (a < b)
 result = -1 ;
 else
 if (a > b)
 result = 1 ;
 else
 result = 0 ;

 return result ;
}

Entretanto, é possível sair da função invocando return a qualquer instante, levando a um código mais conciso
e fácil de ler:

int compara (int a, int b)
{
 if (a < b) return -1 ;
 if (a > b) return 1 ;
 return 0 ;
}

Exercícios

a) Passagem de parâmetros por valor:

Escrever funções em C para:1.
calcular ab, com b inteiro e a e o retorno de tipo double.1.
trocar duas variáveis inteiras entre si.2.
comparar dois números inteiros a e b; a função retorna -1 se a<b, 0 se a=b e +1 se a>b.3.
retornar o maior valor em um vetor de inteiros.4.

b) Passagem de parâmetros vetoriais:

Last update: 2023/09/05 16:17 c:funcoes https://wiki.inf.ufpr.br/maziero/doku.php?id=c:funcoes

https://wiki.inf.ufpr.br/maziero/ Printed on 2026/01/30 08:13

Escrever um programa em C para somar dois vetores de inteiros. Crie funções separadas para a) ler um1.
vetor; b) somar dois vetores; c) imprimir um vetor.
Escreva um programa para ordenação de vetores, com as seguintes funções:2.

le_vetor (vetor, N): ler um número N e um vetor de N inteiros;
ordena_vetor (vetor, N): ordenar o vetor lido usando a técnica de ordenação da bolha;
escreve_vetor (vetor, N): imprimir os elementos de um vetor com N elementos.

Escreva um programa para transpor matrizes, com as seguintes funções:3.
le_matriz (matriz, M, N): ler uma matriz de MxN inteiros;
transpoe_matriz (matriz, M, N): transpor uma matriz;
escreve_matriz (matriz, M, N): imprimir uma matriz.

c) Passagem de parâmetros por referência:

Escreva uma função int separa (float r, int *pi, float *pf) que separa um número real r1.
em suas partes inteira (pi) e fracionária (pf). Por exemplo: 37,543 ⇒ 37 e 0,543. A função retorna 1 se
deu certo ou 0 se ocorreu algum erro.
Defina uma estrutura struct data com três campos: dia, mês e ano. Em seguida, escreva as seguintes2.
funções:

int data_set (int d, int m, int a, struct data *d): ajusta a data d com o
dia/mês/ano recebidos; retorna 1 se a data é válida e 0 se não for ou se outro erro ocorreu
(desconsidere anos bissextos).
void data_print (struct data d): imprime a data informada em d, no formato
“dd/mm/aaaa”.

Escreva uma função int max (int v[], int tam, int *maxval, int *maxpos) onde:3.
v[]: vetor de inteiros desordenado
tam: tamanho do vetor (número de elementos)
maxval: maior valor encontrado no vetor
maxpos: posição do maior valor no vetor (a 1ª posição, se max se repetir)
retorno: 1 em sucesso ou 0 em erro

From:
https://wiki.inf.ufpr.br/maziero/ - Prof. Carlos Maziero

Permanent link:
https://wiki.inf.ufpr.br/maziero/doku.php?id=c:funcoes

Last update: 2023/09/05 16:17

https://wiki.inf.ufpr.br/maziero/
https://wiki.inf.ufpr.br/maziero/doku.php?id=c:funcoes

	Funções
	Declaração
	Protótipos
	Parâmetros
	Parâmetros por referência
	Parâmetros vetoriais
	Uso do return
	Exercícios

