
COMMUNICATIONS OF THE ACM July  2005/Vol. 48, No. 7 19

L
ocality of reference is one of
the cornerstones of com-
puter science. It was born

from efforts to make virtual
memory systems work well. Vir-
tual memory was first developed
in 1959 on the Atlas System at
the University of
Manchester. Its supe-
rior programming
environment dou-
bled or tripled pro-
grammer
productivity. But it
was finicky, its perfor-
mance sensitive to the
choice of replacement
algorithm and to the
ways compilers
grouped code onto
pages. Worse, when it
was coupled with mul-
tiprogramming, it was
prone to thrashing—
the near-complete col-
lapse of system throughput due
to heavy paging. The locality
principle guided us in designing
robust replacement algorithms,
compiler code generators, and
thrashing-proof systems.  It trans-
formed virtual memory from an
unpredictable to a robust, self-
regulating technology that opti-
mized throughput without user
intervention. Virtual memory

became such an engineering tri-
umph that it faded into the back-
ground of every operating
system, where it performs so well
at managing memory with multi-
threading and multitasking that
no one notices.

The locality principle found
application well beyond virtual
memory. Today it directly influ-
ences the design of processor
caches, disk controller caches,
storage hierarchies, network
interfaces, database systems,
graphics display systems, human-
computer interfaces, individual
application programs, search

engines, Web browsers, edge
caches for Web-based environ-
ments, and computer forensics.
Tomorrow it may help us over-
come our problems with brittle,
unreliable software.

I will tell the story of this prin-
ciple, starting with its dis-

covery to solve a
multimillion-
dollar performance
problem, through its
evolution as an idea, to
its widespread adoption
today. My telling is
highly personal because
locality was my focus
during the first part of
my career.

MANIFESTATION OF A NEED

(1949–1965)
In 1949, the builders of

the Atlas computer system at
the University of Manchester

recognized that computing sys-
tems would always have storage
hierarchies consisting of at least
main memory (RAM) and sec-
ondary memory (disk, drum). To
simplify management of these
hierarchies, they introduced the
page as the unit of storage and
transfer. Even with this simplifi-
cation, programmers spent well
over half their time planning andM
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programming page transfers, then
called overlays. In a move to
enable programming productivity
to at least double, the Atlas sys-
tem builders therefore decided to
automate the overlaying process.
Their “one-level storage
system” (later called vir-
tual memory) was part
of the second-generation
Atlas operating system
in 1959 [5]. It simulated
a large main memory
within a small real one.
The heart of their inno-
vation was the novel
concept that addresses
named values, not mem-
ory locations. The
CPU’s addressing hard-
ware translated CPU
addresses into memory
locations via an updata-
ble page table map. By
allowing more addresses
than locations, their
scheme enabled pro-
grammers to put all their
instructions and data
into a single address
space. The file contain-
ing the address space was
on the disk; the operat-
ing system copied pages
on demand (at page
faults) from that file to
main memory. When
main memory was full,
the operating system
selected a main memory
page to be replaced at
the next page fault.

The Atlas system
designers had to resolve
two performance prob-
lems, either one of which

could sink the system: translating
addresses to locations; and replac-
ing loaded pages. They quickly
found a workable solution to the
translation problem by storing
copies of the most recently used

page table entries in a small high-
speed associative memory, later
known as the address cache or the
translation lookaside buffer. The
replacement problem was a much
more difficult conundrum.

Because the disk access
time was about 10,000
times slower than the
CPU instruction cycle,
each page fault added a
significant delay to a job’s
completion time. There-
fore, minimizing page
faults was critical to system
performance. Since mini-
mum faults means maxi-
mum inter-fault intervals,
the ideal page to replace
from main memory is the
one that will not be used
again for the longest time.
To accomplish this, the
Atlas system contained a
“learning algorithm” that
hypothesized a loop cycle
for each page, measured
each page’s period, and
estimated which page was
not needed for the longest
time.

The learning algorithm
was controversial. It per-
formed well on programs
with well-defined loops
and poorly on many other
programs. The contro-
versy spawned numerous
experimental studies well
into the 1960s that
sought to determine what
replacement rules might
work best over the widest
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Table 1. Milestones in Development 
of Locality Idea.

1959

1961

1965

1966

1966

1968

1969

1970

1970

1972

1970–74

1976

1976

1976

1978

1980

Atlas operating system includes first virtual memory; a “learning 
algorithm” replaces pages referenced farthest in the future [5].

IBM Stretch supercomputer uses spatial locality to prefetch instructions 
and follow possible branches.

Wilkes introduces slave memory, later known as CPU cache, to hold 
most recently used pages and significantly accelerate effective 
CPU speed [9].

Belady at IBM Research publishes comprehensive study of virtual 
memory replacement algorithms, showing that those with usage bits 
outperform those without [1].

Denning proposes working set idea: the pages that must be retained in 
main memory are those referenced during a window of length T
preceding the current time.  In 1967 he postulates that working set 
memory management will prevent thrashing [2–4].

Denning shows analytically why thrashing precipitates suddenly with 
any increase above a critical threshold of number of programs in 
memory.  Belady and Denning use term locality for the program 
behavior property working sets measure [2–4].

Sayre, Brawn, and Gustavson at IBM demonstrate that programs with 
good locality are easy to design and cause virtual memory systems to 
perform better than a manually designed paging schedule.

Denning gathers all extant results for virtual memory into Computing 
Surveys paper “Virtual Memory” that was widely used in operating 
systems courses. This was first coherent scientific framework for 
designing and analyzing dynamic memories [3].

Mattson, Gecsei, Slutz, and Traiger of IBM publish “stack algorithms,” 
modeling a large class of popular replacement policies including LRU
and MIN; they offer surprisingly simple algorithms for calculating their 
paging functions in virtual memory [7].

Spirn and Denning conclude that phase transition behavior is the most 
accurate description of locality [8].

Abramson, Metcalfe, and Roberts report thrashing in Aloha and 
Ethernet communication systems; load control protocols prevent it.

Buzen, Courtois, Denning, Gelenbe, and others integrate memory 
management into queueing network models, demonstrating that 
thrashing is caused by the paging disk transitioning into the bottleneck 
with increasing load.  System throughput is maximum when the average 
working set space-time is minimum.

Madison and Batson demonstrate that locality is present in symbolic 
execution strings of programs, concluding that locality is part of human 
cognitive processes transmitted to programs [6].

Prieve and Fabry demonstrate VMIN, the optimal variable-space 
replacement policy; it has identical page fault sequence with working 
set but lower space-time accumulation at phase transitions.

Denning and Slutz define generalized working sets; objects are local 
when their memory retention cost is less than their recovery costs.
The GWS models the stack algorithms, space-time variations of 
working sets, and all variable-space optimal replacement algorithms.

Denning gathers the results of over 200 virtual-memory researchers and 
concludes that working set memory management with a single system-
wide window size is as close to optimal as can practically be realized [4].

Table 1. Milestones in 
development of locality idea. 



possible range of programs. Their
results were often contradictory.
Eventually it became apparent
that the volatility resulted from
variations in compiling methods:
the way in which a compiler
grouped code blocks onto pages
strongly affected the
program’s performance
under a given replace-
ment strategy.

Meanwhile, in the
early 1960s, the major
computer makers were
drawn to multipro-
grammed virtual mem-
ory because of its
superior programming
environment. RCA,
General Electric, Bur-
roughs, and Univac all
included virtual mem-
ory in their operating
systems. Because a bad
replacement algorithm
could cost a million dol-
lars of lost machine time
over the life of a system,
they all paid a great deal
of attention to replace-
ment algorithms.

Nonetheless, by 1966
these companies were
reporting their systems
were susceptible to a
new, unexplained, cata-
strophic problem they
called thrashing.
Thrashing seemed to
have nothing to do with
the choice of replacement
policy. It manifested as a
sudden collapse of
throughput as the multi-
programming level rose.
A thrashing system spent

most of its time resolving page
faults and little running the CPU.
Thrashing was far more damaging
than a poor replacement algorithm.
It scared the daylights out of the
computer makers.

The more conservative IBM

did not include virtual memory
in its 360 operating system in
1964. Instead, it sponsored at its
Watson laboratory one of the
most comprehensive experimental
systems projects of all time. Led
by Bob Nelson, Les Belady, and

David Sayre, the project
team built the first virtual-
machine operating system
and used it to study the
performance of virtual
memory. (The term “vir-
tual memory” appears to
have come from this proj-
ect.) By 1966 they had
tested every replacement
policy that anyone had
ever proposed and a few
more they invented. Many
of their tests involved the
“use bits” built into page
tables. By periodically
scanning and resetting the
bits, the replacement algo-
rithm distinguishes
recently referenced pages
from others. Belady con-
cluded that policies favor-
ing recently used pages
performed better than
other policies; LRU (least
recently used) replacement
was consistently the best
performer among those
tested [1].

DISCOVERY AND

PROPAGATION OF LOCALITY

IDEA (1966–1980)
In 1965, I entered my
Ph.D. studies at MIT in
Project MAC, which was
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Table 2. Milestones in Adoption of Locality.

1961

1964

1965-1969

1968

1969–1972

1972

1978

1974–79

1981

early 1980s

late 1980s

1987–1990

Early 1990s

1990–1998

1993

1998

IBM Stretch computer uses spatial locality for instruction lookahead.

Major computer manufacturers (Burroughs, General Electric, RCA, 
Univac but not IBM) introduce virtual memory with their “third-
generation computing systems.”  Thrashing is a significant 
performance problem.

Nelson, Sayre, and Belady, at IBM Research built first virtual machine 
operating system; they experiment with virtual machines, contribute 
significant insights into performance of virtual memory, mitigate 
thrashing through load control, and lay groundwork for later IBM
 virtual machine architectures.

IBM introduces cache memory in 360 series. Multics adopts 
“clock” replacement algorithm, a variant of LRU, to protect recently 
used pages.

perating systems researchers demonstrate experimentally that the 
working set policy works as claimed.  They show how to group 
code segments on pages to maximize spatial locality and thus 
temporal locality during execution.

IBM introduces virtual machines and virtual memory into 370 series.
Bayer formally introduces B-tree for organizing large files on disks 
to minimize access time by improving spatial locality.  Parnas 
introduces information hiding, a way of localizing access to variables 
within modules.

First BSD Unix includes virtual memory with load controls inspired 
by working set principle; propagates into Sun OS (1984), Mach 
(1985), and Mac OS X (1999).

IBM System R, an experimental relational database system, uses 
LRU managed record caches and B-trees.

IBM introduces disk controllers containing caches so that database 
systems can get records without a disk access; controllers use LRU 
but do not cache records involved in sequential file accesses.

Chip makers start providing data caches in addition to instruction 
caches, to speed up access to data and reduce contention at 
memory interface.

Application developers add “most recent files” list to desktop 
applications, allowing users to more quickly resume interrupted tasks.

Microsoft and IBM develop OS/2 operating systems for PCs, with 
full multitasking and working set managed virtual memory.  
Microsoft splits from IBM, transforms OS/2 into Windows NT.

Computer forensics starts to emerge as a field; it uses locality and 
signal processing to recover the most recently deleted files; and it
uses multiple system and network caches to reconstruction actions 
of users.

Beginning with Archie, then Gopher, Lykos, Altavista, and finally 
Google, search engines compile caches that enable finding relevant 
documents from anywhere on the Internet very quickly.

Mosaic (later Netscape) browser uses a cache to store recently 
accessed Web pages for quick retrieval by the browser.

Akamai and other companies provide local Web caches (“edge 
servers”) to speed up Internet access and reduce traffic at sources.

Table 2. Milestones in adoption
of locality.  
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just undertaking the development
of Multics. I was fascinated by
the problems of dynamically allo-
cating scarce CPU and memory
resources among the many
processes that would
populate future time-
sharing systems.

I set myself a goal to
solve the thrashing prob-
lem and define an effi-
cient way to manage
memory with variable
partitions. Solutions to
these problems would be
worth millions of dollars
in recovered uptime of
virtual memory operat-
ing systems. Little did I
know that I would have
to devise and validate a
theory of program behavior to
accomplish this.

I learned about the controver-
sies over the viability of virtual
memory and was baffled by the
contradictory conclusions among
the experimental studies. I
noticed all these studies examined
individual programs assigned to a
fixed memory partition managed
by a replacement algorithm. They
did not measure the dynamic
partitions used in multipro-
grammed virtual memory sys-
tems. There was no notion of a
dynamic, intrinsic memory
demand that would tell us which
pages of the program were essen-
tial and which were replaceable—
something simple like, “this
process needs p pages at time t.”
Such a notion was incompatible
with the fixed-space policies
everyone was studying. I began to

speak of a process’s intrinsic
memory demand as its “working
set.” The idea was that paging
would be acceptable if the system
could guarantee that the working

set was loaded. I combed the
experimental studies looking for
clues on how to measure a pro-
gram’s working set.

In an “Aha!” moment during
the waning days of 1966,
inspired by Belady’s observations,
I hit on the idea of defining a
process’s working set as the set of
pages used during a fixed-length
sampling window in the immedi-
ate past. A working set could be
measured by periodically reading
and resetting the use bits in a
page table. The window had to
be in the virtual time of the
process—time as measured by the
number of memory references
made—so that the measurement
would not be distorted by inter-
ruptions. This led to the now-
familiar notation: W(t,T) is the

set of pages referenced in the vir-
tual time interval of length T pre-
ceding time t [2].

By spring 1967, I had an
explanation for thrashing.

Thrashing was the col-
lapse of system through-
put triggered by making
the multiprogramming
level too high. It was
counterintuitive because
we were used to systems
that would saturate
under heavy load, not
shut down. I showed
that, when memory was
filled with working sets,
any further increment in
the multiprogramming
level would simultane-
ously push all loaded

programs into a regime of work-
ing set insufficiency. Programs
whose working sets were not
loaded paged excessively and
could not use the CPU effi-
ciently. I proposed a feedback
control mechanism that would
limit the multiprogramming level
by refusing to activate any pro-
gram whose working set would
not fit within the free space of
main memory. When memory was
full, the operating system would
defer programs requesting activa-
tion into a holding queue. Thrash-
ing would be impossible with a
working set policy.

The working set idea was based
on an implicit assumption that the
pages seen in the backward win-
dow were highly likely to be used
again in the immediate future.
Was this assumption justified? In
discussions with Jack Dennis

Figure 1. Locality-sequence 
behavior diagrammed by programmer 
during overlay planning.
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(MIT) and Les Belady (IBM), I
started using the term “locality”
for the observed tendency of pro-
grams to cluster references to small
subsets of their pages for extended
intervals. We could represent a
program’s memory demand as a
sequence of locality sets and their
holding times:

(L1,T1), (L2,T2), ... , (Li,Ti), ... 

This seemed natural because we
knew that programmers planned

overlays using diagrams that
showed subsets and their time
phases (see Figure 1). But what
was surprisingly interesting was
that programs showed the local-
ity behavior even when it was not
explicitly preplanned. When
measuring actual page use, we
repeatedly observed many long
phases with relatively small local-
ity sets (see Figure 2).  Each pro-
gram had its own distinctive
pattern, like a voiceprint. 

We saw two reasons that this
would happen: temporal cluster-

ing due to looping and executing
within modules with private data;
and spatial clustering due to
related values being grouped into
arrays, sequences, modules, and
other data structures. Both these
reasons seemed related to the
human practice of “divide and
conquer”—breaking a large prob-
lem into parts and working sepa-
rately on each. The locality bit
maps captured someone’s prob-
lem-solving method in action.
These underlying phenomena

gave us confidence to claim that
programs have natural sequences
of locality sets. The working set
sequence is a measurable approxi-
mation of a program’s intrinsic
locality sequence.

During the 1970s, I continued
to refine the locality idea and
develop it into a behavioral theory
of computational processes inter-
acting with storage systems within

a network of servers. (Table 1 lists
key milestones.) By 1980, we
defined locality much the same as
it is defined today [4], in terms of
a distance from a processor to an
object x at time t, denoted D(x,t).
Object x is in the locality set at
time t if the distance is less than a
threshold: D(x,t) ≤ T. Distance
can take on several meanings: 
(1) Temporal: A time distance,
such as the time since last refer-
ence, time until next reference, or
even an access time within the
storage system or network. (2)
Spatial: A space distance, such as
the number of hops in a network
or number of addresses away in a
sequence. (3) Cost: Any non-
decreasing function of time since
prior reference. 

ADOPTION OF LOCALITY PRINCIPLE

(1967–PRESENT)
The locality principle was
adopted as an idea almost imme-
diately by operating systems,
database, and hardware architects.
It was applied in ever-widening
circles:

• In virtual memory to organize
caches for address translation
and to design the replacement
algorithms.

• In data caches for CPUs, 
originally as mainframes and
now as microchips.

• In buffers between main 
memory and secondary mem-
ory devices.

• In buffers between computers
and networks.

• In video boards to accelerate
graphics displays.
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Figure 2. Locality-sequence behavior
observed by sampling use bits during
program execution.



• In modules that implement the
information-hiding principle.

• In accounting and event logs
that monitor activities within a
system.

• In the “most recently used”
object lists of applications.

• In Web browsers to hold recent
Web pages.

• In search engines to find the
most relevant responses to
queries.

• In spread spectrum video
streaming that bypasses network
congestion and reduces the
apparent distance to the video
server.

• In edge servers to hold recent
Web pages accessed by anyone
in an organization or geograph-
ical region.

Table 2 lists milestones in the
adoption of locality. The locality
principle is today considered a
fundamental principle for systems
design.

FUTURE USES OF LOCALITY PRINCIPLE
The locality principle flows from
human cognitive and coordina-
tive behavior. The mind focuses
on a small part of the sensory
field and can work most quickly
on the objects of its attention.
People gather the most useful
objects close around them to
minimize the time and work of
using them. These behaviors are
transferred into the computa-
tional systems we design.

The locality principle will be
useful wherever there is an advan-
tage in reducing the apparent dis-
tance from a process to the
objects it accesses. Objects in the

process’s locality set are kept in a
local cache with fast access time.
The cache can be a very high-
speed chip attached to a proces-
sor, a main memory buffer for
disk or network transfers, a direc-
tory for recent Web pages, or a
server for recent Internet
searches. The performance accel-
eration of a cache generally justi-
fies the modest investment in the
cache storage.

Two new uses of locality are
worth special mention. First, the
burgeoning field of computer
forensics owes much of its success
to the ubiquity of caches. They
are literally everywhere in operat-
ing systems and applications. By
recovering these caches, forensics
experts can reconstruct an amazing
amount of evidence about a crimi-
nal’s motives and intent. Criminals
who erase data files are still not
safe because experts use signal-pro-
cessing methods to recover the
faint magnetic traces of the most
recent files from the disk. Not even
a systems expert can find all the
caches and erase them.

Second, a growing number of
software designers are realizing
software can be made more
robust and less brittle if it can be
aware of context. Some have
characterized current software as
“autistic,” meaning that it is
uncommunicative, unsocial, and
unforgiving. An era of “post-
autistic software” can arise by
exploiting the locality principle to
infer context and intent by
watching sequences of references
to objects—for example, files,
documents, folders, and hyper-
links. The reference sequences of

objects, interpreted relative to
semantic webs in which they are
embedded, can provide numerous
clues to what the user is doing
and allow the system to adapt
dynamically and avoid unwel-
come responses.

Early virtual memory systems
suffered from thrashing, a form of
software autism. Virtual memories
harnessed locality to measure soft-
ware’s dynamic memory demand
and adapt the memory allocation
to avoid thrashing. Future soft-
ware may harness locality to help
it discern the user’s context and
avoid autistic behavior.  
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