Laboratory for Computer Security Education 1

Web Same-Origin-Policy Exploration Lab
(Web Application: Collabtive)

Copyright (©) 2006 - 2011 Wenliang Du, Syracuse University.

The development of this document is/was funded by three grants from the US National Science Foundation:
Awards No. 0231122 and 0618680 from TUES/CCLI and Award No. 1017771 from Trustworthy Computing.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation. A copy
of the license can be found at http://www.gnu.org/licenses/fdl.html.

1 Overview

The security model of existing web browsers is based on the same-origin policy, and provides some basic
protection features to web applications. The objective of this labs is to help the students get a good under-
standing of the same-origin policy. The understanding will be a precursor for other web-related labs such as
cross-site scripting and cross-site request forgery.

2 Lab Environment

You need to use our provided virtual machine image for this lab. The name of the VM image that supports
this lab is called SEEDUbuntull.04-Aug-2011, which is built in August 2011. If you happen to have
an older version of our pre-built VM image, you need to download the most recent version, as the older
version does not support this lab. Go to our SEED web page (http://www.cis.syr.edu/~wedu/
seed/) to get the VM image.

2.1 Environment Configuration

In this lab, we need three things, are of which are already installed in the provided VM image: (1) the
Firefox web browser, (2) the Apache web server, and (3) the Collabtive project management web ap-
plication. For the browser, we need to use the LiveHTTPHeaders extension for Firefox to inspect the
HTTP requests and responses. The pre-built Ubuntu VM image provided to you has already installed the
Firefox web browser with the required extensions.

Starting the Apache Server. The Apache web server is also included in the pre-built Ubuntu image.
However, the web server is not started by default. You need to first start the web server using the following
command:

Q

% sudo service apache2 start

The Collabtive Web Application. We use an open-source web application called Collabtive in
this lab. Collabtive is a web-based project management system. This web application is already set
up in the pre-built Ubuntu VM image. We have also created several user accounts on the Collabtive
server. To see all the users’ account information, first log in as the admin using the following password;
other users’ account information can be obtained from the post on the front page.

username: admin
password: admin

Laboratory for Computer Security Education 2

Configuring DNS. We have configured the following URLSs needed for this lab. To access the URLs , the
Apache server needs to be started first:

URL Description | Directory
http://www.soplab.com [var/www/SOP/
http://www.soplabattacker.com Attacker /var/www/SOP/attacker/
http://www.soplabcollabtive.com | Collabtive | /var/www/SOP/soplabCollabtive/

The above URLs are only accessible from inside of the virtual machine, because we have modified
the /etc/hosts file to map the domain name of each URL to the virtual machine’s local IP address
(127.0.0.1). You may map any domain name to a particular IP address using /etc/hosts. For
example you can map http://www.example.comn to the local IP address by appending the following
entry to /etc/hosts:

127.0.0.1 wWww.example.com

If your web server and browser are running on two different machines, you need to modify /etc/hosts
on the browser’s machine accordingly to map these domain names to the web server’s IP address, not to
127.0.0.1.

Configuring Apache Server. In the pre-built VM image, we use Apache server to host all the web sites
used in the lab. The name-based virtual hosting feature in Apache could be used to host several web sites (or
URLs) on the same machine. A configuration file named default in the directory "/etc/apache2/
sites—-available" contains the necessary directives for the configuration:

1. The directive "NameVirtualHost «" instructs the web server to use all IP addresses in the ma-
chine (some machines may have multiple IP addresses).

2. Each web site has a VirtualHost block that specifies the URL for the web site and directory
in the file system that contains the sources for the web site. For example, to configure a web site
with URL http://www.examplel.com with sources in directory /var/www/Example_1/,
and to configure a web site with URL http://www.example2.com with sources in directory
/var/www/Example_2/, we use the following blocks:

<VirtualHost x>
ServerName http://www.examplel.com
DocumentRoot /var/www/Example_1/
</VirtualHost>

<VirtualHost x>
ServerName http://www.example2.com
DocumentRoot /var/www/Example_2/
</VirtualHost>

You may modify the web application by accessing the source in the mentioned directories. For example,
with the above configuration, the web application http://www.examplel.com can be changed by
modifying the sources in the directory /var/www/Example_1/.

Laboratory for Computer Security Education 3

Disabling Cache. The lab tasks require you to make some modifications to the web applications while
you are using them. To ensure the web browser always fetches the page from the modified web application
and not from the web browsers cache, you can disable the web browser’s local cache as follows — Type
about : config in the address bar and setup the following preferences in the web page you see:

browser.cache.memory.enable /+ set to false, default = true x/
browser.cache.disk.enable /* set to false, default = true */
browser.cache.check_doc_frequency /x 1 = everytime. default = 3 =

as needed */

You may re-enable the cache after your lab, so that there is no performance degradation of your browsing
activities afterward.

2.2 Note for Instructors

This lab may be executed in a supervised fashion in a lab environment. In such cases, the instructor may
provide some background information at the beginning of the lab such as:

1. How to use the Firefox browser and the LiveHTTPHeaders Extension.
2. How to use the pre-configured virtual machine.

3. Some background on JavaScript, Document Object Model (DOM), HTML basics, and XMLHt t pRequest.

3 Background

Web browsers are essentially user agents that interact with web sites/web applications ! on behalf of their
users. Typically users visit a web site using the web browser — web browsers forward HTTP requests to the
web site on behalf of their users and in turn display the web page returned by the web site in the response.

Web browsers use a security model called the same-origin policy (SOP) for enforcing some access
restrictions on web applications. The SOP identifies each web site using its origin, which is a unique
combination of (protocol, domain, port), and creates a context for each origin. For each origin, the web
browser creates a context and stores the resources of the web application from the origin in the context.
JavaScript programs from one origin are not allowed to access resources from another origin. Cookies
and Document Object Model (DOM) objects are examples of web application resources for which SOP is
applied. Furthermore, JavaScript programs may use the XMLHt t pRequest API to send HTTP requests to
web applications. The SOP is also extended to the use of XMLHt t pRequest APIL

First, we will provide some background on cookies, DOM objects, and XMLHt tpRequest API. Then,
we describe the lab tasks that will lead the students to investigate SOP and how it affects the use of cookies,
DOM objects, and XMLHt t pRequest APL

3.1 Document object model (DOM)

Web browsers expose the contents of the web page using the DOM API to JavaScript programs. Figure 1
contains a web page that illustrates the use of DOM API. HTML is a hierarchically structured document.
Internally, the DOM object organizes the tags in the web page in the form of a tree. The original structure
of the web page in Figure 1 is show in the following:

"We will use the terms web sites and web applications interchangeably

Laboratory for Computer Security Education 4

Document

<head>----------"-"""""""----- <body>
| |

<title>----<script> <script>-—-——-—————- <input>

There are two functions in the web page namely appendp and gethtmlchildren. The appendp
function adds a h1 heading and a paragraph element to the body of the web page using the DOM API. The
function gethtmlchildren displays all the tags that are children of the HTML tag.

<html>
<head>
<title>Self-modifying HTML</title>
<script>
function appendp ()
{
var hl_node = document.createElement ("hl");
hl _node.innerHTML = "Self-modifying HTML Document";
document .childNodes[0] .childNodes[2] .appendChild (hl_node);
var p_node = document.createElement ("p");
p_node.innerHTML = "This web page illustrates how
DOM API can be used to modify a web page";
document.childNodes[0] .childNodes[2] .appendChild (p_node) ;

function gethtmlchildren ()
{
var entiredoc = document.childNodes[0];
var docnodes = entiredoc.childNodes;
for (i=0; i<docnodes.length; i++)
alert (docnodes[i] .nodeName) ;
}
</script>
</head>
<body name="bodybody" >
<script> appendp(); </script>
<input type="button" value="Display children of HTML tag"
onclick=gethtmlchildren() >
</body>
</html>

Figure 1: A web page with a JavaScript program that updates the web page dynamically

3.2 Cookies

Cookies are placeholders for server-provided data in the web browser typically used to track sessions. Each
cookie is a key-value pair such as "color=green" and may have some optional attributes:

e expires attribute indicates the cookie’s expiration date in the future.

e max-—age attribute specifies the lifetime of the cookie in seconds.

Laboratory for Computer Security Education 5

e path attribute indicates the top directory under which the cookie is shared and accessible.
e domain attribute indicates the top domain level under which cookie can be accessed cross domain.

e secure is a Boolean attribute which enforces that the cookie is transmitted only using HTTPS or
another secure protocol.

Web applications can create a cookie in the web browser using the set-cookie header in the HTTP
response. After cookies are created, web browsers attach the cookies in all the subsequent requests to the
web application. Also, JavaScript programs can access, modify, and create cookies. In a JavaScript program,
All the cookies in the web application can be referenced using document . cookie object.

The HTTP protocol is by its nature stateless. Therefore, web applications use a session-management
schemes for associating HTTP requests with a particular user and session. In cookie-based session-management
schemes, web applications store the session identifier in a cookie in the web browser. The session cookie is
an example of a resource that needs protection to ensure the integrity and correctness of the application.

3.3 XMLHttpRequest

JavaScript programs may use the XMLHt t pRequest API to send HTTP requests for a target URL. The
following is a simple JavaScript program that uses the XMLHt t pRequest APIL:

<script>
xhr = new XMLHttpRequest () ;
xhr.open (POST, "http://www.soplabcollabtive.com/admin.php?action=addpro", true);
xhr.send (null);

</script>

The above JavaScript program sends a HTTP POST request to a URL using the open and send meth-
ods. The Same-Origin Policy also applies to the target URL used in the send methods.

4 Lab Tasks

4.1 Task 1: Understanding DOM and Cookies

The objective of this task is to get familiar with the DOM APIs that can be used for modifying cookies and
web pages.

1. Figure 1 illustrates the use of some DOM API. Write a JavaScript function that traverses and displays
the entire DOM tree for the web page in Figure 1. The function should show the h1 heading and
paragraph added to the document by the appendp function.

2. The Collabtive web application uses a cookie-based session management scheme. Identify the
name of the session cookie in Collabtive. Using the LiveHTTPHeaders extension to find
out when the web application creates the session cookie in the web browser; please provide a snap-
shot of the interactions. The Collabtive web application can be accessed using the URL www .
soplabcollabtive.com.

3. Read the source code of www.soplab.com/cookie.html, and understand how to store, read
and process the cookies. Write your own JavaScript in cookie.html to display the number of
times that the web page has been visited by the current user.

Laboratory for Computer Security Education 6

4.2 Task 2: SOP for DOM and Cookies

The objective of this task is to illustrate how web browsers identify the origin of web applications and how
access restrictions are applied on DOM objects and cookies.

To illustrate SOP for DOM and cookies, we use a web page, located at www . soplab.com/index.
html. The web page displays two web pages inside its frames:

<frameset rows="x,75">
<frame src="about:blank" name="main">
<frame src="navigation.html">
</frameset>

The first frame displays a web page located at www . soplab.com/navigation.html and asks the
user to provide the URL for another web page to be displayed in the next frame. When the user provides
the URL, a JavaScript program in the first frame displays the requested web page in the second frame.
Furthermore, navigation.html has two JavaScript programs that read the source code and cookies
of the web page in the second frame. JavaScript programs in navigation.html can reference the
DOM object and the cookies of the web page in the second frame using parent .main.document and
parent.main.document.cookie respectively. Essentially, we have one web page that is accessing
the resources of another web page. Recall that the SOP restricts JavaScript programs from one origin from
accessing resources in another origin. We will use this web page in the forthcoming tasks to understand the
SOP-based access restrictions on cookies and DOM objects.

1. Provide the following URLSs to the web page in the first frame and report whether you are able to
access its cookies and DOM objects from the first frame.

e www.soplab.com/index.html

e www.soplab.com/navigation.html

2. Try to use some cross-domain URL such as www . google . com in the URL bar of the first web page
and report whether you are able to access its cookies and DOM objects.

3. The web server is listening on two ports - 80 and 8080. Provide http://www.soplab.com:
8080/navigation.html to the first frame, and report whether you are able to read the DOM
object and cookies for the web page in the second frame.

4. Not only are the cookie and contents of the frame under the restriction of SOP, several other objects
are also restricted, such as the History object and the URL of the frame. Test them on www.
soplab.com/index.html.

4.3 Task 3: SOP for XMLHttpRequest

We have seen a simple example that uses the XMLHt t pRequest APIL A slightly more complex example
is contained in www . soplab.com/navigation.html. Once you have familiarized yourself with the
XMLHttpRequest API, you can do the following:

1. Understand the JavaScript program in navigation.html, and then verify whether the SOP is also
extended to the target URL of HTTP requests that you can create using XMLHttpRequest APL
Report your observations in the report.

2. What are the dangers of not extending the SOP to the HTTP requests created using XMLHt t pRequest
API. For full credit, you should describe some possible attacks.

Laboratory for Computer Security Education 7

Task 4: Exceptions from SOP

There are some exceptions to SOP. In this task you will explore such exceptions.

e Some HTML tags can also trigger a HTTP request within a web page. For example, the img tag in a
HTML page triggers a HTTP GET request. The question is whether SOP is applied here to restrict the
targets of the HTTP request. Please investigate the following HTML tags: frame, iframe, img,
and a. Verify your hypothesis using experiments, and report your observations. You can craft a web
page in www . soplabattacker.com to make requests to www . soplab.com.

5 Submission

You need to submit a detailed lab report to describe what you have done and what you have observed.
Please provide details using LiveHTTPHeaders, Wireshark, and/or screenshots. You also need to
provide explanation to the observations that are interesting or surprising.

