
Using Transparent Files in a Fault Tolerant

Distributed File System

Marcelo Madruga, Sergio Loest, Carlos Maziero

Graduate Program in Computer Science

Pontifical Catholic University of Paraná

Curitiba, Brazil

E-mail: {mcmadruga,sloest,maziero}@ppgia.pucpr.br

Abstract—The peer-to-peer model and the bandwidth avail-
ability are fostering the creation of new distributed file systems.
However, files belonging to local application and distributed
applications are usually handled in the same way by the local
file system, so both contribute equally to consume storage space.
This paper presents a peer-to-peer distributed file system which
uses the “transparent file” concept to improve its fault tolerance
and file availability. Files are kept as transparent/volatile replicas,
using the free space available in each local file system. When a
replica is invalidated, peers cooperate to restore it. The proposed
architecture was implemented and tested; experiments showed
its feasilibity, and that its costs are proportional to the size of
files being replicated. The occurrence of multiple simultaneous
replica invalidations did not impose a significant overhead.

I. INTRODUCTION

With the growth of computers’ interconnections, Internet,

and available bandwidth [1], distributed file and storage sys-

tems are moving from a client/server model to a peer-to-peer

model [2], [3]. Peer-to-peer systems operate in a decentralized

manner, having the ability to adapt themselves to failures

through self-organization, with a small impact on performance

and connectivity [4]. Due to such characteristics, distributed

file and storage systems can benefit from this architecture, by

providing fault tolerance, higher amount of available storage,

and higher availability to users. Several new peer-to-peer

storage systems have been proposed recently [5], [6], [7].

Traditionally, files belonging to distributed applications and

files belonging to local applications are handled in the same

manner by the local file system. Thereof both types of files

contribute in the same way to consume available storage space.

However, this lack of distinction brings several concerns and

problems when deploying distributed file systems in a peer-

to-peer fashion. There are some peer-to-peer storage systems

that may be usually seen as contributory applications, where

users donate free disk space, but the donated resources are not

directly consumed by the donor. In that case, users’ behavior

is completely different from each other. Some are worried

when donating big amounts of free disk space, because they

will eventually need the contributed space; although others are

willing to donate hundreds of gigabytes of free space because

they can access more content [8], [9].

Several ideas to solve or diminish the problems caused

by such user’s behavior have been recently presented [10],

[11]. One of them is the local Transparent File System (TFS),

presented in [9]. TFS is a local file system that can contribute

100% of the free disk space while imposing a minimum perfor-

mance impact on the local file system and local applications.

TFS separates files into “opaque files” and “transparent files”.

Transparent files are stored in the free storage area, but their

space can be reclaimed at any time by the local system.

Therefore, “transparent files” don’t appear to local users as

storage consumers, giving them the impression that no free

space is being contributed. “Opaque files” are the usual local

files stored in the disk.

In this paper, we propose a peer-to-peer file system offering

high data availability and fault tolerance through the use of

transparent files, to maximize the overall storage space donated

for the system. Transparent files impose a new challenge,

because they may be removed from local systems at any

time and unpredictably. Our design handles such removals in

a graceful way, adjusting itself to keep the high availability

of the files. This paper is structured as follows: Section

II describes the current p2p file system design; Section III

presents the Transparent File System approach; Section IV

discusses our system’s architecture and the algorithms used to

handle transparent files deletions properly; Section V describes

the prototype and the preliminary evaluation results; finally, in

Section VI the related work is discussed and in Section VII

some conclusions are drawn.

II. PEER-TO-PEER STORAGE SYSTEMS

Initially, Peer-to-peer (p2p) systems were created to anony-

mously share files on the Internet, but other domain areas

became interested in p2p properties (e.g. flexibility, inherent

scalability, and smaller costs). Today, there are p2p systems for

audio and video streaming, instant messaging, and distributed

file and storage systems [2] [4]. In the p2p model, participants

(peers) act as clients and servers of the service being provided.

A Distributed Hash Table (DHT) is a p2p service that stores

[key,value] pairs. It also allows the reliable and efficient

insertion and retrieval of information in a overlay network

with a large amount of peers. Typical DHT implementations

include Chord [12] and Pastry [13].

The Cooperative File System (CFS) [7] is a read-only

distributed file system, where only the file owner has the right

to modify its contents, but others can read the files. CFS uses

the Chord DHT service to store and lookup files’ metadata.

All peers use the same algorithm to transform the metadata

present in the DHT into a file system-like abstraction, with

file and folders hierarchy. CFS uses replication to maintain

high data availability. Files inserted in the system are divided

into several data blocks that are replicated to k servers. CFS

tries to keep k replicas of each block in the system, migrating

blocks when nodes join or leave.

Ivy [14] is multi-user, read-write, and log-based distributed

file system, created on top of the Chord substract. Each

peer participating in the file system has a log to store all

file modifications and additions. These logs are stored in the

DHT provided by Chord. Each peer can read and look up

information in all logs stored in the DHT, but can only write

in its own log. Ivy offers a session consistency model, in which

updates become visible only after the file is closed.

FARSITE [5] is a serverless distributed file system that runs

in untrusted computers, that uses techniques of fault tolerance

to provide data high availability: file replication and scattering,

data and communication cryptography and Byzantine-fault

tolerant commit protocols. Its goal is that a set of desktop

client computers can collaborate to establish a virtual file

server that can be accessed by any client at any time. Thus,

the FARSITE operates as a unique central file server.

PAST [6] is large-scale, peer-to-peer archiving storage util-

ity that provides scalability, availability, security, and it is build

on top of the Pastry peer-to-peer substrate. PAST offers a

unique and transparent name space, because each files stored

in the system has a unique identifier (fileid). One of PAST’s

characteristic is the ability to maintain the number of replicas

invariant (replication factor), thus faulty nodes and network

partition are tolerated without loss of data availability.

III. THE TRANSPARENT FILE SYSTEM

The Transparent File System(TFS) [9] is a local file system

that introduces the concept of “transparent files”. A transparent

file is a file that is being stored by the local file system, but

it is not visible (or perceived) by the local users. From the

local users’ point of view, no space is being donated at all. In

opposition, normal files belonging to the local users are called

“opaque files”, and are all locally visible.

TFS’s core is its block allocation scheme, which does not

guarantee the persistence of transparent files. Opaque files

have precedence over transparent ones: transparent files are

stored in the free disk space, but may be replaced and overwrit-

ten at any moment with opaque files by the local system. TFS

was implement as a modification of the Linux Ext2 file system,

and adds three new states to its standard block allocation

scheme: Transparent, Allocated-and-Overwritten, and Free-

and-Overwritten. The Transparent state indicates that the

block is being used by a transparent file. The Allocated-and-

Overwritten and Free-and-Overwritten states signal that the

block was being used by a transparent file and was overwritten

by an opaque file, and, later was freed, respectively.

Transparent Files provides an interesting basis to build

a distributed file system to provide data redundancy and

fault tolerance: files can be replicated over several nodes

transparently, using their free disk space. However, as lo-

cal applications may request storage space for opaque files,

transparently stored replicas may be overwritten or deleted at

any time, unpredictably. The current TFS implementation does

not provide any mechanism to notify about transparent files

deallocation; this problem can only be detected when a process

tries to open the deleted transparent file.

IV. A DISTRIBUTED FILE SYSTEM BASED ON

TRANSPARENT FILES

In this section, we propose a fault-tolerant distributed file

system that uses the benefits of the Transparent File System

and circumvents the obstacle of the unpredictably deletion of

transparent files. In our proposal, a group of nodes share their

free storage space via TFS, and where replicas of files are

stored as transparent files. Each node has a local peer that

manages the locally stored replicas, interacts with other peers

to maintain the replication scheme, and offers replicated files

to applications. Our design is targeted to applications that

provide high availability by keeping an invariant number of

replicas for any given file, similarly to PAST and CFS. Thus,

files are accessible even in the presence of network partitions,

faulty nodes and transparent files deletions. Other distributed

file systems’ aspects, such as data consistency semantic, were

not taken in consideration because the scope of this paper is

a viability study of transparent files utilization.

We introduce the concept of replica invalidation, which

indicates that a replica of a transparent file has been deleted or

overwritten. Whenever such invalidation happens, the system

has the opportunity to re-arrange the replicas and re-establish

the appropriate number of replicas, ensuring high availability.

A. Architecture

The proposed architecture consists of a set of nodes con-

nected by a p2p overlay network. All peers are equal, work in a

cooperative way and are organized in an unstructured network.

Each node is responsible to manage its transparent storage,

to detect possible transparent file deletions, to download or

upload replicas from/to other nodes and to provide an interface

to local users. Each peer has seven components: a Distributed

File application, a Distributed File System, a Storage Man-

ager, a Replication Manager, a Download Manager, a Local

Transparent File System and a Peer-to-Peer Substrate, depicted

in Figure 1 and explained hereafter.

The Distributed File Application uses the distributed file

system to provide a service to users, such as a digital media

library. The Distributed File System is responsible for offering

a file system-like interface and for controlling the system’s

overall behavior. It controls the Storage Manager and the

Replication Manager to store and retrieve files through the

local storage or the network.

The Storage Manager handles requests to store and retrieve

transparent files from the local disk. It is also responsible for

watching the local transparent file system to detect transparent

file deletions. If a transparent file is deleted, the Storage

Manager notifies the Replication Manager immediately. The

Fig. 1. Architecture model

Replication Manager keeps the number of replicas of a file

constant in the system. Periodically, it verifies the number of

replicas of each file it owns; if any insufficiency is detected, it

starts a replication procedure to re-establish the correct number

of replicas. The Replication Manager also executes the replica

invalidation recovery procedure, as explained in Section IV-D.

The Download Manager sends and receives files replicas

over the p2p overlay network. It is triggered when a file to be

opened is not in the local transparent file system and should be

gotten from another node. The Replication Manager invokes

it also, when replicas need to be transferred. The local TFS

is responsible for contributing the free disk space and for

storing all replicas as transparent files. Finally, the Peer-to-

Peer Substrate is responsible to connect the nodes in a overlay

network, maintain the connectivity among nodes, manage node

membership through join/leave protocols, and route messages.

B. Basic PAST/Pastry Concepts

As our proposal is based on PAST and Pastry p2p substrate,

it is important to define some of their concepts and services

offered to applications. Pastry [13] is an overlay network

message routing and communication service. Each Pastry node

has a unique identifier (nodeId), a routing table and maintains

local information about two sets of nodes: the Neighborhood

set N (the set of the closest nodes relatively to a proximity

metric), and the Leaf set L (set of nodes whose IDs are

numerically closest to that node).

PAST [6] is a storage service built on top of Pastry,

which allows to store and retrieve files in several nodes with

replication. A replication factor k can be defined for all stored

files. It includes a Distributed Hash Table (DHT) service which

provides an interface offering put(k,v) and get(k,v) operations.

C. Handling File Access

In order to insert a new file in the system, the Distributed

File Application uses the interface provided by the Distributed

File System layer, to inform the file name and the file location.

The Distributed File System then computes a file identifier

fileid and obtains the file’s metadata. In possession of the

fileid, its metadata and its location, the Replication Manager

identifies which nodes shall hold a replica of the file, based

on the PAST/Pastry replication factor k and the numerically

closest node identifiers in relation to the fileid. Then, the

metadata is stored in the DHT, and the selected nodes are

informed that they should hold a replica of that file. Each

selected node requests the replica’s content to the node where

the file was inserted, through its Download Manager. After the

replica transfer finishes, it is locally stored as a transparent file.

When the Distributed File Application wants to access an

existing file, the Distributed File System first checks if a

local replica of that file exists. Otherwise, the Replication

Manager retrieves the file’s metadata from the DHT, instructs

the Download Manager to retrieve a file replica from another

node and stores it locally as a transparent file. Once the

download is complete, the application request can be fulfilled.

D. Handling Replica Invalidation

TFS’s trade off for low performance impact and less psy-

chological effect over data persistence is the key aspect on

its design, enabling the local file system to donate all free

disk space to applications [9]. However, this property leads

to a problem when using the TFS to build a distributed file

system. In addition to node faults, now the system must

now tolerate data persistence faults. To cope with this, we

propose a replica invalidation recovery procedure that enables

the distributed file system to keep operating even during the

presence of simultaneous deletions or overrides of transparent

replicas of files. Hereinafter, any transparent replica deletion is

called replica invalidation. The recovery procedure is triggered

whenever a replica is invalidated in any node, and its goal is to

keep the number of available replicas constant in the system.

Our system is composed by P peers p1 . . . pn. A file seen

by the distributed file application is denoted as f , and its

size is size(f). A replica of f stored at peer pi is denoted

as ri(f). The set of peers that hold a replica of f is denoted

as R(f). The neighborhood set of a peer pi and its leaf set,

as provided by the underlying Pastry middleware, are defined

here respectively as N(pi) and L(pi). Finally, the free storage

space available at the peer pi is denoted fspace(pi).
Considering a peer pi, when its Storage Manager detects

that a local replica ri(f) was deleted or overwritten, it sends a

replica invalidation notification repl_inv(f) to its Replication

Manager. The Replication Manager then queries the Storage

Manager about the free space locally available fspace(pi). If
there is enough space to restore the replica, the Replication

Manager queries the DHT to get the nodeId of a peer p j

holding a replica of f (p j ∈ R(f))1, and sends a file request

file_req(f) to it. Otherwise, if there is not enough free space,

the Replication Manager queries the current f replica holders

set R(f) and sends a replication request repl_req(f) to the

first peer in its leaf set L(pi) not holding a replica of file f ,

denoted here as pk. The actions executed by the Replication

Manager at peer pi are summarized in the Procedure 1.

Procedure 1 RM at node pi receives a replica invalidation

notification repl_inv(f)

1: if fspace(pi) ≥ size(f) then

2: Retrieve p j ∈ R(f) from DHT

3: Send file_req(f) message to p j

4: else

5: Retrieve R(f) from DHT

6: Retrieve pk = first(L(pi)\R(f)) from DHT

7: Send repl_req(f) message to peer pk
8: end if

In the sequence, to complete the recovery procedure, the

Replication Manager at node pk executes the Procedure 2

after receiving the repl_req(f) message from peer pi. Its first

action is to verify if there is a local replica of the file f , by

querying its Storage Manager. If pk does not have a replica of

f and if there is free storage space available, a DHT lookup

is performed to locate another peer pm holding a replica of

f (pm ∈ R(f)). Finally, a file request file_req(f) is sent to

pm. Hence, node pk is now responsible for a replica of file f ,

instead of node pi.

In the other hand, if pk does not have enough free space

to hold a replica, the replication request repl_req(f) received

from pi is forwarded to the next node in its leaf set L(pk) not
holding a replica of file f . Otherwise, if node pk already has

a replica of f , it means that multiple replica invalidations of

f happened simultaneously, and node pk was already selected

during the execution of procedure 1 by another node. Thus,

the replication request repl_req(f) should also be forwarded,

in order to maintain the number of available replicas.

V. IMPLEMENTATION AND EVALUATION

We developed a prototype of our proposal to verify the

usability of transparent files in a distributed file system, and to

check if our replica invalidation procedure is able to maintain

1In fact, due to the Pastry routing algorithms, usually the node p j ∈ L(pi)
with the smaller number of routing steps will be informed.

Procedure 2 Peer pk receives a replication request repl_req(f)
from node pi

1: if ∄rk(f) then

2: if fspace(pk) ≥ size(f) then

3: Retrieve pm ∈ R(f) from DHT

4: Send file_req(f) message to pm
5: else

6: Retrieve pm = first(L(pk)\R(f)) from DHT

7: Forward repl_req(f) message to pm
8: end if

9: else

10: Retrieve pm = first(L(pk)\R(f)) from DHT

11: Forward repl_req(f) message to pm
12: end if

the file availability. This prototype can be seen as a proof-

of-concept and has a very minimal feature set that enables

an evaluation under stable conditions, i.e., in the presence of

persistence faults only.

A. Prototype Implementation

The prototype was implemented using four open source

projects: FreePastry [15], INotify [16], JNotify [17], and

the TFS implementation [9]. They were adapted and glued

together by around 2,500 lines of Java code. FreePastry

is a open source implementation of the Pastry peer-to-peer

substrate and PAST storage utility, written in Java. INotify is

a Linux kernel module that provides a mechanism to receive

event notifications from the file system, indicating if a file

or directory has been deleted, renamed, created or modified.

JNotify provides Java bindings for the Linux INotify API,

allowing Java-based applications to monitor file system events.

The Java code is responsible for connecting all these

components and offers the base to create an application on

top of it. It is composed of four modules according to the

architecture presented in the previous section: Simple File

Storage Application, Storage Manager, Replication Manager,

and Download Manager.

The Simple File Storage Application relies on services

provided by PAST to implement a flat file system abstraction.

When a file is inserted in the system, the first action is to

calculate its fileid, a quasi-unique 168-bit value based on a

cryptographic hash of the file name, the local node identifier

and a random number. The application then reads the file’s

metadata, to get the file information, such as size and creation

date. The file metadata is then inserted in the PAST and a

replication factor k is assigned to it. The file metadata is stored

in the DHT and routed to all nodes that shall hold a file replica.

After a node receives the new file metadata, stores it in the

local file system as an opaque file, and retrieves the file’s

contents, which is stored as a transparent file. In addition,

both procedures described in section IV-D were implemented.

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128 256

T
im

e
 (

s
)

File size (MB)

space available
no space available

Fig. 2. Recovery time for one replica invalidation

B. Prototype Evaluation

All experiments were executed in a single machine, a HP

AMD Turion 64 X2 with 2.1 Ghz and 3 GB RAM, running

Linux Debian Sarge 3.1, Sun’s Java SE Runtime Environment

version 1.6.06, and the TFS Linux kernel module.

The system was brought up with 20 independent nodes to

form the p2p overlay network. A virtual network interface

was defined by each node to create socket connections and

transfer files through the overlay network. This virtual network

interface has a bandwidth throttling mechanism to simulate

different bandwidth conditions. After all nodes are up and

running, the distributed file system is populated with 25 sample

files with their sizes varying from 1 MB to 256 MB, each one

having the same replication factor (k = 4).

Three preliminary experiments were performed, to investi-

gate the prototype behavior in the presence of replica invalida-

tions. All values presented in the charts represent a mean value

from three executions of each experiment and the variation

was below 5%. In order to make the experiments more easily

observable, we deliberately deleted some transparent files

instead of forcing TFS to override them.

The first experiment was executed to estimate the overhead

caused by the replica invalidation recovery procedure. The

time needed to restore a deleted replica is measured in two

situations: (1) when the node where the replica was deleted

has still free space enough to restore a replica from another

node, and (2) when the node does not have enough free space,

so it has to find another node to restore the replica. Figure 2

shows the result of this experiment. It can be observed that

the overhead caused by the recovery procedure and algorithm

is low in comparison with the time needed to transfer the file.

Only when small files are invalidated, an overhead is noted.

The second experiment verified the system behavior in a

condition of multiple simultaneous replica invalidations (1, 2,

or 3 simultaneous invalidations from replicas of the same file).

The system was designed to keep a constant number of replicas

available. Therefore, it is expected that after some time all

invalidated replicas are restored. To exercise the complete re-

covery procedure and to trigger the system’s self-organization,

 0.1

 1

 10

 100

 1000

 1 2 4 8 16 32 64 128 256

T
im

e
 (

s
)

File size (MB)

1 invalidation
2 invalidations
3 invalidations

Fig. 3. Recovery time for multiple simultaneous replica invalidations

 0.1

 1

 10

 100

 1000

 10000

 1 2 4 8 16 32 64 128 256

T
im

e
 (

s
)

File size (MB)

100 Mbits/s
3 Mbits/s
1 Mbits/s

Fig. 4. Recovery time for one replica invalidation for different bandwidths

we simulated that each node does not have enough free space

to request a new replica copy when its replica is invalidated.

Figure 3 shows the times needed to restore all replicas. The

system was able to restore all invalidated replicas, and the

elapsed times are proportional to the replica’s size.

Finally, the third experiment investigated the system under

different bandwidth limitations. Three bandwidth limits were

chosen to simulate a local area network and average broadband

Internet connections: 100 Mbits/s, 3 Mbits/s and 1 Mbits/s. As

depicted in Figure 4, the system keeps its behavior for the three

cases. The elapsed time to restore one invalidated replica is

proportional to the replica’s size and the available bandwidth.

VI. RELATED WORK

TFS introduced the “transparent file” concept quite recently

[9], and therefore no similar work, using transparent files

to create a distributed file and storage system, was found.

However, the transparent contribution of idle resources have

been used in different computer science areas for a while.

Systems like those proposed in [18] and [19] implement

the transparent contribution of idle processing power (CPU

cycles) of home computers. Such systems are used to harvest

processing power to help solving large and complex scientific

calculations that would be unfeasible in centralized systems,

like simulations of weather models and chemical reactions.

The contribution of idle memory is proposed in [20] [21]

to improve the performance of disk intensive applications.

Free memory is used to cache file’s data, so applications

can read the contents of a file directly from the memory

because the system already copied the data from the disk

into the memory. Whenever the system needs more memory

to its applications, the cached data is moved back to the

disk or purged. In [22], the memory usage is controlled by

the operating system in accordance to applications priority.

Contributory applications have lower priority to access the

memory than local applications. Therefore, the miss rate of

page faults is reduced for the local applications.

VII. CONCLUSION

This paper presented and evaluated a proof-of-concept

model to use transparent files, introduced by the Transparent

File System [9], in a fault tolerant peer-to-peer distributed file

system. In our proposal, a file is replicated among several

nodes and its replicas are stored as transparent files. However,

transparent files can vanish from the disk in an unpredictable

way, therefore an initial mechanism to detect such deletions

and to recover the invalidated replicas was proposed. Prelim-

inary experiments shown that the our approach is feasible,

and that its costs are proportional to the size of files being

replicated. The occurrence of multiple simultaneous replica

invalidations did not impose a significant overhead. More

detailed experiments using a real wide-area distributed envi-

ronment and under node churn scenarios are planned.

Several applications can benefit from a large amount of

free disk space scattered among several nodes. An example

could be a digital library for pictures, videos and documents,

in which users can publish and look-up for files. A digital

library must provide a unique and independent name space

for the files: users should always see the same file hierarchy,

everywhere. Therefore, each file must have a unique identifier,

belong to a category, and be signed by the author to certify its

integrity. In addition, data consistency can be achieved across

a single write-lock mechanism, because only the author is

allowed to modify his files. After the write operation, the file

is released from its lock and can be replicated through the

system.

As this was the first attempt to use transparent files, some

issues remain open to be improved in the future. First, the

proposed replication algorithm is simple and can be polished

to handle boundary situation, like when all replicas of the same

file are deleted simultaneously. For this situation, a threshold

could trigger some emergency actions when the replication

level of a file reaches a minimum value. A possible action

would be to temporarily convert the remaining transparent

replicas into opaque files to guarantee their integrity during

a replica shortage. The current TFS implementation only

supports transparent file invalidations. If just one disk block

occupied a transparent file is requested by an opaque file,

the entire transparent file is invalidated. TFS authors proposed

(but not implemented) mechanisms to support the invalidation

of individual blocks [9]. Using such feature, restoring an

invalidated file would be much faster, as only the invalidated

blocks had to be restored from another replica.

REFERENCES

[1] D. Payne and P. Woolnough, “Bandwidth drivers for future networks,”
IEE Telecommunication Series, vol. 47, pp. 21–36, 2004.

[2] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer
content distribution technologies,” ACM Computing Surveys, vol. 36,
no. 4, pp. 335–371, 2004.

[3] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A
survey of peer-to-peer storage techniques for distributed file systems,”
in Intl Conference on Information Technology: Coding and Computing

(ITCC’05), Volume II, 2005.
[4] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,

B. Richard, S. Rollins, and Z. Xu, “Peer-to-Peer Computing,” HP Labs,
Tech. Rep. 2002-57, 2002.

[5] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer,
“Farsite: federated, available, and reliable storage for an incompletely
trusted environment,” SIGOPS Operating Systems Review, vol. 36,
no. SI, pp. 1–14, 2002.

[6] P. Druschel and A. Rowstron, “PAST: A large-scale, persistent peer-to-
peer storage utility,” in 8th IEEE Workshop on Hot Topics in Operating

Systems, 2001.
[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-

area cooperative storage with CFS,” in 18th ACM Symposium on

Operating Systems Principles, 2001.
[8] P. Golle, K. Leyton-Brown, I. Mironov, and M. Lillibridge, “Incentives

for sharing in peer-to-peer networks,” in 2nd Intl Workshop on Electronic
Commerce, 2001.

[9] J. Cipar, M. D. Corner, and E. D. Berger, “TFS: a transparent file system
for contributory storage,” in 5th USENIX Conference on File and Storage

Technologies, 2007.
[10] O. Leonard, J. Nieh, E. Zadok, J. Osborn, A. Shater, and C. Wright, “The

Design and Implementation of Elastic Quotas: A System for Flexible
File System Management,” Computer Science, Columbia University,
Tech. Rep. CUCS01402, 2002.

[11] T. wan Ngan, D. Wallach, and P. Druschel, “Enforcing fair sharing of
peer-to-peer resources,” in 2nd Workshop on Peer-to-Peer Systems, 2003.

[12] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions,” in ACM SIGCOMM, 2001.

[13] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” Lecture Notes
in Computer Science, vol. 2218, pp. 329–340, 2001.

[14] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen, “Ivy: A read/write
peer-to-peer file system,” in 5th Symposium on Oper. Systems Design

and Implementation, 2002.
[15] P. Druschel and A. Rowstron, “FreePastry,” February 2001,

http://freepastry.org.
[16] R. Love, “Kernel korner: Intro to INotify,” Linux Journal, vol. 2005, no.

139, p. 8, 2005.
[17] O. Yadan, “JNotify,” November 2005,

http://jnotify.sourceforge.com.
[18] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,

“Seti@home: an experiment in public-resource computing,” Communi-

cations of the ACM, vol. 45, no. 11, pp. 56–61, 2002.
[19] S. Larson, C. Snow, M. Shirts, and V. Pande, “Folding@Home and

Genome@Home: Using distributed computing to tackle previously in-
tractable problems in computational biology,” Computational Genomics,
vol. Horizon Press, 2002.

[20] R. Karedla, J. S. Love, and B. G. Wherry, “Caching strategies to improve
disk system performance,” IEEE Computer, vol. 27, no. 3, pp. 38–46,
1994.

[21] R. Patterson, G. Gibson, and M. Satyanarayanan, “A status report on
research in transparent informed prefetching,” ACM Operating Systems

Review, vol. 27, no. 2, pp. 21–34, 1993.
[22] J. Cipar, M. D. Corner, and E. D. Berger, “Transparent contribution of

memory,” in USENIX Annual Technical Conference, 2006.

