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Abstract

Reliable storage of large amounts of data is always a

delicate issue. Availability, efficiency, data integrity, and

confidentiality are some features a data backup system

should provide. At the same time, corporate computers

offer spare disk space and unused networking resources.

In this paper, we propose an intrusion-tolerant cooperative

backup system that provides a reliable collaborative backup

resource by leveraging these independent, distributed re-

sources. This system makes efficient use of network and

storage resources through compression, encryption, and ef-

ficient verification processes. It also implements a protocol

to tolerate Byzantine behaviors, when nodes arbitrarily de-

viate from their specifications. Experiments performed to

evaluate the proposal showed its viability.

1 Introduction

Data storage capacity grows at high rates, but the amount

of data to be stored grows in the same proportion [12]. Data

storage systems should ensure data availability and integrity

for large amounts of data. A key component to ensure such

requirements is the data backup system. The storage size

needed for backup copies in a corporation may easily reach

Terabytes. At the same time, there is a large amount of free

storage space in individual computers: in average, 50% of

a corporate computer disk is unused [3]. There is also a fair

amount of idle processing power, as the most frequent ac-

tivity of a corporate computer is to wait for keyboard input.

As most computers in a corporation are connected to a lo-

cal network, this environment is favorable for the use of a

cooperative backup system.

Cooperative backup systems [15] use peer-to-peer tech-

nology to deploy a non-hierarchical distributed backup en-

vironment, in which each node uses its free disk space to

backup data from others nodes, without a central backup

resource. Such distributed backup environments should en-

sure the same availability, integrity, and confidentiality re-

quirements as conventional systems do, while incurring in

lower deployment and operation costs. In this paper, we

propose an Intrusion-Tolerant Cooperative Backup System

that uses a Byzantine Quorums System (BQS) [17]. Byzan-

tine quorums systems are known by their availability and

efficient use of replicated data, even in the presence of ma-

licious nodes. Thus, this work aggregates the advantages of

quorum systems to a cooperative backup system, to provide

a correct operation even in the presence of malicious nodes.

This paper is organized as follows: Section 2 provides

an overview of cooperative backup systems; Section 3 re-

views the main Byzantine Quorums concepts; in section

4, the overlay peer-to-peer substrate Pastry is briefly pre-

sented; Section 5 presents our proposal and details its main

aspects; some experimental results are discussed in section

6; Section 7 discusses some related work, and finally Sec-

tion 8 draws some conclusions and future work.

2 Cooperative Backup Systems

Cooperative backup systems (CBS) [15] use peer-to-

peer (p2p) technology to deploy a non-hierarchic distributed

backup environment. In such systems, each node partici-

pates by giving part of its local hard disk to backup data

from other peers, and vice versa [1]. This way, as new nodes

join the backup system, the demand for backup increases,

but the total storage capacity of the system also increases

accordingly. The distributed nature of p2p networks also in-

creases robustness in case of failures, by allowing the repli-

cation of data over multiple peers, and by enabling peers to

find the data without relying on a central index server.

The implementation of a non-hierarchical distributed co-

operative backup service without prior trust relationship

among nodes is not a trivial task. Some threats must be

taken in account, like nodes with selfish behavior (refus-

ing to cooperate), peers that may fail, and malicious peers

that may attack the data reliability or the service availability.

Thus, cooperative backup services must implement mech-

anisms to provide data integrity and consistency, service

availability, data privacy, and trust management [12].



In friend-to-friend (f2f ) backup systems [14], the p2p

system is formed by a social network. The presence of

malicious peers is minimized, due to trust relationships set

through the social network. This allows the use of fewer

replicas, reducing demands in network bandwidth and stor-

age area. Other techniques can be used to detect/tolerate

malicious nodes, like periodic random-block challenges, to

certify that other peers still hold the backup files [15].

3 Byzantine Quorum Systems

A Byzantine Quorums System (BQS) [17] is a replicated

data storage system that ensures data integrity and availabil-

ity even in the presence of arbitrary faults in some of its

replicas [7]. The protocols used in a BQS provide termina-

tion guarantee and thus do not require agreement protocols

to ensure consistency among replicas. This means that they

are not susceptible to the FLP impossibility [8] and can be

implemented in asynchronous systems.

Conceptually, a BQS can be defined as a set of subsets of

nodes in a distributed system. Each node subset is called a

quorum and intersects with all other quorums in the system.

According to the availability property, there is at least one

quorum in the system that is formed by correct nodes only.

The intersection properties guarantee that the transactions

performed in different quorums maintain data consistency.

The use of quorums is a method to increase availability and

integrity of replicated data, because each quorum can act on

behalf of the entire system, thereby increasing its availabil-

ity and performance.

In a BQS, clients perform read and write operations on

registers replicated over a quorum of nodes. Registers can

be signed by the client, being then called auto-verifiable;

the key owner can detect non-authorized content changes

by a malicious server. A typical BQS using auto-verifiable

registers to survive up to f failures uses groups of 3f + 1
replicas with quorums of size 2f +1. The quorum intersec-

tions will have size f + 1, ensuring that the intersection of

any two quorums has at least one correct replica [16].

4 The Pastry Environment

Pastry [18] is a substrate for peer-to-peer systems pro-

viding location and routing services. It builds an auto-

organized overlay network for distributed applications. It

is decentralized, fault resistant, scalable, reliable, and has

good message routing properties. In Pastry, nodes and ob-

jects receive 128-bit unique identifiers, respectively called

nodeId and key. Messages are routed to a node which

nodeId is closest to a given key using O(log N) steps,

where N is the number of nodes in the overlay network [9].

Each Pastry node keeps track of its immediate neigh-

bors in the identifier space and notifies the local appli-

cation about new nodes, failures and recoveries. As the

nodeIds are randomly assigned, the set of nodes with adja-

cent nodeIds is potentially diverse in geography, ownership,

and jurisdiction. An heuristic ensures that, among a set of

nodes with the closest nodeIds to a given key, the message is

likely to first reach the node nearest to the sender node. The

routing data maintained by each node consists in a leafset

(L) and a routing table. The leafset contains |L|/2 neighbor

nodeIds of the local node (usually 32 or 64 inputs), sorted

by identifier proximity. Pastry updates the routing informa-

tion whenever a node joins or leaves the overlay network,

keeping the routing costs logarithmic [18].

The Pastry API functions relevant for this work are

pastryInit(), allowing a node to join a Pastry network,

and route(msg,key), to route a message to the node

whose nodeId is numerically closest to key. The applica-

tions built on Pastry must export the following callbacks:

• deliver(msg,key): called by Pastry when a mes-

sage is received and the local node’s nodeId is numer-

ically closest to key;

• forward(msg,key,nextId): called by Pastry

just before a message is forwarded to the node with

nodeId = nextId.

• newLeafs(leafSet): called by Pastry whenever

the node’s leafset changes.

5 BackupIT - An Intrusion-Tolerant Cooper-

ative Backup System

The BackupIT system uses the resources available in

an Intranet (a set of computers under a single adminis-

trative entity) to store data backups collaboratively. Each

participant computer stores data backups for other local

computers. This way, a better use of the available disk

space, processing power, and network bandwidth is ob-

tained. Availability, intrusion tolerance, and data integrity

are achieved through data replication among the participat-

ing nodes. Replication uses Byzantine Quorum Systems,

avoiding single failure points. The next sections describe

the system architecture, its main components, and the algo-

rithms used in its operation.

5.1 System architecture

The system consists of a set of nodes connected to a p2p

overlay network. All nodes have the same functions, form-

ing a pure (non-hierarchical) p2p network. The nodes use

BQS protocols to provide backup operations. Each node is

responsible to reply requests, to store/retrieve data for/from



Figure 1. System Architecture

other nodes, and to provide an interface to the local applica-

tions. Each node has five local components: Backup Man-

agement, Quorum Service, Location and Routing Service,

Compression Service, and Cryptographic Service (figure 1).

The Backup Management handles client requests to

backup/retrieve files. It is responsible for the generation of

cryptographic signatures (hashes), file storing, and integrity

verification during file retrieval. The Quorum Service pro-

vides intrusion tolerance, availability, and data integrity. It

is presented with more detail in section 5.2. The Location

and Routing Service (LRS) is responsible for the nodes/files

unique identifiers generation and location, message routing,

and for the definition of the nodes in each node’s quorum

system. This service is provided by the Pastry substrate

(section 4). Files to backup are compressed using the Com-

pression Service, to reduce the storage space and network

bandwidth needs. The Cryptographic Service uses symmet-

ric cryptography to ensure data confidentiality and integrity.

A data expiration policy was adopted to discard obsolete

data: each backup stored in the system has a validity period

associated to it, defined by its owner. The backup is then

kept during that period, and can be discarded after it.

5.2 Quorum service

This project uses the f-dissemination Byzantine Quo-

rum System described in [17]. This quorum system stores

self-verifying data and uses symmetrical quorums (read and

write quorums have the same size). It can be built with

a smaller number of nodes and its protocols demand a re-

duced number of messages, fitting well to Intranets. The

consistency semantics of this quorum system is regular: if

there is no concurrent writes, a read operation always re-

turns the last written value; otherwise, it returns one of the

written values. As backup systems usually have a single

writer semantics, there are no concurrent writes.

Each system node pi builds a quorum system Si with

|Si| ≥ 3f + 1 nodes, where f is the maximum number of

faulty nodes, defined during the quorum system formation.

The nodes that form the quorum system of a given node

are defined from its leafset Li, given by the location and

routing service. Quorum systems of distinct nodes overlap;

therefore, each node will belong to several quorum systems

simultaneously. If a quorum system has 3f + 1 members,

each node in it will have other 3f nodes in its quorum sys-

tem; if all quorum systems are distinct, then each node will

be part of 3f distinct quorum systems.

5.3 System model

An asynchronous system is assumed. The cooperative

backup system is composed by a set P with N nodes or

peers p1 . . . pN . The number of faulty nodes tolerated by

the system is f , with 3f + 1 ≤ N . Each node pi is

uniquely identified and located in system by a node iden-

tifier nodeId i. The leafset of node pi, defined by the Pastry

substrate, is Li. Each node pi builds a byzantine quorum

system Si using the first 3f nodes of its leafset Li and it-

self. A quorum Q∗

i is any subset of Si with 2f + 1 nodes,

that is, Q∗

i ⊂ Si and |Q
∗

i | = 2f + 1.
A file to store in the backup system is indicated as x, and

name(x) is its name. Finally, it is considered that hash(x)
is a cryptographic signature function, zip(x) is a data com-

pression function and {x}k represents the ciphering of x
using a symmetric cryptographic key k (each node pi has

its own secret cryptographic key ki).

The failure model assumes that up to f nodes can deviate

from their specifications. Faulty nodes can stop, omit mes-

sages, send false messages and incorrect replies. However,

the cryptographic signatures allows to detect incorrect mes-

sages. Flooding attacks are out of the scope of this work.

Stop failures and omissions are handled using time-outs.

Faults are considered independent: the probability of a fault

in one node is independent of the occurrence of a fault in

other node. Finally, any node abnormal behavior detected

generates an error notification for external intervention.



5.4 File storage and retrieval

Algorithm 1 indicates the actions of a node pi to store a

file x. First, pi generates an unique key for the file, using

the hash of nodeId i concatenated with the file name (line

1). Next, the location and routing service is queried to iden-

tify the node pj responsible for that key (line 2). Node pj

will reply to pi informing its quorum system Sj (line 3). In

the sequence, pi compresses and ciphers the file x using its

secret key ki (line 4). Node pi should then send the file to a

set of nodes pk in Sj (line 8). Each reply informs the hash

hk of the file received by pk (line 9). If this hash is equal to

the hash of the file sent by pi, the reply is correct (lines 10

and 16). If not, or if pk did not reply, an error is registered

(line 11). Node pi waits for at least 2f + 1 correct replies

(line 7), or more than f errors (line 12).

Algorithm 1 Node pi stores file x

1: key ← hash(nodeIdi : name(x))
2: send holderReq(key) to LRS
3: receive holderReply(Sj) from pj

4: x′ ← {zip(x)}ki

5: C = φ // nodes with correct reply

6: E = φ // nodes with error

7: while |C| < 2f + 1 do

8: send storeReq(x′) to pk ∈ Sj

9: receive storeReply(hk) from pk or time-out

10: if time-out ∨ (hk 6= hash(x′)) then
11: E← E ∪ {pk}
12: if |E| > f then

13: Error: more than f faulty nodes

14: end if

15: else

16: C← C ∪ {pk}
17: end if

18: end while

It should be observed that algorithm 1 is not the same

proposed in [17] for f -dissemination quorums with regular

multi-writer/multi-reader semantics. This algorithm has an

additional step, where client compares the hashes sent by

the servers to the local hash (line 10). This step helps to

detect file transmission problems.

Algorithm 2 shows the actions performed by a node pi

to retrieve a previously stored file x. First, pi calculates the

file key and locates the node pj responsible for it (lines 1

to 3). Next, pi requests the hash of the file identified by

key to a quorum of nodes in Sj (lines 4 to 8). For each

reply received, its hash hk is checked(lines 9 to 12). Node

pi continues to pick nodes from Sj (lines 13 to 16) until it

receives 2f + 1 correct replies. Node pi then requests the

file to one of the nodes that gave a correct reply, verifies

if its hash is correct and return it to the user (lines 23 to

Algorithm 2 Node pi wants to retrieve file x

1: key ← hash(nodeIdi : name(x))
2: send holderReq(key) to LRS
3: receive holderReply(Sj) from pj

4: P← φ // nodes queried

5: for all pk ∈ Q∗

j ⊂ Sj do

6: send hashReq(key) a pk

7: P← P ∪ {pk}
8: end for

9: R← φ // nodes that answered

10: T← φ // nodes with time-out

11: while (|R| < 2f + 1) ∧ (|T| ≤ f) do
12: receive hashReply(hk) from pk ∈ P or time-out

13: if time-out then

14: T← T ∪ {pk}
15: send hashReq(key) to pm ∈ (Sj − P)
16: P← P ∪ {pm}
17: else

18: R← R ∪ {pk}
19: end if

20: end while

21: C← {pk ∈ R | hk = hash(x)} // correct replies

22: while C 6= φ do

23: send retrieveReq(key) to pk ∈ C

24: receive retrieveReply(xk) from pk or time-out

25: if time-out ∨ (hash(xk) 6= hash(x)) then
26: C← C− {pk}
27: else

28: Decipher, uncompress and return xk to user

29: Algorithm ends

30: end if

31: end while

32: Error: no correct reply

29). Otherwise, another node should be queried. According

to the quorum theory [17], if there are up to f faults, the

algorithm will correctly retrieve the file.

From the algorithms, it can be inferred that the number

of messages and the amount of data transferred are propor-

tional to the quorum size, that is, f . Table 1 indicates the

minimum and maximum number of messages exchanged

in the system according to the fault threshold f , for the
file storage and retrieval procedures. Comparing the values

presented on table 1 with the quorum system size (3f + 1
nodes), it can be verified that roughly two messages per

node are exchanged in system to store or to retrieve a file.

Table 2 presents an estimation of the amount of data ex-

changed data among nodes in both procedures (best and

worst cases). Only messages that transfer files are consid-

ered (storeReq and retrieveReply), as the other messages are

much shorter and can be ignored.



Table 1. Number of messages exchanged.
Procedure best case worst case

Storage 4f + 4 6f + 4
Retrieval 4f + 6 6f + 8

Table 2. Number of file transfers.
Procedure best case worst case

Storage 2f + 1 3f + 1
Retrieval 1 2f + 1

6 Experimental Results

The algorithms presented in section 5 were implemented

on FreePastry, an open implementation of the Pastry en-

vironment. The simulation environment was a Pentium

4 CPU 2.60GHz, 1GB RAM running Linux 2.6.19 and

SUN JVM 1.6.0_07. File compression used the ZIP algo-

rithm; TripleDES was used for file encryption/decryption

and MD5 for hashing. All those algorithms were chosen

due to their availability in the Java API.

For comparison, we implemented also a simple backup

system, in which each node replicates the file in S nodes,

where S is the size of the byzantine quorum system. To

retrieve a file, the node queries all other nodes for the file,

one at a time, until it gets a correct replica. In this simple

backup application there is no protocol to ensure intrusion

tolerance nor data consistency.

To evaluate our proposal, the number of messages ex-

changed during the store and retrieve procedures were com-

pared with the simple backup system. Figure 2 presents the

number of messages exchanged to store a file in both sys-

tems. It can be observed that the quorum system always

uses more messages. The results obtained confirm the val-

ues in table 1.
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Figure 2. Messages needed to store a file.

Figure 3 shows the messages needed to retrieve a file in

both systems; the simple backup system has two extreme

situations: in the best case, the first replica obtained is cor-

rect, while in the worst case only the last replica retrieved is

correct. The quorum system fits between these extremes.
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Figure 3. Messages needed to retrieve a file.

To analyze the system behavior when facing malicious

nodes, a system with 22 nodes was exposed to a vari-

able number of malicious nodes between zero and 7 (as

3f + 1 = 22). The number of messages needed to store

and to retrieve a file was measured. Figure 4 shows that

the number of messages varies linearly with the number of

malicious nodes.

 32

 34

 36

 38

 40

 42

 44

 46

 48

 0  1  2  3  4  5  6  7

m
e

s
s
a

g
e

s

malicious nodes

retrive
store

Figure 4. Impact of malicious nodes.

7 Related Work

The first cooperative backup system, named CBS, was

proposed in [15]. The CBS has a centralized server to pro-

vide the peer location service and uses erasure coding along

with encryption techniques to improve its fault tolerance.

The CBS also deploys some mechanisms to protect itself

from attacks, like periodic queries in random blocks and



reading limitations. However, this project is more focused

on attack prevention than on attack tolerance. Pastiche sys-

tem [5] adopts a probabilistic mechanism to detect mali-

cious nodes through random verification. Pastiche’s suc-

cessor, Samsara [6], only protects itself from greedy users,

because they are more frequent than malicious users.

The VentiDHash system [19] uses erasure coding and

cryptographic techniques, like CBS and PeerStore [13];

these systems are not directly aimed at increasing attack tol-

erance. The pStore system [2] deals with malicious node

faults by replicating and signing data blocks, to prevent that

a malicious node impersonates data owners and change or

eliminate their data. The ABS system [4] mainly focus in

the efficient use of local resources, without worrying with

intrusion tolerance.

Based in the observation that virus, worms and similar

digital plagues may attack computers running a given set of

programs, the Phoenix system [11] focus in implementing

techniques that take advantage of software diversity to pro-

vide data backups. It does not focus on intrusion tolerance

either, as the DIBS system [10], that was proposed for use

in local area networks, in which all nodes are considered

reliable and trustful.

When compared with the related work, the architecture

proposed in this paper has the advantages of being totally

decentralized and of adopting a quorum based intrusion and

fault tolerance approach, which offers a better level of reli-

ability and lower communication costs.

8 Conclusions and Future Work

In this paper we presented a backup system based on

byzantine quorum systems, which provides intrusion toler-

ance, consistency and availability. In addition to the BQS

properties, cryptographic techniques were used to provide

confidentiality and integrity. The Byzantine Quorum Sys-

tem adopted was based on the f-dissemination type, but

it was slightly modified to increase efficiency in terms of

bandwidth and storage space utilization. The initial re-

sults from experimental evaluations show that the number

of messages exchanged is proportional to the system size.

The proposed system can be improved in several aspects.

First, the usage of an additional register for file hashes at the

client side (the node that requested a file to be stored) allows

to reduce the BQS size, as the client can use this informa-

tion to verify the integrity of the received data. Second, as

the cooperative backup system uses a single-writer/single-

reader access semantics, it would be possible to work with

quorums of size f + 1, reducing the traffic in the network

and the storage space used. Finally, a quorum protocol that

takes in consideration malicious clients could also be stud-

ied, as the system with single-writer/multi-reader semantics

using the f-masking quorum system presented in [7].
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