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Abstract

Conventional e-mail systems are prone to problems that

affect their dependability. E-mail systems operate following

a “push-based” approach: the sender side server pushes

the e-mails it wants to send to the corresponding receivers’

servers. This approach may impose processing and storage

overhead on the receiver side. This paper presents a peer-

to-peer e-mail system in which messages are sent directly

from senders to receivers using a “pull-based” approach.

The sender stores locally all e-mails it intends to send, and

notify their receivers using a global, distributed notification

service. Receivers can then retrieve such notifications and

decide if they want to receive the corresponding e-mails.

If so, e-mails can be retrieved directly from their senders.

This proposal is inspired from file sharing peer-to-peer sys-

tems, in which users locate and retrieve the contents they

are looking for. A prototype was built to show the feasibility

of the proposal, and experimental results show its viability.

1 Introduction

Internet e-mail has become an extremely pervasive com-

munication tool, due to its low cost, asynchronous opera-

tion and ability to easily transport different types of digital

content. However, protocols for sending and receiving e-

mails were designed to be simple, mainly because their ini-

tial use was restricted to the academic community and the

e-mail servers’ processing capacity was limited. With the

wide-spreading use of e-mail, some users started using this

system to propagate malicious content, as virus, spams, and

scams. Moreover, the increase in the use of e-mail systems

led to the necessity of technologies capable to support this

service in a more secure, reliable, and scalable manner.

Traditional e-mail systems operate following a “push-

based” approach: the sender’s e-mail server pushes the e-

mails she wants to send to the corresponding receivers’

servers. The receiver server should then accept the e-mail

and deliver it to its destination mailbox. The receiver server

can implement mechanisms to avoid receiving spam, like e-

mail content analysis [15] and server white lists [5]. How-

ever, most techniques impose processing and storage over-

head on the receiver side.

This article presents a distributed e-mail architecture in

which e-mail is transported according to a “pull-based” ap-

proach, directly from senders to receivers. The sender stores

locally all e-mail it intends to send, and notifies their re-

ceivers using a notification service built using a distributed

hash table [13]. Receivers can then retrieve such notifica-

tions and decide if they want to receive the corresponding

e-mails. If so, e-mails can be retrieved directly from their

senders.

This article is structured as follows: section 2 reviews

the conventional e-mail structure and the main threats to e-

mail services; section 3 reviews some related work on peer-

to-peer based e-mail systems; section 4 presents the archi-

tecture developed in this project; section 5 presents some

prototype implementation details and discusses experimen-

tal results obtained from it; finally, section 6 concludes the

paper, discussing open problems and outlining perspectives.

2 The e-mail service

The Internet e-mail architecture [7] contains agents act-

ing as senders and receivers of e-mails. The Mail User

Agent (MUA) is the program used by the end user for read-

ing and writing e-mails. The Mail Transport Agent (MTA)

is responsible for receiving e-mails from the MUAs, for-

warding them to their destinations (other MTAs), receiving

e-mail from other MTAs, and keeping mailboxes for local

users. This simple and straightforward structure was re-

sponsible for the e-mail popularity. On the Internet, e-mail

systems gained importance and visibility, showing limita-

tions and fragilities not initially considered, like privacy (e-

mails are transferred in clear text format), sender authenti-

cation (SMTP does not provide effective mechanisms to au-

thenticate senders, allowing e-mail forgery), and efficiency

(e-mails can carry large attachments, but are sent and stored

uncompressed).



Due to such fragilities, problems like spam, scam, and

virus propagation compromise the security, performance,

robustness, and usability of the current e-mail systems. Sev-

eral techniques can be used to improve current e-mail sys-

tems, like white/black lists [5], content filtering [15], and

sender authentication mechanisms [1, 8, 17, 19].

3 Peer-to-peer and e-mail

Peer-to-peer (p2p) systems present some advantages

over traditional client/server systems, like more flexibility

and scalability, and smaller costs. Primary p2p use was in

anonymous file sharing over the Internet, but other appli-

cation domains are appearing, like audio/video streaming,

instant messaging, and distributed storage.

In the p2p approach, participants (peers) acts as clients

and servers for the service being provided. Peers inter-

act among each other to announce resources, to locate re-

sources, and to retrieve/use them. Peer-to-peer systems

can use a central server to maintain resource location and

authentication services; others are decentralized and de-

fine “super-peers” to carry out resource location algorithms.

Some are unstructured topology, while others provide a pre-

defined topology to ease resource location [2].

A Distributed Hash Table (DHT) [13], is a decentralized

p2p service that stores [key, value] pairs. This service is

generally provided by a large amount of peers, allowing to

store and retrieve information reliably and efficiently. Some

DHT systems associate a password p and a validity time

t to each entry: p protects the entry against unauthorized

removals, and t allows the DHT to purge old entries. DHTs

are used to build more complex services, like resource look-

up, distributed file systems, and naming systems. Typical

DHT implementations include Chord [16] and Pastry [14].

Studies were done on using the p2p approach to improve

e-mail systems. In [6], the authors use a DHT for storing

user certificates, e-mails and even mailboxes. For sending

an e-mail, an User Agent (UA) retrieves the receiver cer-

tificate from the DHT, encrypts the e-mail body using the

receiver’s public key and stores it back on the DHT. It also

stores the encrypted message headers in the DHT, using the

receiver’s e-mail address as the key. On the other side, the

receiver UA uses its e-mail address to lookup for new mes-

sage headers in the DHT; after decrypting the header, the

UA uses the message ID as a key to retrieve the correspond-

ing message body.

The ePOST system[10] builds an e-mail system on top

of a p2p storage infrastructure called POST [9], which is

built on top of the Pastry DHT [14]. In ePOST, each peer

contributes to the DHT service and to the distributed e-mail

storage. E-mails and metadata are encrypted and stored in

the DHT. The local agent acts as a SMTP/IMAP server,

allowing the use of conventional e-mail clients. E-mail

header, body, and attachments are stored separately; thus, a

file sent as attachment to several destinations is stored only

once in the DHT. E-mail delivery is done through the Scribe

notification service: the sender posts a notification to each

receiver, containing the message header and references to

the message parts.

The work shown in [18] uses an hybrid p2pmodel, com-

posed by communities and a central server, providing au-

thentication and peer location services. Each community

comprises a set of nodes and a super-node. The super-node

acts as a conventional MTA: all messages in a community

are sent to its super-node, which delivers them to nodes in

its community or forward them to other super-nodes. Al-

ternatively, super-nodes can route the sending requests be-

tween peers, letting the e-mail transfers occur directly be-

tween them. If a super-node fails, its community elects an-

other super-node. Finally, broker nodes can send messages

to conventional e-mail servers.

To our knowledge, all systems proposed rely on pushing

e-mails to a local server (super-node or local SMTP server),

to a remote storage (DHT or remote SMTP server), or di-

rectly to the destination nodes. Consequently, the storage

overhead does not affect the sender itself, but others. Also,

spam/virus filtering should be done by the receivers, after

receiving the e-mail. Finally, current DHT implementations

have small limits on the size of the information that can be

stored under each key, preventing the transfer of large mes-

sages. The next section proposes an architecture in which

e-mails are stored in the sender side until they are pulled out

by their destination nodes, if they accept to receive them.

4 A pull-based p2p e-mail system

This article presents a p2p e-mail architecture in which

messages are transported according to a “pull-based” ap-

proach, directly from senders to receivers. The system is

composed by a set of peers, each one acting for an user.

Concerning the message flow, the system follows an un-

structured approach, in which all peers have the same fea-

tures. The e-mails are exchanged directly between the

peers, there are no central authentication or storage servers.

A DHT service is used to forward notifications from senders

to receivers, and to store some control information.

A peer is a daemon that acts as an SMTP/IMAP server

for its local client. Message format respects the RFC2822

specifications [12], allowing users to use standard client

software (MUA) for e-mail handling. Each peer p2pMTA

has four storage areas: a spool area, to store messages sent

by the local MUA; an inbox area, in which it deposes mes-

sages to be read by the local MUA; a publicly accessible

outbox area, holding messages to be pulled by receivers us-

ing HTTP; and a key cache area, to store public PGP keys

of known peers. PGP keys [19] are used for encrypting



messages and notifications, to guarantee their integrity and

privacy. Peers organize themselves in groups, to improve

message availability (see section 4.5).

Figure 1 shows an overview of this architecture; next

sections detail how messages are transferred, and the mech-

anisms used for ensuring message privacy, integrity, and

availability.

Figure 1. Architecture overview

4.1 Assumptions

We assume that the DHT provides three basic services:

• put(x,v,p,t): register an entry defined by a key x, a

value v, a password p, and a validity time t; the DHT

supports key collisions: two or more values can be

stored under the same key x;

• get(x): retrieves all entries ei = [xi, vi] in which xi =
x;

• del(x,v,p): deletes an entry defined by [x, v], protected
by a password p.

It should be noticed that password p only protects the

entry against del operations, but does not forbid get oper-

ations. We consider that the DHT infrastructure purges all

entries whose validity time was expired, according to [13].

Peer e-mail addresses have the format name@group,

where name define the peer identity and group is the group

of peers to which it belongs. We assume that each peer has

a pair of public/private PGP keys; its public key k is avail-

able to the other peers, while its private key k′ is securely

kept by the peer. All hash operations are done using SHA1.

4.2 Starting an e-mail peer

When it starts, each peer i posts a peer descriptor di in

the DHT, using its e-mail address as key. The descriptor di

value contains the IP/port of the peer’s outbox. The pass-

word p is chosen by the peer, and the validity time t is arbi-

trarily set as one day. This descriptor should be kept in the

DHT by the peer, which renews or updates it when needed.

If the peer leaves the network without removing its descrip-

tor, the validity time t will ensure that it will be eventually

purged from the DHT.

4.3 Sending and receiving an e-mail

The steps needed to transfer an e-mailmi from a sender

peer S to a receiver peer R are explained in the following;

they are also presented in figure 2:

1. mi is sent by the client MUA to its local peer S using

SMTP; the message is stored in the spool area of S;

2. S retrieves kr from its key cache, or from R, using

the URL http://ip:port/pubkey (ip and port

are obtained from dr). If no key is found, an error is

raised;

3. mi is encrypted using kr: m
′

i
= kr{mi}, and a SHA1

hash hi is generated fromm′

i
: hi = SHA1(m

′

i
);

4. m′

i
is then stored in S’s outbox, using hi as its file

name;

5. S posts a send notification nsi to R in the DHT, us-

ing ns:peer@group as key (where peer@group is R’s

address). The nsi value contains some mi headers

(sender@group, subject, date, size, name/type/size of

attachments), hi, and the DHT entry password pi (a

random value); nsi value is encrypted using kr. The

validity time t is arbitrarily set to one week. nsi is also

copied locally in S.

6. Periodically, R searches for ns entries in the DHT;

each nsi is decrypted using its private key k′

r
, to re-

trieve the message headers, the hash hi, and the pass-

word pi.

7. For each nsi,R creates a message ni in the local inbox

area, using themi headers and an empty body;

8. The IMAP client at R retrieves all inbox messages and

presents them to the user;

9. If the user decides to open ni, R retrievesm
′

i
using the

URL http://ip:port/outbox/hi (ip and port

are obtained from ds);m
′

i
is decrypted using k′

r
to ob-

tain mi. Otherwise, if the user deletes an e-mail with-

out reading it, the corresponding inbox entry is deleted.

10. After m′

i
being retrieved or ni deleted, nsi is deleted

from the DHT, and a receive notification nri is posted,

using nr:peer@group as key (where peer@group is



S’s address). nri value is the hash hi, and the same

pi from nsi is used to protect the DHT entry.

11. Periodically, S searches for nr entries for its pending

messages; for each nri, it removes the DHT entry and

the corresponding files from its outbox.

In this approach the storage overhead remains at the

sender side. A spammer trying to send thousands of mes-

sages will consume its own storage space until the receivers

decide to get them, to delete them, or to ignore them. An-

other positive aspect of this approach: a message already

sent by the user (MUA) can be canceled, if the receiver did

not yet receive it.

4.4 Multiple receivers

The steps shown in the last section present the system be-

havior in a simple case, in which a peer send a message to

a single receiver. Now, a multiple-receiver message trans-

fer scenario is depicted. This scenario is frequent in mail-

ing lists, for instance. The changes in the previous scenario

when sending a messagemi to several receivers Rx are:

• mi should be encrypted with the public key kx of each

receiver Rx. PGP does this easily: it cyphers mi us-

ing a random session key ks (m′

i
= ks{mi}), then

cyphers ks using kx of each Rx, to get cyphered keys

kc (kcx = kx{ks}∀Rx); all kcx are then appended to

m′

i
;

• Next, S should post a nsx for each receiver Rx;

• Only when all nsx are replied with nrx or are expired,

mi files stored in S can be removed.

It is easy to see that the message is stored only once, even

if the message has several receivers.

4.5 Peer groups

In a conventional e-mail system, the mail server acts as

a temporary storage for e-mails, if their destination servers

are offline. Our architecture proposal has no e-mail servers

or intermediate temporary storage areas. This could cause

problems, because sender and receiver should be both on-

line to allow an e-mail to be transferred. To circumvent this

restriction, peers are organized in peer groups.

Peers in a group replicate the contents of their outboxes,

to provide higher availability of the e-mails awaiting to be

retrieved by their receivers. A peer group is formed by peers

that have some trust in each other. Each group has a name

gname and a descriptor gdi registered in the DHT under a

group:gname key. The descriptor value contains a list of the

group members’ addresses. For each group, a special peer

called group master is responsible for registering and main-

taining its group descriptor. Currently, the group master is

manually defined, as well as group members; more sophis-

ticated techniques for building and maintaining groups are

being investigated.

The outbox replication procedure is fairly simple: a

given peer in a group retrieves lists of messages con-

tained in each other peers’ outboxes, from their URLs

http://ip:port/outbox/msglist. Then it com-

pares the list contents with the e-mails present in its local

outbox; e-mails no more in the list should be deleted, be-

cause they were deleted by their owner; e-mails not in the

outbox should be retrieved, to be replicated.

During a message transfer, if the sender peer S is offline,

the receiver peer R can retrieve the sender group descriptor,

to discover other peers where the messagem′

i
may be repli-

cated. It will then try to retrieve the message from one of

them (step 9 in section 4.3).

4.6 Garbage Collection

There are a fair amount of information being stored lo-

cally (at each peer) and in the DHT. This information should

be deleted when no more needed:

• All DHT entries have validity times associated to
them; when the entry age surpasses its validity time,

the DHT infrastructure removes it, transparently [13].

• E-mails stored in the sender’s outbox are deleted when
(a) the receiver retrieved it and posted a corresponding

receive notification; or (b) when the validity time of

the corresponding entry in the DHT finishes.

• E-mails replicated among the group members are
deleted during the replication procedure, if their own-

ers deleted them from their respective outboxes.

5 Prototype

To show the feasibility of this proposal, a prototype was

built using Perl and COTS components: the OpenDHT in-

frastructure [13] (a deployment of the Bamboo DHT im-

plementation on the PlanetLab distributed platform [11]);

the GnuPG package, an open source implementation of the

OpenPGP standard; Lighttpd, a lightweight open source

HTTP server; the JES - Java E-mail SMTP server; and the

Mozilla Thunderbird e-mail client. The prototype provides

most services defined in the previous sections, including

message replication.

Some experiments were carried out to evaluate the per-

formance of this approach. Tests consisted on sending 1000

messages to a single receiver, using messages with an empty

body and a file attachment. Two types and four sizes of files



Figure 2. Sending/receiving an e-mail

were used: plain text or binary data, with sizes of 1K, 10K,

100K, or 1Mbyte. All tests were done in a local network,

using Pentium IV 2.0 GHz computers to run the p2pMTA

agents. As the latency times observed in the OpenDHT in-

frastructure were high and unstable, a set of local Bamboo

servers was used to provide the DHT service. The same

tests were repeated on a conventional SMTP system, for

comparison.

Figure 3 shows the time needed to receive 1000 mes-

sages in p2pMTA and the corresponding time using SMTP.

The conventional system performs better for small mes-

sages, but its time increases faster than p2pMTA for big-

ger messages. Higher times in p2pMTA are mainly due

to the DHT look-ups and the processor-intensive decryp-

tion and hashing procedures applied to each message. Also,

p2pMTA times show the effects of the GPG compression:

transfer times for text messages are smaller than transfer

times for binary messages.
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Figure 3. Time to receive 1000 messages

Figure 4 compares the network traffic in both situa-

tions. The network traffic plotted is the sum of inbound

and outbound traffics on the receiver. Network traffic us-

ing p2pMTA may be smaller than in the conventional sys-

tem, because messages are encrypted and compressed. This

effect is visible on bigger text messages, because they are

more compressible.
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Figure 4. Network traffic to receive 1000 mes-

sages

In the previous tests, the receiver accepts all the mes-

sages sent to it. If it decides to ignore some of them (be-

cause it judges they are spam), its network traffic should

reduce accordingly. We evaluate this effect using an experi-

ment in which the sender produces 1000 messages contain-

ing a 10K binary file attached. The receiver accepts only

a given percentage p of the messages sent to it. Figure 5

presents the network traffic observed in the client accord-

ing to p, and shows also the corresponding traffic at the re-

ceiver side in the SMTP system. The traffic reduction is

clear: if the receiver accepts less than 80% of the incoming

messages, its network traffic will be inferior to an equiva-

lent SMTP receiver. It should be noticed that the receiver

traffic is never zero, because it needs to access the DHT to

receive/send notifications.

We are carrying more experiments to evaluate the system

scalability and its dependency on the DHT scalability. Also,

the cost of the replication mechanism is under evaluation.
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6 Conclusion

In this paper we presented an alternative architecture for

e-mail distribution over the Internet. In this architecture,

e-mails are stored in the sender side; senders post notifi-

cations in a global notification service provided by a dis-

tributed hash table. Receivers periodically query it for new

notifications; they can then retrieve the corresponding e-

mails directly from the senders, or just ignore them. Our

architecture got its inspiration from file sharing peer-to-peer

systems, in which users locate the resources of their interest

and retrieve only the files they choose. Also, messages are

replicated among peers to improve their availability.

The main contribution of this architecture is to put the

storage overhead on the sender side; in this context, a spam-

mer would fill its own outbox (and the outboxes of its group

members) instead of receivers’ ones. Also, if a receiver

decides to not receive an e-mail, it will not be transferred

from the sender, saving its bandwidth. The architecture was

implemented in a prototype using COTS components, and

some experiments were carried out to estimate its overhead

compared with a conventional system. Now we are carrying

out experiments to estimate its scalability and robustness.

Some issues remain to be solved or improved. First,

peers should be reachable through HTTP (or other transport

protocol), because receivers will retrieve their e-mails using

it; this may be a problem for peers behind a firewall or NAT

router. Also, the integration of this system to conventional

e-mail systems should be investigated; a possible solution

for this issue is to use relay peers to create a bridge be-

tween both environments. In our prototype, the peer group

is manually defined and static; other methods for manag-

ing peer groups should be investigated. Also, messages are

fully replicated among peers in a group. A more efficient

replication strategy, using techniques as FRS (Fragmenta-

tion, Redundancy, and Scattering [4, 3]), should be defined.

Finally, as each e-mail is replicated, the receiver could re-

trieve parts of it (fragments) from each group member, to

improve retrieval speed; this approach is already used in

file sharing services.
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