This is a pre-print version of our paper published at Elsevier Computer Networks journal,
in may 2007, available at doi:10.1016/j.comnet.2006.09.007

Protecting Host-Based I ntrusion Detectorsthrough Virtual Machines

M. Laureano, C. MaziefoE. Jamhour
Graduate Program in Applied Computer Science
Pontifical Catholic University of Parana — Brazil

lastnamépgi a. pucpr. br

Abstract: Intrusion detection systems continuously watch dhgvity of a
network or computer, looking for attack or intrusievidences. However, host-
based intrusion detectors are particularly vulndiegbas they can be disabled
or tampered by successful intruders. This work psgs and implements an
architecture model aimed at protecting host-basgtusion detectors, through
the application of the virtual machine concept.tva machine environments
are becoming an interesting alternative for seve@ahputing systems, because
of their advantages in terms of cost and portahilithe architecture proposal
presented here makes use of the execution spapasasen provided by a
virtual machine monitor, in order to separate thriision detection system
from the system under monitoring. In consequenoe, intrusion detector
becomes invisible and inaccessible to intruders.e Tlarchitecture
implementation and the tests performed show thaliiaof this solution.

Keywor ds: security, intrusion detection, virtual machines.

! Contact author.

1. Introduction

Several tools contribute to improve the securitpaomputing system. Among them, intrusion
detection systems (IDS) stand out. Such systentincmusly watch the system activity, looking

for attacks or intrusion evidences. Network-basedusion detectors scans data collected from
the network to detect malicious activity, and tlvas be installed on dedicated, well protected
machines. On the other hand, host-based intrusséectbrs analyze local data collected from
computing hosts. Running as processes in the nredit®ystem, they are particularly vulnerable
to successful intruders. Once an intruder entegssistem, it is able to defeat or modify the

intrusion detector, in order to hide his/her pregen

Virtual machines can be used to improve the sgcofia computing system against attacks
to its services [Chen 2001]. The virtual machinacapt was defined in the 1960s: in the IBM
VM/370 environment, a virtual machine created artlesive environment for each user
[Goldberg 1973]. The use of virtual machines isdmeing interesting also in modern computing
systems, because of their advantages in termssbfaca portability [Blunden 2002]. Examples
of currently used virtual machines environments @¥MWare [VMWare 1999] and UML —
User-Mode Linux [Dike 2000]. A frequent use of uat machine —based systems is the so-called
server consolidation: instead of using several [gay€quipments, one uses a single (and more
powerful) hardware equipment, in which severalidgst isolated virtual machines host distinct

operating systems, applications, and services.

This work proposes and implements an architeaoeel aimed at protecting host-based
intrusion detectors, through the application of thiual machine concept. The architecture
proposal presented here makes use of the execspaces separation provided by a virtual
machine monitor, in order to separate the intrusietection system from the system under
monitoring. This separation protects the intrusidetector, as it becomes invisible and
inaccessible to guest processes (and to eventuadl@rs). Through modifications on the virtual
machine monitor, it is possible to transparentlyleod information about the guest operating
system activity, including users and processess @haia is then sent to an external intrusion
detector, running in the host operating system.niysa previous behavior database for

comparison (created from previous executions), itteision detector can look for behavior
deviations in guest users and/or processes. Hitamsion is suspected, a response system can act
in order to prevent or defeat it. This feature asily implemented by intercepting system calls
issued by guest processes.

This article is structured as follows: sectione2alls some virtual machine concepts used in
this work; section 3 introduces intrusion detecttenhniques; section 4 details the proposal,
section 5 describes the current implementationtise® presents experimental results, and
section 7 discusses related work.

2. Virtual Machines

A virtual machine (VM) is defined in [Popek 1974 an efficient and isolated duplicate of a real
machine. Typical uses for virtual machine systentdude the development and testing of new
operating systems, simultaneously running distoperating systems on the same hardware, and

server consolidation [Sugerman 2001].

A virtual machine environment is created bYigual Machine Monitor(VMM), also called
an “operating system for operating systems” [Kel&#®®1]. The monitor creates one or more
virtual machines on a single real machine. Each pivides facilities for an application or a
“guest systefrthat believes to be executing on a standard hare@nvironment. VM monitors
build some properties that are useful in systenurdige like isolation (a software running in a
VM cannot access or modify the monitor or other YM¥pection(the monitor can access the
entire VM state), andhterposition(the monitor can intercept and modify operatissied by a
VM) [Kelem 1991, Garfinkel 2003].

There are two classical approaches to organizeayimachine systemgype | in which the
virtual machine monitor is implemented betweenhbedware and the guest system(s), pe
II, in which the monitor is implemented as a norm@alcpss of an underlying real operating
system, called théost systenjChen 2001]. This article considers the applicatal type I
virtual machine environments in system security.

Standard PC processors provide no adequate supmortirtualization [Robin 2000].
Consequently, virtualization overhead can be al hg50% of total computing time [Blunden
2002, Dike 2000, VMWare 1999]. However, recent aesle significantly reduced such costs
under 10%, as shown in [King 2002, King 2003, Wketa2002]. Using advanced techniques
like on-the-fly code rewriting and host system finaing, the Xen project[Barham 2003]
obtained average computing costs under 3% foraligimg Linux, FreeBSD, and Windows XP.

These works open many perspectives on the usetoévimachines in production environments.

3. Intrusion detection

An Intrusion Detection System (IDS) continuousljiects and analyzes data from a computing
system, aiming to detect intrusive actions. Witbpest to the origin of analyzed data, there are
two main approaches for intrusion detection [Al&99]: network-based ID8NIDS), which are
based on watching the network traffic flowing thgbuthe systems to monitor, ahdst-based
IDS (HIDS), which are based on watching local activity a host, like processes, network
connections, system calls, log files, etc. The me#akness of host-based intrusion detection is
its relative fragility: in order to collect systeswtivity data, the HIDS software (or an agent an it
behalf) should be installed in the machine to nwnithis agent can be deactivated or tampered
by a successful intruder, in order to mask hisfitesence.

Techniques used to analyze collected data in daldetect intrusions can be classified in:
signature detectignwhen collected data are compared to a base ofrkradtack patterns (or
signature$, andanomaly detectionwhen collected data are compared to previousisedtdata
representing the normal activity of the system.mality deviations are then signaled as threats.

4. Protecting Intrusion Detectorsthrough Virtual Machines

As previously shown, host-based IDS are vulneréblocal attacks, because the intruder can
disable or tamper them. The use of virtual machprevides a solution to this problem. The
proposal presented here allows building more ridiabst-based intrusion detection systems.

The proposal’'s main idea is to encapsulate theesy$o monitor inside a virtual machine,
which is monitored from outside (the host systeifle intrusion detection and response
mechanisms are implemented outside the virtual mach.e. out of reach of intruders. This
proposal considers a type Il virtual machine maniso the detection and response system can

be implemented as normal processes on the hosinsybig. 1 illustrates the main components
of the proposed architecture.

host system

firewall guest system

port H port
[l [
-) H 1
block ports or, l ﬂ syscalls

connections

actionsonth[guest kernel]
guest syste

response I::> Type Il VM monitor

alarms guest syste
activity data
Y
intrusion detector <:I IDS
base
; ; —
Access control <}J<::I

[host kernel]

hardware

Figure 1. Proposed architecture

The interaction of guest system processes withotliside world is done only through the
network, using a software firewall managed by tbstlikernel (like Linuxptables for instance).
Under the guest system’s viewpoint, it is an exkfinewall, therefore inaccessible to intruders.

The main architecture modules are ih&usion detectormodule, which compares data
collected from the guest system against a prewoslredIDS databasgethe access control
module, which checks if processes and users arerkramd respect a previously budltcess
control list, and theresponsanodule, which receiveaslarmsissued by the intrusion detector or

the access control module and transforms themciionson the guest system and/or the host
firewall.

The interactions between the guest system anththesion detection and response modules
are carried out through the virtual machine monifbwo types of interaction are defined:
monitoring in which guest data is supplied by the virtuachiae monitor for external analysis
and storing, andesponseas the response module can act on the guestrsysteesponse to
intrusions. Beyond actions on the guest systemrdgbponse module can also interact with the
host firewall, blocking ports and connections te guest system as needed.

4.1 Detecting intrusions on the guest system

The system calls issued by a process constitutehasource of information about its activity.
Several papers describe techniques for anomalydhiasesion detection using such data. In the
proposal presented in [Forrest 1996, Hofmeyr 1998ktem calls issued by a process are
sequentially recorded, discarding their paramefings execution history is then transformed in
sets of sequences of lengthThe collection of all possible sequences of lerigtiefines the
normal behavior of that process. Any sequenck yfstem calls issued by that process and not
present in its normal behavior (previously storedugnces) is considered an anomaly. To
illustrate that technique, let us consider a UNI&gess which issued the following system calls
during its execution:

[open read nmmap mmap open read nmap]
Adoptingk=3, the following set of sequences is obtained:

open read nmmap]

read nmap nmmap |

[
[
[mmap nmmap open]
[map open read]
[

open read mrmap]

If the process issues a different sequence, ligpgn open read], it should be placed
under suspicion. Despite the set of system callseteystem-dependant and the capture of the
complete behavior of a process to be potentialljod@us, this method presents a good
efficiency, as shown by their authors [Hofmeyr 1998

Although our current implementation adopted thi®raaly-based approach for intrusion
detection, using the system call sequence anaygisithm, the architecture presented in figure
1 is generic enough to easily accept other commpnoaches.

4.2 Access Control

Beyond anomaly-based intrusion detection, guest pgedvided by the virtual machine monitor
can be used to carry out other analysis. One istiage possibility is to compare guest system
activity against a previously stored access-conisdl (ACL) which defines which users are
allowed to run which executables. Users and/or @eadtes not in the ACL should have their
processes labeled as suspect. This facility is igeav by theaccess control modulen our
architecture. As the architecture does not imposgeaific access-control model, more complex
models can be used as well.

4.3 Learning and monitoring

The system has two operation modedearning modeand amonitoring mode When in the
learning mode, the system stores the sequencesteins calls for guest processes. Also, all the
processes executing in the guest system and thgpective users are recordedaashorized
processes and users, thus automatically generatireccess-control list (ACL). Therefore, the
learning mode allows recording the “normal behdvidithe system, collecting essential data for
further intrusion detection and ACL violations.

When in monitoring mode, the intrusion detectiondule receives data from the virtual
machine monitor and compares it to the “normal’adstiored previously, during the learning
phase. The current prototype analyzes sequen@®siaim calls issued by guest processes, using

the algorithm presented in [Hofmeyr 1998]. If ateys call sequence issued by a given process
is not found in the stored data, an anomalous t8uas signaled and that process is declared
suspect. Also, processes not respecting the prayigenerated ACL are declared suspect by the
access control module.

4.4 Restricting suspect processes

Suspect processes are to be restricted in thegsado the guest system, to prevent harmful
actions. Such restriction is currently implemenssddenying suspect processes access to some
system calls. The papers [Bernaschi 2000, Berngab] classify the UNIX system calls in
functionality groups (communication, file systendanemory management are some examples)
andlevels of threatAccording to them, system calls classified iretttrievel 1 can be used to get
privileged access to the operating system; thel wontains system calls that can be used for
denial of service attacks; system calls able topromise processes are classed in threat level 3;

finally, system calls in level 4 are harmless fgstem security.

This classification is being used here as folloalsthe system calls which can be used to
gain privileged access to the guest operating sys$ttassified as threat level 1 in [Bernaschi
2002] and shown in table 1) are denied for sugpextesses. This mechanism is implemented by
the virtual machine monitor, which can intercepsteyn calls issued by guest processes. Using
this approach, the guest operating system cantésalauspect process without causing severe
impact on other guest processes.

Table 1: System Calls denied to suspect processes

Group System Calls
. . open link unlink chnod | chown renane
File system and devices ,
fchown chown nmknod nmount synlink fchnod
execve setgid setreuid setregid setgroups
Process management setfsuid setfsgid setresuid setresgid
setuid

Module management init_nodul e

The architecture presented here keeps the deteatid response system out of reach of
intruders. However, to guarantee the system sgciiig important to observe that interactions
with the guest system always must be done thrdoglvittual machine monitor. Also, the virtual
machine monitor must be inaccessible to guest syptecesses (this is a conceptual property of
virtual machine monitors). Finally, all network gmes must be provided by guest system

processes; network access to the underlying hetrsyshould be carefully controlled.

5. Current implementation

A prototype was implemented in a Linux platformjngsthe virtualUser-Mode Linux(UML)
monitor [Dike 2000]. UML implements a type Il mamif which allows running Linux guest
systems on top of a Linux host. It should be natiteat UML performance is fair under
commercial products like VMWare [VMWare 1999], biutis open source. UML code was
modified to allow extracting detailed data from theest system, like the system calls issued by
guest processes. The communication between the tibtiitor and the monitoring process was
done through named pipes (this way, the host dpgratystem synchronizes the data flow
between them).

Two different implementations were built:sgnchronousand anasynchronousne. In
the synchronous implementation, each system calie by a guest process is sent by the
monitor to the external IDS; the guest process gmusitil the system call is validated. This
approach is simpler to implement, but imposes & pigrformance cost on guest processes. On
the other hand, the asynchronous implementatiomoi® complex but offers better performance.
In such approach, the monitor sends each systdnssaéd by guest processes to the external
IDS; guest processes are not imposed to wait fetegy call validations. If the IDS detects
suspect actions coming from a guest process, litwaitn the monitor through an UNIX signal.
This approach leads to a small time gap betwegossible) malicious action performed by a
guest process and its countermeasures (classficatisuch process as suspect).

The current ACL implementation consists simply antable containing pairsuf d,
pat h] of authorized users and executables (the taljpats wildcards on both fields). Any

process not matching an ACL entry will be labelsdaspect.

6. Experimental results

Using the prototype, some time measures were daoig on the execution of basic user
commands, in order to evaluate the performancedtmpfethe proposal. The utilitigss, f i nd,
I s, andwho were selected because they are UNIX tools fredyueéampered by intruder root

kits, and because they can generate a large nusfibgstem calls during their execution.

The command execution times were measured insftuations: a) in the host system, b)
in the original guest system, c) in the guest systé learning mode, d) in the guest system on
monitoring mode, and e) in the guest system on twong mode, but using an asynchronous
implementation. Observed variances were under 5%llitime measurements. The hardware
used in the experiments was a dual-processor s@ved P3 1130 MHz, 2 GBytes RAM). The
host system was running a 2.6.9 SMP Linux kermel,the guest systems used single-CPU 2.6.9
Linux kernels.

Table 2 presents the average execution times doh eommand and their relative
overheads. The number of syscalls issued by eaotmenod execution is also presented.
Execution times observed in the guest system @)Yarsuperior to those observed in the host
system (a); this is due to the high virtualizatiowerhead presented by UML. Also, for the
synchronous implementation, the overheads imposethddifications in the virtual machine
monitor to interact with the external learning,etgton, and response mechanisms are quite high,
in both modes (c and d). This cost is due to the-amtimized implementation of the learning
and monitoring routines and of their interactiothithe UML monitor.

Table 2: Average execution times (milisseconds)

find / > Is -laR / >
Command ps —ef /devinull /devinull who b
of system calls 536 10055 17225 96
(a) host Time 25 125 802 5
Time 68 484 1160 29
(b) guest overhead 172% 287% 44% 480%
relative to (a)
time 81 812 1784 32
(c) learning mode overhead 0 0 0 0
relative to (b) 19% 67% 53% 10%
(d) synchronous O\;Zmeead 107 857 1790 33
i i 0, 0, 0, 0,
monitoring mode relative to (b) 57% 7% 54% 13%
time 68 532 1232 30
(e) asynchronous hoad
monitoring mode overnea 9 9 9 0
g relative to (b) 0% 10% 6% 3%

In order to evaluate the impact of our proposalgaest processes using the network,
some tests were carried out using Wget tool (a command-line HTTP/FTP client). The tests
consisted on downloading 100Kb and 1Mb remote .filegble 3 summarizes the results, which
show overheads under 10% when using the asynchsanguiementation.

Table 3: Average download times (milisseconds)

Test 100Kb remote file 1 Mb remote file
of system calls 394 1737
(a) host Time 28 154
Time
(b) guest 68 212
overhead relative to (a) 143% 37%
. time 81 432
(c) learning mode
overhead relative to (b) 19% 103%
(d) synchronous Time 117 481
monitoring mode .
rornng overhead relative to (b) 2% 126
(e) asynchronous time 71 229

monitoring mode .
9 overhead relative to (b) 4% 8%

Additionally, in order to evaluate the effectiveseof the architecture in detecting and

defeating intrusions, some tests have been castiedsing popularootkits (described in table 3

and available at http://www.antiserver.it/Backd&wetkit/).

Table 4: Rootkits used to test the prototype

Name
FK 0.4
Adore
ARK 1.0
Knark v.2.4.3

hhp-trosniff

ulogin.c

Description
Linux Kernel Module rootkit and Trojan SSH.
Hides files, directories, processes, network taffiinstalls
a backdoor and a control program.
Ambient's Rootkit for Linux . Includes backdoor siens
of commands syslogd , login , sshd , Is, du ppBee
killall, and netstat .
Hides files, network traffic, processes and redgec
program execution.
Complete set of modifications of ssh , ssh2m ssada,
openssh , to extract and to register origin, dagtin, host
name, user name, and password.
Universal login Trojan - Used to record login naraed
passwords.

Theserootkits modify commands of the original operating systenpitevent their detection

(hiding the intruder's processes, files, networknroections and so) and to steal typed

information like logins and passwords (through rfiodtions in commands likeel net , sshd

andl ogi n). All tools available in those rootkits were exeiwith standard parameters, and

all the modifications inserted by them were det@ateall the executions.

The tests evidenced the effectiveness and complamity of both mechanisms implemented

in the system: the intrusion detection mechanistaaie and hinders the execution of known but

tampered binary files, while the access controtléis the execution of unknown binary files, or

processes launched by unknown or unauthorized.users

7. Related work

The paper [Chen 2001] cited some benefits the tisetaal machines can bring to the security

and compatibility of systems, as the capture aodgssing of log messages, intrusion detection

through the control of virtual machine internaltsjeor system migration easiness. However, the
article does not demonstrate how these proposalgiagibe structured and implemented, nor
analyzes their impact on system performance.

The reference [Dunlap 2002] describes an expegiarfcuse of virtual machines for the
security of systems. The proposal defines an irgdrate layer between the monitor and the host
system, calledRevirt This layer captures the data sent throughstfsdogprocess (the standard
UNIX logging daemon) of the virtual machine and @it to the host system for saving and
later analysis. However, if the virtual system ismpromised, thesyslog daemon can be
terminated and/or the log messages can be maregdubgt the invader, and consequently are no
more reliable.

The work described in [Garfinkel 2003] is the @sisto our approach. It defines an
architecture for intrusion detection in virtual rhaees called VMI-IDS Yirtual Machine
Introspection Intrusion Detection Sysfenfiiheir approach considers the use of a type litogn
executing directly on top of the hardware. The i&cutes in a privileged virtual machine and
scans data extracted from the other VMs, seardaingtrusion evidences. Only the low-level
internal state of each virtual machine is analyzgthout taking in account the activities carried
out by its guest processes. Also, the system ragpability is limited: in case of intrusion
suspicion, the suspect virtual machine is susperidedieeper analysis; if the intrusion is
confirmed, the virtual machine is restarted frosaée state.

That approach differs from our proposal in sevasgects, like the nature of collected data,
the intrusion detection methods, the access cofgadlire, and more specific intrusion response.
Our proposal allows analyzing processes separatdyecting anomalous activities and
hindering intrusions from compromised processess Mmay, perturbations on valid guest
processes are minimized. Moreover, there is no meedispend the entire virtual machine for
intrusion confirmation. Another unique feature iar @roposal is the use of an authorization
model (ACL) for users and processes, automaticgdhyerated during the learning phase.

An alternative approach to protect intrusion detecfrom local attacks could be carried out
through the use of multiple user-contexts. Somemnteoperating system kernels [Pfitzmann

2001, Embry 2001, VServer 2004, Tucker 2004] cafindeseveral autonomous and isolated
user contexts. In such approach, the intrusioncttateand the response system would be
installed on a more privileged context, from whittey could monitor and act on processes
running in the other contexts. This approach cdmeae good performance results, but imposes
the same operating system to all user contexts.

8. Conclusion

This paper describes a proposal to increase thariseof computing systems using virtual
machines. The basis of the proposal is to monit@sgprocesses’ actions through an intrusion
detection system, external to the virtual machiree data used in intrusion detection is obtained
from the virtual machine monitor and analyzed by IBX$ process in the underlying real
machine. The detection system is inaccessible ttuali machine processes and cannot be
subverted by intruders. Also, the intrusion detecttmodule is able to track the activity of
isolated processes, and the response module daistrégeir execution without disturbing other
non-related guest processes.

The main objective of the project, to hinder tixeaition of suspect process in the virtual
machine and consequently avoid the system compeomigas reached with the current
prototype. However, complementary work must be dtmémprove the performance of the
current intrusion detection and response mechaarsthus to minimize its overhead. We are
currently investigating to UML, and improving thercent prototype implementation.

Another aspect to be refined is to define morgilble ways to interact with the guest kernel,
allowing killing or suspending suspect guest preess Also, the interactions between the
response module and the host system firewall, twkbsuspect network traffic, need to be
detailed and implemented.

In order to ease the use of the system, next yqmowill allow both monitoring and learning
modes to occur simultaneously, for distinct proess3his would allow the system to “learn”
about a recently installed application, while monig the other guest processes.

Other questions to be studied include implementlatection mechanisms based on other
relevant data, like the network traffic generatgdt® virtual machine, and the behavior of guest
users. Maybe faster and more sophisticated algositifor intrusion detection can be
implemented based of such information, helping educe the occurrence of false results

(positive and negative).

Publication history for this research:

» 08/04: Euromicro 2004: short version, without asyoaous implementation and ACL.
» 04/04: WSeg 2004 (Brazilian workshop on securig@m, in Portuguese.

» 10/03: SSI 2003 (Brazilian conference on securitggt version, in Portuguese.

All above papers are available online at http://wppgia.pucpr.br/pesquisa/sisdist/publica.htm.

Refer ences

J. Allen, A. Christie, W. Fithen, J. McHugh, J. IRt E. Stoner. State of the Practice of
Intrusion Detection Technologigs Technical Report CMU/SEI-99-TR028. Carnegie
Mellon University, 1999.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. lBarA. Ho, R. Neugebauer, I. Pratt, A.
Warfield. “Xen and the Art of Virtualizatién Proceedings of the ACM Symposium on
Operating Systems Principles — SOSP, 2003.

M. Bernaschi, E. Grabrielli, L. ManciniOperating System Enhancements to Prevent the Misuse
of System Calls Proceedings of the ACM Conference on Computet @ommunications
Security, 2000.

M. Bernaschi, E. Grabrielli, L. Mancini.REMUS: A Security-Enhaced Operating System
ACM Transactions on Information and System Secu¥itl 5, number 1, 2002.

B. Blunden. ¥Virtual Machine Design and Implementation in C/C+¥Vordware Publ. Plano,
Texas — USA, 2002.

P. Chen, B. Noble.When Virtual Is Better Than RéaProceedings of the Workshop on Hot
Topics in Operating Systems — HotOS, 2001.

J. Dike. ‘A User-mode port of the Linux KeridProceedings of the 4th Annual Linux Showcase
& Conference. Atlanta — USA, 2000.

G. Dunlap, S. King, S. Cinar, M. Basrai, P. ChdReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replgy Proceedings of the Symposium on Operating
Systems Design and Implementation — OSDI, 2002.

R. Embry.FreeVSD Enables Safe Experimentatibimux Journal, Issue 87, July 2001.

S. Forrest, S. Hofmeyr, A. SomayajA ‘sense of self for Unix proces5eBroceedings of the
IEEE Symposium on Research in Security and Privh@96.

T. Garfinkel, M. Rosenblum A Virtual Machine Introspection Based Architecttioe Intrusion
Detectiori, Proceedings of the Network and Distributed Syst8ecurity Symposium —
NDSS, 2003.

R. Goldberg. Architecture of Virtual Machinés AFIPS National Computer Conference. New
York — NY — USA, 1973.

S. Hofmeyr, S. Forrest, A. Somayajintrusion Detection using Sequences of System "Calls
Journal of Computer Security, 6:151-180, 1998.

N. Kelem, R. Feiertag. A Separation Model for Virtual Machine MonitdrsResearch in
Security and Privacy. Proceedings of the IEEE Cdmp8ociety Symposium, pages 78-86,
1991.

S. King, P. Chen. Operating System Extensions to Support Host BasedalVMachines,
Technical Report CSE-TR-465-02, University of Migdun, 2002.

S. King, G. Dunlap, P. ChenOperating System Support for Virtual Machihd®roceedings of
the USENIX Technical Conference, 2003.

Linux VServer Project. http://www.linux-vserver.Qi2004.

B. Pfitzmann, J. Riordan, C. Stuble, M. WaidnerWeber.The PERSEUS System Architecture
Research Report RZ 3335 04/09/01, IBM Researchsionj Zurich, April 2001.

G. Popek, R. Goldberg. Formal Requirements for Virtualizable Third Genévat
Architecture$, Communications of the ACM. Volume 17, numbepd@ges 412-421, 1974.

J. Robin, C. Irvine. Analysis of the Intel Pentium's Ability to Supp@i®ecure Virtual Machine
Monitor”. Usenix Security Symposium, 2000.

J. Sugerman, V. Ganesh, L. Beng-HoMirtualizing I/O Devices on VMware Workstation’s
Hosted Virtual Machine Monitor Proceedings of the USENIX Annual Technical
Conference, 2001.

A. Tucker, D. ComaySolaris Zones: Operating System Support for SeBarsolidation 3rd
Usenix Virtual Machine Research & Technology Synipas 2004.

VMware Inc. ‘VMware Technical White PageiPalo Alto — CA — USA, 1999.

A. Whitaker, M. Shaw, S. GribbleDenali: A Scalable Isolation KerriglProceedings of the
10th ACM SIGOPS European Workshop, Saint-Emilidfrance, 2002.

