

Protecting Host-Based Intrusion Detectors through Virtual Machines

M. Laureano, C. Maziero1, E. Jamhour

Graduate Program in Applied Computer Science

 Pontifical Catholic University of Paraná – Brazil

lastname@ppgia.pucpr.br

Abstract: Intrusion detection systems continuously watch the activity of a

network or computer, looking for attack or intrusion evidences. However, host-

based intrusion detectors are particularly vulnerable, as they can be disabled

or tampered by successful intruders. This work proposes and implements an

architecture model aimed at protecting host-based intrusion detectors, through

the application of the virtual machine concept. Virtual machine environments

are becoming an interesting alternative for several computing systems, because

of their advantages in terms of cost and portability. The architecture proposal

presented here makes use of the execution spaces separation provided by a

virtual machine monitor, in order to separate the intrusion detection system

from the system under monitoring. In consequence, the intrusion detector

becomes invisible and inaccessible to intruders. The architecture

implementation and the tests performed show the viability of this solution.

Keywords: security, intrusion detection, virtual machines.

1 Contact author.

8LMW�MW�E�TVI�TVMRX�ZIVWMSR�SJ�SYV�TETIV�TYFPMWLIH�EX�)PWIZMIV�'SQTYXIV�2IX[SVOW�NSYVREP�
MR�QE]�������EZEMPEFPI�EX�HSM���������N�GSQRIX������������

1. Introduction

Several tools contribute to improve the security of a computing system. Among them, intrusion

detection systems (IDS) stand out. Such systems continuously watch the system activity, looking

for attacks or intrusion evidences. Network-based intrusion detectors scans data collected from

the network to detect malicious activity, and thus can be installed on dedicated, well protected

machines. On the other hand, host-based intrusion detectors analyze local data collected from

computing hosts. Running as processes in the monitored system, they are particularly vulnerable

to successful intruders. Once an intruder enters the system, it is able to defeat or modify the

intrusion detector, in order to hide his/her presence.

 Virtual machines can be used to improve the security of a computing system against attacks

to its services [Chen 2001]. The virtual machine concept was defined in the 1960s: in the IBM

VM/370 environment, a virtual machine created an exclusive environment for each user

[Goldberg 1973]. The use of virtual machines is becoming interesting also in modern computing

systems, because of their advantages in terms of cost and portability [Blunden 2002]. Examples

of currently used virtual machines environments are VMWare [VMWare 1999] and UML –

User-Mode Linux [Dike 2000]. A frequent use of virtual machine –based systems is the so-called

server consolidation: instead of using several physical equipments, one uses a single (and more

powerful) hardware equipment, in which several distinct, isolated virtual machines host distinct

operating systems, applications, and services.

 This work proposes and implements an architecture model aimed at protecting host-based

intrusion detectors, through the application of the virtual machine concept. The architecture

proposal presented here makes use of the execution spaces separation provided by a virtual

machine monitor, in order to separate the intrusion detection system from the system under

monitoring. This separation protects the intrusion detector, as it becomes invisible and

inaccessible to guest processes (and to eventual intruders). Through modifications on the virtual

machine monitor, it is possible to transparently collect information about the guest operating

system activity, including users and processes. This data is then sent to an external intrusion

detector, running in the host operating system. Using a previous behavior database for

comparison (created from previous executions), the intrusion detector can look for behavior

deviations in guest users and/or processes. If an intrusion is suspected, a response system can act

in order to prevent or defeat it. This feature is easily implemented by intercepting system calls

issued by guest processes.

 This article is structured as follows: section 2 recalls some virtual machine concepts used in

this work; section 3 introduces intrusion detection techniques; section 4 details the proposal,

section 5 describes the current implementation, section 6 presents experimental results, and

section 7 discusses related work.

2. Virtual Machines

A virtual machine (VM) is defined in [Popek 1974] as an efficient and isolated duplicate of a real

machine. Typical uses for virtual machine systems include the development and testing of new

operating systems, simultaneously running distinct operating systems on the same hardware, and

server consolidation [Sugerman 2001].

 A virtual machine environment is created by a Virtual Machine Monitor (VMM), also called

an “operating system for operating systems” [Kelem 1991]. The monitor creates one or more

virtual machines on a single real machine. Each VM provides facilities for an application or a

“guest system” that believes to be executing on a standard hardware environment. VM monitors

build some properties that are useful in system security, like isolation (a software running in a

VM cannot access or modify the monitor or other VM), inspection (the monitor can access the

entire VM state), and interposition (the monitor can intercept and modify operations issued by a

VM) [Kelem 1991, Garfinkel 2003].

 There are two classical approaches to organize virtual machine systems: type I, in which the

virtual machine monitor is implemented between the hardware and the guest system(s), and type

II , in which the monitor is implemented as a normal process of an underlying real operating

system, called the host system [Chen 2001]. This article considers the application of type II

virtual machine environments in system security.

 Standard PC processors provide no adequate support for virtualization [Robin 2000].

Consequently, virtualization overhead can be as high as 50% of total computing time [Blunden

2002, Dike 2000, VMWare 1999]. However, recent research significantly reduced such costs

under 10%, as shown in [King 2002, King 2003, Whitaker 2002]. Using advanced techniques

like on-the-fly code rewriting and host system fine-tuning, the Xen project [Barham 2003]

obtained average computing costs under 3% for virtualizing Linux, FreeBSD, and Windows XP.

These works open many perspectives on the use of virtual machines in production environments.

3. Intrusion detection

An Intrusion Detection System (IDS) continuously collects and analyzes data from a computing

system, aiming to detect intrusive actions. With respect to the origin of analyzed data, there are

two main approaches for intrusion detection [Allen 1999]: network-based IDS (NIDS), which are

based on watching the network traffic flowing through the systems to monitor, and host-based

IDS (HIDS), which are based on watching local activity on a host, like processes, network

connections, system calls, log files, etc. The main weakness of host-based intrusion detection is

its relative fragility: in order to collect system activity data, the HIDS software (or an agent on its

behalf) should be installed in the machine to monitor. This agent can be deactivated or tampered

by a successful intruder, in order to mask his/her presence.

 Techniques used to analyze collected data in order to detect intrusions can be classified in:

signature detection, when collected data are compared to a base of known attack patterns (or

signatures), and anomaly detection, when collected data are compared to previously stored data

representing the normal activity of the system. Normality deviations are then signaled as threats.

4. Protecting Intrusion Detectors through Virtual Machines

As previously shown, host-based IDS are vulnerable to local attacks, because the intruder can

disable or tamper them. The use of virtual machines provides a solution to this problem. The

proposal presented here allows building more reliable host-based intrusion detection systems.

 The proposal’s main idea is to encapsulate the system to monitor inside a virtual machine,

which is monitored from outside (the host system). The intrusion detection and response

mechanisms are implemented outside the virtual machine, i.e. out of reach of intruders. This

proposal considers a type II virtual machine monitor, so the detection and response system can

be implemented as normal processes on the host system. Fig. 1 illustrates the main components

of the proposed architecture.

hardware

guest kernel

guest system

Type II VM monitor

syscalls

process

response

host kernel

IDS
base

Access control ACL

firewall

port port

intrusion detector

host system

block ports or
connections

actions on the
guest system

guest system
activity data

alarms

Figure 1. Proposed architecture

 The interaction of guest system processes with the outside world is done only through the

network, using a software firewall managed by the host kernel (like Linux iptables, for instance).

Under the guest system’s viewpoint, it is an external firewall, therefore inaccessible to intruders.

 The main architecture modules are the intrusion detector module, which compares data

collected from the guest system against a previously stored IDS database, the access control

module, which checks if processes and users are known and respect a previously built access

control list, and the response module, which receives alarms issued by the intrusion detector or

the access control module and transforms them in actions on the guest system and/or the host

firewall.

 The interactions between the guest system and the intrusion detection and response modules

are carried out through the virtual machine monitor. Two types of interaction are defined:

monitoring, in which guest data is supplied by the virtual machine monitor for external analysis

and storing, and response, as the response module can act on the guest system in response to

intrusions. Beyond actions on the guest system, the response module can also interact with the

host firewall, blocking ports and connections to the guest system as needed.

4.1 Detecting intrusions on the guest system

The system calls issued by a process constitute a rich source of information about its activity.

Several papers describe techniques for anomaly-based intrusion detection using such data. In the

proposal presented in [Forrest 1996, Hofmeyr 1998], system calls issued by a process are

sequentially recorded, discarding their parameters. This execution history is then transformed in

sets of sequences of length k. The collection of all possible sequences of length k defines the

normal behavior of that process. Any sequence of k system calls issued by that process and not

present in its normal behavior (previously stored sequences) is considered an anomaly. To

illustrate that technique, let us consider a UNIX process which issued the following system calls

during its execution:

 [open read mmap mmap open read mmap]

 Adopting k=3, the following set of sequences is obtained:

 [open read mmap]

 [read mmap mmap]

 [mmap mmap open]

 [mmap open read]

 [open read mmap]

 If the process issues a different sequence, like [open open read], it should be placed

under suspicion. Despite the set of system calls to be system-dependant and the capture of the

complete behavior of a process to be potentially laborious, this method presents a good

efficiency, as shown by their authors [Hofmeyr 1998].

 Although our current implementation adopted this anomaly-based approach for intrusion

detection, using the system call sequence analysis algorithm, the architecture presented in figure

1 is generic enough to easily accept other common approaches.

4.2 Access Control

Beyond anomaly-based intrusion detection, guest data provided by the virtual machine monitor

can be used to carry out other analysis. One interesting possibility is to compare guest system

activity against a previously stored access-control list (ACL) which defines which users are

allowed to run which executables. Users and/or executables not in the ACL should have their

processes labeled as suspect. This facility is provided by the access control module in our

architecture. As the architecture does not impose a specific access-control model, more complex

models can be used as well.

4.3 Learning and monitoring

The system has two operation modes: a learning mode and a monitoring mode. When in the

learning mode, the system stores the sequences of system calls for guest processes. Also, all the

processes executing in the guest system and their respective users are recorded as authorized

processes and users, thus automatically generating an access-control list (ACL). Therefore, the

learning mode allows recording the “normal behavior” of the system, collecting essential data for

further intrusion detection and ACL violations.

 When in monitoring mode, the intrusion detection module receives data from the virtual

machine monitor and compares it to the “normal” data stored previously, during the learning

phase. The current prototype analyzes sequences of system calls issued by guest processes, using

the algorithm presented in [Hofmeyr 1998]. If a system call sequence issued by a given process

is not found in the stored data, an anomalous situation is signaled and that process is declared

suspect. Also, processes not respecting the previously generated ACL are declared suspect by the

access control module.

4.4 Restricting suspect processes

Suspect processes are to be restricted in their access to the guest system, to prevent harmful

actions. Such restriction is currently implemented as denying suspect processes access to some

system calls. The papers [Bernaschi 2000, Bernaschi 2002] classify the UNIX system calls in

functionality groups (communication, file system and memory management are some examples)

and levels of threat. According to them, system calls classified in threat level 1 can be used to get

privileged access to the operating system; the level 2 contains system calls that can be used for

denial of service attacks; system calls able to compromise processes are classed in threat level 3;

finally, system calls in level 4 are harmless for system security.

 This classification is being used here as follows: all the system calls which can be used to

gain privileged access to the guest operating system (classified as threat level 1 in [Bernaschi

2002] and shown in table 1) are denied for suspect processes. This mechanism is implemented by

the virtual machine monitor, which can intercept system calls issued by guest processes. Using

this approach, the guest operating system can isolate a suspect process without causing severe

impact on other guest processes.

Table 1: System Calls denied to suspect processes

Group System Calls

File system and devices
open link unlink chmod lchown rename

fchown chown mknod mount symlink fchmod

Process management

execve setgid setreuid setregid setgroups

setfsuid setfsgid setresuid setresgid

setuid

Module management init_module

 The architecture presented here keeps the detection and response system out of reach of

intruders. However, to guarantee the system security it is important to observe that interactions

with the guest system always must be done through the virtual machine monitor. Also, the virtual

machine monitor must be inaccessible to guest system processes (this is a conceptual property of

virtual machine monitors). Finally, all network services must be provided by guest system

processes; network access to the underlying host system should be carefully controlled.

5. Current implementation

A prototype was implemented in a Linux platform, using the virtual User-Mode Linux (UML)

monitor [Dike 2000]. UML implements a type II monitor, which allows running Linux guest

systems on top of a Linux host. It should be noticed that UML performance is fair under

commercial products like VMWare [VMWare 1999], but it is open source. UML code was

modified to allow extracting detailed data from the guest system, like the system calls issued by

guest processes. The communication between the UML monitor and the monitoring process was

done through named pipes (this way, the host operating system synchronizes the data flow

between them).

 Two different implementations were built: a synchronous and an asynchronous one. In

the synchronous implementation, each system call issued by a guest process is sent by the

monitor to the external IDS; the guest process pauses until the system call is validated. This

approach is simpler to implement, but imposes a high performance cost on guest processes. On

the other hand, the asynchronous implementation is more complex but offers better performance.

In such approach, the monitor sends each system call issued by guest processes to the external

IDS; guest processes are not imposed to wait for system call validations. If the IDS detects

suspect actions coming from a guest process, it will warn the monitor through an UNIX signal.

This approach leads to a small time gap between a (possible) malicious action performed by a

guest process and its countermeasures (classification of such process as suspect).

 The current ACL implementation consists simply on a table containing pairs [uid,

path] of authorized users and executables (the table supports wildcards on both fields). Any

process not matching an ACL entry will be labeled as suspect.

6. Experimental results

Using the prototype, some time measures were carried out on the execution of basic user

commands, in order to evaluate the performance impact of the proposal. The utilities ps, find,

ls, and who were selected because they are UNIX tools frequently tampered by intruder root

kits, and because they can generate a large number of system calls during their execution.

 The command execution times were measured in five situations: a) in the host system, b)

in the original guest system, c) in the guest system on learning mode, d) in the guest system on

monitoring mode, and e) in the guest system on monitoring mode, but using an asynchronous

implementation. Observed variances were under 5% in all time measurements. The hardware

used in the experiments was a dual-processor server (Dual P3 1130 MHz, 2 GBytes RAM). The

host system was running a 2.6.9 SMP Linux kernel, and the guest systems used single-CPU 2.6.9

Linux kernels.

 Table 2 presents the average execution times for each command and their relative

overheads. The number of syscalls issued by each command execution is also presented.

Execution times observed in the guest system (b) are far superior to those observed in the host

system (a); this is due to the high virtualization overhead presented by UML. Also, for the

synchronous implementation, the overheads imposed by modifications in the virtual machine

monitor to interact with the external learning, detection, and response mechanisms are quite high,

in both modes (c and d). This cost is due to the non-optimized implementation of the learning

and monitoring routines and of their interaction with the UML monitor.

Table 2: Average execution times (milisseconds)

Command ps –ef
find / >

/dev/null
ls -laR / >

/dev/null
who –b

of system calls

536 10055 17225 96

(a) host

Time 25 125 802 5

Time 68 484 1160 29
(b) guest overhead

relative to (a)
172% 287% 44% 480%

time 81 812 1784 32
(c) learning mode overhead

relative to (b)
19% 67% 53% 10%

Time 107 857 1790 33
(d) synchronous
monitoring mode overhead

relative to (b)
57% 77% 54% 13%

time 68 532 1232 30
(e) asynchronous
monitoring mode overhead

relative to (b)
0% 10% 6% 3%

 In order to evaluate the impact of our proposal on guest processes using the network,

some tests were carried out using the wget tool (a command-line HTTP/FTP client). The tests

consisted on downloading 100Kb and 1Mb remote files. Table 3 summarizes the results, which

show overheads under 10% when using the asynchronous implementation.

Table 3: Average download times (milisseconds)

Test 100Kb remote file 1 Mb remote file

of system calls 394 1737

(a) host

Time 28 154

Time 68 212
(b) guest

overhead relative to (a) 143% 37%

time 81 432
(c) learning mode

overhead relative to (b) 19% 103%

Time 117 481 (d) synchronous
monitoring mode

overhead relative to (b) 72% 126

time 71 229 (e) asynchronous
monitoring mode

overhead relative to (b) 4% 8%

 Additionally, in order to evaluate the effectiveness of the architecture in detecting and

defeating intrusions, some tests have been carried out using popular rootkits (described in table 3

and available at http://www.antiserver.it/Backdoor-Rootkit/).

Table 4: Rootkits used to test the prototype

Name Description
FK 0.4 Linux Kernel Module rootkit and Trojan SSH.

Adore Hides files, directories, processes, network traffic. It installs
a backdoor and a control program.

ARK 1.0
Ambient's Rootkit for Linux . Includes backdoor versions
of commands syslogd , login , sshd , ls , du , ps, pstree ,
killall, and netstat .

Knark v.2.4.3 Hides files, network traffic, processes and redirects
program execution.

hhp-trosniff
Complete set of modifications of ssh , ssh2m sshd2, and
openssh , to extract and to register origin, destination, host
name, user name, and password.

ulogin.c Universal login Trojan - Used to record login names and
passwords.

 These rootkits modify commands of the original operating system to prevent their detection

(hiding the intruder’s processes, files, network connections and so) and to steal typed

information like logins and passwords (through modifications in commands like telnet, sshd

and login). All tools available in those rootkits were executed with standard parameters, and

all the modifications inserted by them were detected in all the executions.

 The tests evidenced the effectiveness and complementarity of both mechanisms implemented

in the system: the intrusion detection mechanism detects and hinders the execution of known but

tampered binary files, while the access control hinders the execution of unknown binary files, or

processes launched by unknown or unauthorized users.

7. Related work

The paper [Chen 2001] cited some benefits the use of virtual machines can bring to the security

and compatibility of systems, as the capture and processing of log messages, intrusion detection

through the control of virtual machine internal state) or system migration easiness. However, the

article does not demonstrate how these proposals should be structured and implemented, nor

analyzes their impact on system performance.

 The reference [Dunlap 2002] describes an experience of use of virtual machines for the

security of systems. The proposal defines an intermediate layer between the monitor and the host

system, called Revirt. This layer captures the data sent through the syslog process (the standard

UNIX logging daemon) of the virtual machine and sends it to the host system for saving and

later analysis. However, if the virtual system is compromised, the syslog daemon can be

terminated and/or the log messages can be manipulated by the invader, and consequently are no

more reliable.

 The work described in [Garfinkel 2003] is the closest to our approach. It defines an

architecture for intrusion detection in virtual machines called VMI-IDS (Virtual Machine

Introspection Intrusion Detection System). Their approach considers the use of a type I monitor,

executing directly on top of the hardware. The IDS executes in a privileged virtual machine and

scans data extracted from the other VMs, searching for intrusion evidences. Only the low-level

internal state of each virtual machine is analyzed, without taking in account the activities carried

out by its guest processes. Also, the system response ability is limited: in case of intrusion

suspicion, the suspect virtual machine is suspended for deeper analysis; if the intrusion is

confirmed, the virtual machine is restarted from a safe state.

 That approach differs from our proposal in several aspects, like the nature of collected data,

the intrusion detection methods, the access control feature, and more specific intrusion response.

Our proposal allows analyzing processes separately, detecting anomalous activities and

hindering intrusions from compromised processes. This way, perturbations on valid guest

processes are minimized. Moreover, there is no need to suspend the entire virtual machine for

intrusion confirmation. Another unique feature in our proposal is the use of an authorization

model (ACL) for users and processes, automatically generated during the learning phase.

 An alternative approach to protect intrusion detectors from local attacks could be carried out

through the use of multiple user-contexts. Some recent operating system kernels [Pfitzmann

2001, Embry 2001, VServer 2004, Tucker 2004] can define several autonomous and isolated

user contexts. In such approach, the intrusion detector and the response system would be

installed on a more privileged context, from which they could monitor and act on processes

running in the other contexts. This approach can achieve good performance results, but imposes

the same operating system to all user contexts.

8. Conclusion

This paper describes a proposal to increase the security of computing systems using virtual

machines. The basis of the proposal is to monitor guest processes’ actions through an intrusion

detection system, external to the virtual machine. The data used in intrusion detection is obtained

from the virtual machine monitor and analyzed by an IDS process in the underlying real

machine. The detection system is inaccessible to virtual machine processes and cannot be

subverted by intruders. Also, the intrusion detection module is able to track the activity of

isolated processes, and the response module can restrict their execution without disturbing other

non-related guest processes.

 The main objective of the project, to hinder the execution of suspect process in the virtual

machine and consequently avoid the system compromise, was reached with the current

prototype. However, complementary work must be done to improve the performance of the

current intrusion detection and response mechanism and thus to minimize its overhead. We are

currently investigating to UML, and improving the current prototype implementation.

 Another aspect to be refined is to define more flexible ways to interact with the guest kernel,

allowing killing or suspending suspect guest processes. Also, the interactions between the

response module and the host system firewall, to block suspect network traffic, need to be

detailed and implemented.

 In order to ease the use of the system, next prototype will allow both monitoring and learning

modes to occur simultaneously, for distinct processes. This would allow the system to “learn”

about a recently installed application, while monitoring the other guest processes.

 Other questions to be studied include implementing detection mechanisms based on other

relevant data, like the network traffic generated by the virtual machine, and the behavior of guest

users. Maybe faster and more sophisticated algorithms for intrusion detection can be

implemented based of such information, helping to reduce the occurrence of false results

(positive and negative).

Publication history for this research:

• 08/04: Euromicro 2004: short version, without asynchronous implementation and ACL.

• 04/04: WSeg 2004 (Brazilian workshop on security): idem, in Portuguese.

• 10/03: SSI 2003 (Brazilian conference on security): first version, in Portuguese.

All above papers are available online at http://www.ppgia.pucpr.br/pesquisa/sisdist/publica.htm.

References

J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, E. Stoner. “State of the Practice of

Intrusion Detection Technologies”, Technical Report CMU/SEI-99-TR028. Carnegie

Mellon University, 1999.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, A.

Warfield. “Xen and the Art of Virtualization”, Proceedings of the ACM Symposium on

Operating Systems Principles – SOSP, 2003.

M. Bernaschi, E. Grabrielli, L. Mancini. “Operating System Enhancements to Prevent the Misuse

of System Calls”, Proceedings of the ACM Conference on Computer and Communications

Security, 2000.

M. Bernaschi, E. Grabrielli, L. Mancini. “REMUS: A Security-Enhaced Operating System”,

ACM Transactions on Information and System Security. Vol 5, number 1, 2002.

B. Blunden. “Virtual Machine Design and Implementation in C/C++”, Wordware Publ. Plano,

Texas – USA, 2002.

P. Chen, B. Noble. “When Virtual Is Better Than Real”, Proceedings of the Workshop on Hot

Topics in Operating Systems – HotOS, 2001.

J. Dike. “A User-mode port of the Linux Kernel”, Proceedings of the 4th Annual Linux Showcase

& Conference. Atlanta – USA, 2000.

G. Dunlap, S. King, S. Cinar, M. Basrai, P. Chen. “ReVirt: Enabling Intrusion Analysis through

Virtual-Machine Logging and Replay”, Proceedings of the Symposium on Operating

Systems Design and Implementation – OSDI, 2002.

R. Embry. FreeVSD Enables Safe Experimentation. Linux Journal, Issue 87, July 2001.

S. Forrest, S. Hofmeyr, A. Somayaji. “A sense of self for Unix processes”, Proceedings of the

IEEE Symposium on Research in Security and Privacy, 1996.

T. Garfinkel, M. Rosenblum. “A Virtual Machine Introspection Based Architecture for Intrusion

Detection”, Proceedings of the Network and Distributed System Security Symposium –

NDSS, 2003.

R. Goldberg. “Architecture of Virtual Machines”, AFIPS National Computer Conference. New

York – NY – USA, 1973.

S. Hofmeyr, S. Forrest, A. Somayaji. “Intrusion Detection using Sequences of System Calls”,

Journal of Computer Security, 6:151–180, 1998.

N. Kelem, R. Feiertag. “A Separation Model for Virtual Machine Monitors”, Research in

Security and Privacy. Proceedings of the IEEE Computer Society Symposium, pages 78-86,

1991.

S. King, P. Chen. “Operating System Extensions to Support Host Based Virtual Machines”,

Technical Report CSE-TR-465-02, University of Michigan, 2002.

S. King, G. Dunlap, P. Chen. “Operating System Support for Virtual Machines”, Proceedings of

the USENIX Technical Conference, 2003.

Linux VServer Project. http://www.linux-vserver.org, 2004.

B. Pfitzmann, J. Riordan, C. Stüble, M. Waidner, A. Weber. The PERSEUS System Architecture.

Research Report RZ 3335 04/09/01, IBM Research Division, Zurich, April 2001.

G. Popek, R. Goldberg. “Formal Requirements for Virtualizable Third Generation

Architectures”, Communications of the ACM. Volume 17, number 7, pages 412-421, 1974.

J. Robin, C. Irvine. “Analysis of the Intel Pentium's Ability to Support a Secure Virtual Machine

Monitor”. Usenix Security Symposium, 2000.

J. Sugerman, V. Ganesh, L. Beng-Hong. Virtualizing I/O Devices on VMware Workstation’s

Hosted Virtual Machine Monitor. Proceedings of the USENIX Annual Technical

Conference, 2001.

A. Tucker, D. Comay. Solaris Zones: Operating System Support for Server Consolidation. 3rd

Usenix Virtual Machine Research & Technology Symposium, 2004.

VMware Inc. “VMware Technical White Paper”, Palo Alto – CA – USA, 1999.

A. Whitaker, M. Shaw, S. Gribble. “Denali: A Scalable Isolation Kernel”, Proceedings of the

10th ACM SIGOPS European Workshop, Saint-Emilion – France, 2002.

