
RSVP Policy Control using XACML

Emir Toktar, Edgard Jamhour, Carlos Maziero
Pontifical Catholic University of Paraná, PUCPR, PPGIA

{toktar,jamhour,maziero}@ppgia.pucpr.br

Abstract

This work proposes a XML-based framework for
distributing and enforcing RSVP access control policies,
for RSVP-aware application servers. Policies are
represented by extending XACML, the general purpose
access control language proposed by OASIS. Because
RSVP is a specific application domain, it is not directly
supported by the XACML standard. Hence, this work
defines the XACML extensions required for representing
and transporting the RSVP access control policy
information. The XACML-based framework is proposed
as an alternative to the IETF PCIM-based approach.
Both approaches are compared in this paper.

1. Introduction

Policy based network management (PBNM) is an
important trend for IP-based networks. Recent works
developed by IETF have defined a standard model for
representing policies on different areas of network
management. The groundwork of this model is the PCIM
(Policy Core Information Model), defined by RFC 3060
[5]. PCIM is a platform independent object-oriented
information model. The model defines a generic strategy
for representing network policies as aggregations of rules
expressed in terms of conditions and actions. PCIM is an
abstract model, and it does not define sufficient elements
for describing policies for particular areas of network
management. To address particular areas, PCIM needs to
be extended. IETF itself has already introduced PCIM
extensions for representing IPsec and QoS [10] policies.
Outside IETF, other works explored extensions of PCIM
for the area of access control [6].

Besides IETF, others organizations are proposing
standard policy models for PBNM. The OASIS
(Organization for the Advancement of Structured
Information Standards) proposed a language for
representing access control policies, on general purpose,
denominated XACML (eXtensible Access Control
Markup Language). There are several differences
between the PCIM and the XACML approach. While
PCIM is a core model for representing policies on any
area of network management, XACML is dedicated to
access control. Because PCIM is an abstract model, the
implementation of policies models based on PCIM is a

rather complex task. The XACML, by the other hand, is
simpler of being implemented and deployed. However,
XACML can lack the flexibility for addressing specific
application domains.

Based on this argumentation, this work proposes the
use of the XACML for modeling and distributing RSVP
access control policies for RSVP-aware application
servers. Because RSVP is a specific application domain,
it is not directly supported by the XACML standard.
Hence, this work defines the XACML extensions
required for representing and transporting the RSVP
access control policy information. The paper compares
the proposed XACML-based approach with the standard
PCIM-based approach with respect to implementation
and deployment. By establishing the parallels with PCIM-
based approach, this work defines the futures extensions
required for extending this proposal to other network
elements, such as routers.

This paper is structured as follows: section 2 presents
a short review of the main aspects related to RSVP policy
access control. Section 3 presents an analysis of the
models that can be employed for describing RSVP access
control policies, and the strategies for distributing and
enforcing those policies. The section 4 presents a short
review of the XACML model. The section 5 describes
how the XACML can be used for describing RSVP
policies, and presents the required extensions for adapting
XACML to the RSVP issue. The section 6 describes how
to implement the framework for distributing and
enforcing the RSVP policies described in XACML.
Finally, the conclusion reviews the principal aspects of
this study and indicates the future works.

2. RSVP Policy Control

This section introduces a brief review of the RSVP
protocol, defining the concept of RSVP policy control
and presenting the important terms that will be utilized in
the next sections. The RSVP signalization is composed
by a set of standard messages. The most important
messages are PATH and RESV. The emitter always
initiates the QoS negotiation by sending the message
PATH to the receiver. The PATH message has double
function. It defines the QoS parameters the receiver
should request for the network in order to satisfy the
requisites of the application. It defines, as well, the path

the other RSVP messages and the flow of data will follow
between the emitter and the receiver. A flow of data on
RSVP is a sequence of messages with the same origin,
with same expected QoS, and one or more destinations.
The receiver, on accepting the PATH message, initiates
the process of flow reservation sending the RESV
message to the emitter, along the reverse way defined by
the PATH message. The RESV message consists of a
flow descriptor, formed by the flowspec and filterspec
objects. The filterspec, along with the specification of the
session, defines which packets of data (RSVP flow) must
benefit from the QoS reservation. The QoS specification
is defined by flowspec using two data structures: Rspec
(Reserve Spec), that indicates the service class expected
and Tspec (Traffic Spec) that specifies what will be
transmitted. During the resource reservation setup, two
local decision modules evaluate a RSVP request: the
“policy control module” and the “admission control
module”.

The admission control module determines whether the
node (host or router) has sufficient resources available for
satisfying the QoS request. The policy control module
determines whether the user has administrative
permission for obtaining the reservation [2]. The
parameters for policy and admission control are not
defined and controlled by the RSVP. The protocol merely
transports the parameters to the appropriate module for
interpretation. According to the RFC2205, the sender
application must specify the type of service most
appropriate for its requisites of transmission by passing
the related information to the RSVP daemon in the host
machine [2]. The RSVP daemon after being called, query
the local decision modules, verifying resources and
authorization and, being allowed, initiates the exchange
of RSVP messages with the nearest network element in
the path to the receiver.

As explained in the next sections, the purpose of the
work described in this paper consists in defining and
implementing a mechanism for configuring the RSVP
access control policies (“policy control”) for RSVP-
aware application servers by using XACML, i.e., the
policy control is implemented only by the application
server. However, this proposal also supply the
information for defining the Tspec and Rspec parameters
transported in the PATH and RESV messages. Therefore,
the XACML policy also provides the information used
for “admission control” by the network elements along
the path between the transmitter and the receiver.

3. RSVP Policy Control Strategies

In this paper, the strategy for representing, distributing
and enforcing RSVP access control policies follows
Policy Based Network Management (PBNM) approach.

The concept of PBNM is already widely adopted by
organizations that propose Internet standards, such as
IETF [14] and the OASIS [7]. Although the definitions
for PBNM could diverge according to the organization,
the main concepts are relatively universal. The basic idea
for PBNM is to offer a strategy for configuring policy on
different network elements (nodes) using a common
management framework, composed by a policy server,
denominated PDP (Policy Decision Point) and various
policy clients, denominated PEPs (Policy Enforcement
Points) [12]. The PDP is the entity responsible for storing
and distributing the policies to the diverse nodes in the
network. A PEP is, usually, a network node component
responsible for interpreting and applying the policies
received from the PDP. The PBNM approach can be
applied in various aspects of network management. This
section will explore how this approach can be applied for
managing access control policies in RSVP server (sender)
applications.

The IETF explores the concept of PBNM according to
two strategies, denominated outsourcing and
provisioning. In the outsourcing strategy, the PEP sends a
request to the PDP when it needs to make a decision. For
example, considering the access problem on RSVP, the
PEP would represent the server application (or more
precisely, the policy component embedded in the server
application). On receiving a request from a client, the
PEP would send a request to the PDP in order to
determine if the client has the permission for asking the
reservation. The PDP then would interpret the policies
and would send a final decision to the PEP, informing if
the solicitation is permitted or denied. In the provisioning
approach, the PEP, as being initialized, would receive
from the PDP the set of policies needed for its decision.
The policy information received from the PDP is locally
stored by the PEP according to a locally defined scheme
called PIB (Policy Information Base). On receiving a
reservation request, the PEP would consult its locally
stored policies and would make the decision by itself. In
this approach, the communication between the PEP and
the PDP is required only when there is necessity of
updating the policies in the PEPs (e.g., the network
administrator modifies a policy in the PDP concerning the
PEP).

IETF define as well a standard protocol for supporting
the communication between the PEP and the PDP. This
protocol is denominated COPS (Common Open Policy
Service). The basic structure of the COPS protocol is
described in the RFC 2748 [1]. The COPS protocol
supports both models of policy control, i.e.,
“outsourcing” and “provisioning”. In the case of the
provisioning approach, additional specifications were
required and, the protocol was renamed to COPS-PR. The
basic structure of the COPS-PR protocol is described in

the RFC 3084 [3]. The IETF already published various
works concerning the use of PBNM approach for RSVP
policy control. The works cover the definition of a
framework for admission control [14] and the utilization
of COPS in outsourcing (COPS-RSVP) [4] and
provisioning (COPS-PR) models. The provisioning
approach is still under development, being necessary
additional definitions for its complete specification.

The XACML proposal from OASIS also describes that
its implementation could follow the approach PDP/PEP.
However, OASIS does not make a distinction between
the outsourcing and provisioning models, neither defines
a standard protocol for supporting the communication
between the PEP and the PDP. An analysis of the
XACML indicates, however, that it was primarily
conceived for supporting the outsourcing approach (see
section 4). An important difference between the
approaches adopted by OASIS and IETF relates to how
policies are represented and stored. OASIS proposes
XACML as a particular model for access control,
represented and stored as XML documents. On the other
side, IETF defines PCIM as a generic model, independent
from the way the policies will be represented and stored.
The PCIM model is abstract, and needs to be extended in
order to support particular areas of management, such as
QoS [10]. IETF indicates strategies for mapping the
information models to LDAP (Lightweight Directory
Access Protocol) schemas, but this form of storage
requires a supplementary effort by developers.

A work describing the implementation and
performance evaluation of a PBNM framework, using
COPS in outsourcing model with RSVP (COPS-RSVP)
was presented by Ponnappan [8]. The QoS policies were
represented using QPIM (QoS Policy Information
model), an IETF PCIM extension described by Snir [10].
The policies were represented and stored using LDAP
.This work uses CORBA (Common Object Request
Broker Architecture) for supporting the interaction
between the application components.

4. XACML Review

The XACML (eXtensible Access Control Markup
Language) is an OASIS proposal for modeling, storing
and distributing descriptive access control policies [7].
XACML-based frameworks are supposed to be
implemented using the PDP/PEP architecture in the
outsourcing model. The XACML language is defined by
two XML schemes: “xacml context” and “xacml policy”.
The “xacml context” defines how to represent policy
request and policy response messages exchanged between
the PEP and the PDP. The “xacml policy” defines how to
represent the access control policies. Fig. 1 shows the
UML diagram of the “xacml policy” scheme. The figure

represents the classes and associations between XACML
elements, but omits its attributes. According to the
XACML strategy, a policy is described in terms of a set
of access permissions (or access denials) by structures
denominated Targets. A Target is expressed through the
syntax: “users (Subject class) can (or cannot) apply
actions (Action class) upon resources (Resource class)”.

PolicySet

Policy Combining
Algorithm

Target ObligationsPolicy

Subject Resource Action

Rule Combining
Algorithm

Rule

Effect

Condition

1..*

1

1

1

0..1

1

1..*

1

1..*

1

0..* 1

1 1 0..1

1

0..1

10..1 1 0..* 1 0..*

1

1

1
0..*
1 1 1

Figure 1. XACML policy scheme

Targets can be associated to a policy, to a policy set or

to a rule. Targets associated to a policy or a policy set
work as policy selectors, i.e., when a PEP request a
decision concerning a Target, only the policies and
policies sets that contain the Target elements need to be
evaluated. Targets associated to rules permit to express
conditional permissions (or denials). A rule is expressed
by the syntax: “if the condition (Condition class) is
satisfied then applies the effect (Effect class) upon the
Target”. The possible values for effect are: permit or
deny. The effect defines the real sense of a Target as a
permission or denial.

= ana@xacml.org

Subject

 Target

 = Video Server
 Resource

= login
Action

 Rule

= Deny-Overrides
Rule Combining Algorithm

 = Multimedia
Policy

 = >8h00 and <17h00
 Condition

 = Permit
 Effect

Figure 2. XACML policy example

Fig. 2 shows a simple policy example to illustrate the
use of the XACML classes. The policy represented in the
figure can be described textually as follows: “the user
ana@xacml.org can login on a Video Server in the
period between 08:00AM and 05:00PM”.

When a PEP sends a request to the PDP, it supplies the
attributes permitting to identify the elements of a Target
(Subject, Resource, Action). The PDP evaluates the
policy rules and determines if exists a Target with those
attributes, and then returns to the PEP the corresponding
effect: Permit or Deny. If it fails to find a Target in its
policies that satisfy the attributes supplied by the PEP, it

will return “NotApplicable”. The Obligations class, when
defined, is returned to the PEP in conjunction with the
decision. The Obligations class is supposed to inform a
set of actions that must be performed by the PEP,
concerning the decision. The XACML version (1.0) used
in our study [7] does not specify the type of actions
described in Obligations. The specification only defines
the PEP must be capable of interpreting any information
passed through the Obligations class. As will be
explained further, our proposal uses the Obligations class
to pass QoS parameters to a RSVP node.

Though the Obligations class offers an alternative for
implementing some sort of policy “provisioning”, we
observe that XACML is primarily supposed to be
implemented using the outsourcing approach, because the
PDP basically returns decisions of type “Permit” or
“Deny” to the PEPs. As it will be explained in the next
section, the Obligations approach, as defined in XACML
version 1.0, is rather limited, but the “concept” is flexible
enough for providing “configuration information” to
network nodes in several domains. Other limitations of
the present XACML specifications concern the lack of
definitions regarding the communication protocol for
supporting the exchange of messages between the PDP
and the PEPs, as well as definitions about the strategy for
storing the XACML documents that represent the
network policies.

 <Policy PolicyId=" " RuleCombiningAlgId=" ">
 <Target>
 <Subjects>...</Subjects>
 <Resources>...</Resources>
 <Actions>...</Actions>
 </Target>
 <Rule RuleId=" " Effect=" ">
 <Target>...</Target>
 <Condition FunctionId=" ">...</Condition>
 </Rule>
 <Obligations>
 <Obligation ObligationId=" " FulfillOn=" "></Obligation>
 </Obligations>
</Policy>

<!— In Obligations, the attribute FulfillOn indicates if the obligation
must be executed when the resulting effect is Permit or Deny -->

Figure 3. A XACML Policy document
Fig. 3 illustrates how the UML model shown in Fig. 2

is represented in a XML document. The XML document
“format” is formally described by the “xacml policy”
scheme.

5. Proposal

This paper proposes a XACML-based framework for
distributing and enforcing access control policies to
RSVP-aware application servers. Fig. 4 illustrates a
typical scenario for this framework. The PEP element

represents a component of the server application,
responsible for requesting policy decisions to the PDP
and interacting with the RSVP daemon in the host
computer. The code of the PEP must be integrated with
the application server, as explained in section 6. In our
proposal, the PEP is responsible for all interaction with
the RSVP daemon, releasing the application from the task
of any QoS negotiation. This interaction includes
retrieving the traffic information for building PATH
messages and granting or not the reservation request on
receiving the RESV message. This approach can be
implemented in any system that supports the RSVP APIs
described in the RFC 2205.

RSVP
path

RSVP client
rece iver

RSVP
reservation

Access Request

PEP
Mul t imed ia Server

sender

RSVP
path

RSVP
reservation

RouterRESV

PATH

Router

COPS
 (XACML Request context)

COPS
(XACML Response context)

PDP
Policy Server

Policy.xml

XACML

Figure 4. Policy control of RSVP with XACML

The sequence of events and messages exchanged by
the elements in Fig. 4 during the establishment of a RSVP
reservation, using the proposed framework, is described
as follows:

1. A RSVP client requests a connection to a
multimedia server for obtaining services with QoS.

2. In the multimedia server, the application calls the
PEP for evaluating the request. Then, the PEP sends to
the PDP a XACML request context message informing a
“Target” containing its IP address (Resource), the IP
address of the client (Subject) and the requested operation
(Action).

3. The PDP evaluates the policy defined in XACML
for the supplied target, and returns to the PEP a XACML
response context message having, besides the result
(permit or deny), the information of traffic specification
(Tspec, supplied through the Obligations structure).

4. In case of positive decision, the PEP calls its RSVP
daemon, informing the Tspec parameters. The RSVP
daemon, then, sends a RSVP PATH message to the
receiver (i.e., the RSVP client). The Tspec parameters are
stored in the PEP for further analysis (see step 6).

5. The RSVP client, on receiving a RSVP PATH
message, calls its RSVP daemon, which obtains the
traffic parameters from the PATH message and formats a
RESV RSVP message, returning it to the sender (i.e., the
PEP).

6. On receiving the RESV message from the client, the
RSVP daemon of the server triggers an event to the PEP
forwarding the Tspec information. The PEP compares the

Tspec information received from the client with the Tspec
information saved in step 4. If the Tspec parameters are
identical or smaller than those saved in step 4, the PEP
confirms the reservation to the RSVP daemon. In this
step, the RSVP daemon also verifies if it has enough
resources to satisfy the request (admission control).

The steps 1 to 6 refer to a well-succeeded scenario of
reservation, and exception treatment was omitted. A
RSVP access solicitation differs from a conventional
access solicitation (e.g., access to a file or directory)
because the PDP needs to return the information
necessary for the PEP building the PATH message. For
this reason, extensions to the XACML framework
features were required in order to describe and transport
the QoS information.

The strategy adopted in this work for describing a
RSVP policy in terms of XACML is illustrated in Figure
5.

<PolicySet PolicySetId="RSVP_Aware_Server_Application">
 <Target> <!—Defines the services (resources) to which the policy applies
 </Target>
 <Policy PolicyId="Service Level 1"> <!—e.g. GOLD
 <Rule>
 <Target> <!—Subjects to which the policy applies </Target>
 <Condition> <!-- Time and client’s IP addresses restrictions -->
 </Condition>
 </Rule>
 <Obligations> <!—TSpec specification for service level 1
 </Obligations>
 </Policy>
 <Policy PolicyId="Service Level 2"> … </Policy> <!—e.g. SILVER
 <Policy PolicyId="Service Level N"> … </Policy> <!—e.g. BRONZE
 <Policy PolicyId="Default Policy"> <!—usually denies all </Policy>
</PolicySet>

Figure 5. RSVP XACML Policy Structure

In the proposed strategy each “RSVP-aware” server

application (or group of applications) is mapped to a
XACML <PolicySet>. Server applications can be
described by the same policy set only if they offer the
same “QoS Service Levels” for the same set of users,
under the same restrictions. For example, distinct video
streaming servers in a university campus that offer a
“GOLD” service for registered students and “SILVER”
service for visitors (with the same Tspec definitions) can
be represented by a single policy set. The policies are
mapped to services through the <Target> element in the
<PolicySet> structure (see the example in section 6). The
<Policy> elements in the <PolicySet> are used for
defining distinct QoS service levels offered by the same
application. For example, “GOLD”, “SILVER”, etc. The
<Rule> defines the users (subjects) that have
authorization to receive the service level and the
<Obligations> element describes the Tspec parameters.

The reason for defining a RSVP policy in terms of a
<PolicySet> and not in terms of a single <Policy>
element is related to the XACML definition. One
observes in Figure 1 that the <Obligations> element is

mapped to <Policy> or <PolicySet>, but it can’t be
mapped to Rules, i.e., all <Rules> in a policy defines the
same <Obligations>. Therefore, distinct service levels
can’t be represented in a single policy.

Another important point is to define where the users
and services information is located. If we consider the
PCIM approach, defined by IETF, a logical approach
would consist in representing users and services through
CIM1 objects. Because CIM is supposed to be supported
by an important set of hardware and software vendors, it
is an interesting choice for sharing the same information
among heterogeneous systems. Both CIM and PCIM
information can be stored in LDAP servers.

The XACML definition permits to define all the
information concerning the policy (subjects, resources
and actions) in the same XML document, as defined by
the “xacml policy scheme”. However, OASIS points that
it will be possible to write XACML policies that refers to
information elements stored in a LDAP repository. The
1.0 specification does not define how it can be done.
However, because xacml is based on standard xml
definitions, a possible solution would be create references
in a policy to external documents using the XML Pointer
Language (XPointer) strategy [15]. There are some
references about the use of XPointer in the 1.0 OASIS
specification, however, its use is limited to request
documents (i.e., context scheme) and its use in policy
documents is not supported. However, using XPointer for
creating policies with reusable subjects and services
information is a logical extension for future XACML
versions.

Hence, this work adopts the use of XPointer for
defining policies with reusable subjects (users) and
services information. In the future, this approach can be
replaced by the LDAP approach without modifying the
policy strategy.

RSPV
Policy Set
(XACML)

Resource
Repository

(XML)

User
Repository

(XML)

xpath#xpointer() reference

xpath#xpointer() reference

Information about
network services
with RSVP
support, including
the required
Tspec.

Information about
users and
attributes

Figure 6. Policy, Resources and Users

documents.

1 CIM (Common Information Model), proposed by the DMTF
(Distributed Management Task Force) is a information model
compatible with PCIM that defines classes and associations for
representing users, network elements and servies.

Figure 6 illustrates the relationship between the XML

documents used for describing a policy. An example of
how these documents can be defined are presented in case
study in the next section (see Figures 8 and 9). The
structure of the resource and user documents described in
this work was chosen intentionally simple for didactical
purposes. The QoS information is described in the
resource document. A resource is defined as a network
service that supports RSVP negotiations. Hence, the
resource document accommodates the description of
RSVP parameters required for building the PATH
message, i.e., Tspec {r,b,p,m,M}, type of service (GS –
guaranteed service or controlled load – CL) and
reservation style as described in the RFC 2210 [13] and
RFC 2215 [9].

Fig. 7 illustrates the XML scheme corresponding to the
RSVP parameters. Our proposal assumes that a single
service can offer different service levels. For example, a
multimedia server can define various QoS modes for
streaming video in order to support different resolutions.
In this case, each QoS mode must receive a distinct class
specification (attribute RsvpClass). The class enumerated
in the scheme are define by ITU-T, and are included in
the scheme for illustration purposes only. Observe in Fig.
7, that the RSVP resource scheme does not include the
Rspec parameters. In this work, we suggest the PEP could
reject the proposal received on the RESV message if the
Rspec parameters are much larger than those specified by
Tspec, not being necessary to consult the PDP again for
validating the RESV message.

 <xs:schema>
 <xs:element name="ResourceRsvp" type="xacml:ResourceRsvpType"/>
 <xs:complexType name="ResourceRsvpType">
 <xs:sequence>

<xs:element ref="xacml:TspecBucketRate_r"/>
<xs:element ref="xacml:TspecBucketSize_b"/>
<xs:element ref="xacml:TspecPeakRate_p"/>
<xs:element ref="xacml:TspecMinPoliceUnit_m"/>
<xs:element ref="xacml:TspecMaxPacketSize_M"/>
<xs:choice minOccurs="0" maxOccurs="1">

<xs:element ref="xacml:RsvpStyle"/>
</xs:choice>
<xs:choice minOccurs="0" maxOccurs="1">

<xs:element ref="xacml:RsvpService"/>
</xs:choice>

</xs:sequence>
<xs:attribute name="AttributeId" type="xs:anyURI" use="required"/>
<xs:attribute name="RsvpClass" type="xacml:RsvpClassType"

use="required"/>
</xs:complexType>

 <xs:simpleType name="RsvpClassType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="G711"/>
 <xs:enumeration value="G729"/>
 <xs:enumeration value="H263CIF"/>
 <xs:enumeration value="H261QCIF"/>
 </xs:restriction>
 </xs:simpleType>
 <xs:element name="RsvpService">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Null"/>
 <xs:enumeration value="Guaranteed"/>
 <xs:enumeration value="Controlled-load"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="RsvpStyle">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="SE"/>
 <xs:enumeration value="WF"/>
 <xs:enumeration value="FF"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <xs:element name="TspecBucketRate_r">
 <xs:simpleType>
 <xs:restriction base="xs:double">
 <xs:minInclusive value="1"/>
 <xs:maxInclusive value="40000000000000"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:element>
 <!—definitions for other elements: TspecBucketSize_b , etc-->
 </xs:schema>

Figure 7. Tspec Scheme Definition

6. Case Study and Implementation

6.1. Case Study

 In order to illustrated the use of the XACML approach
for describing RSVP policies, the following scenario was
considered: A set of “video streaming” servers in a
university campus offers “tutorials” to registered and
unregistered students (visitors). The policy adopted for
having access to the video streaming is defined as
follows:

a) Registered students have permission to access any
server in the campus offering a
“TutorialVideoStreaming” service without time
restrictions. If a student connects to a server using a client
host from inside the campus, he will receive a “GOLD”
or “SILVER” service level. Otherwise, it will receive a
“BRONZE” service level.

b)Unregistered students can have access to the
“TutorialVideoStreaming” service only from the internal
network and not in business-time. They can receive only
the “BRONZE” service level.

<service serviceId="TutorialVideoStreaming">
<description> tutorial videos in the campus university
</description>

 <sap>
 <inetaddress> 192.168.200.10 </inetaddress>
 <inetaddress >192.168.5.3 </ inetaddress >
 <protocol>tcp</protocol>
 <port>8976</port>
 </sap>
 <serviceLevel serviceId="Gold">
 <ResourceRsvp AttributeId="qosG711" RsvpClass="G711">
 <TspecBucketRate_r>9250</TspecBucketRate_r>
 <TspecBucketSize_b>680</TspecBucketSize_b>
 <TspecPeakRate_p>13875</TspecPeakRate_p>
 <TspecMinPoliceUnit_m>340</TspecMinPoliceUnit_m>
 <TspecMaxPacketSize_M>340</TspecMaxPacketSize_M>
 <RsvpService>Guaranteed</RsvpService>
 <RsvpStyle>FF</RsvpStyle>
 </ResourceRsvp>
 </serviceLevel>
 <serviceLevel serviceId="Silver">
 <ResourceRsvp AttributeId="qosH261Q"
RsvpClass="H261QCIF">
 <TspecBucketRate_r>12000</TspecBucketRate_r>
 <TspecBucketSize_b>6000</TspecBucketSize_b>
 <TspecPeakRate_p>12000</TspecPeakRate_p>
 <TspecMinPoliceUnit_m>80</TspecMinPoliceUnit_m>
 <TspecMaxPacketSize_M>2500</TspecMaxPacketSize_M>
 <RsvpService>Controlled-load</RsvpService>
 <RsvpStyle>SE</RsvpStyle>
 </ResourceRsvp>
 </serviceLevel>
 <serviceLevel serviceId="Bronze">
 <ResourceRsvp AttributeId="qosH263C"
RsvpClass="H263CIF">
 <TspecBucketRate_r>16000</TspecBucketRate_r>
 <TspecBucketSize_b>8192</TspecBucketSize_b>
 <TspecPeakRate_p>16000</TspecPeakRate_p>
 <TspecMinPoliceUnit_m>80</TspecMinPoliceUnit_m>
 <TspecMaxPacketSize_M>8192</TspecMaxPacketSize_M>
 <RsvpService>Controlled-load</RsvpService>
 <RsvpStyle>WF</RsvpStyle>
 </ResourceRsvp>
 </serviceLevel>
</service>

Figure 8. Service Information

 The service information is represented in the document
illustrated in Figure 8. Note that the <SAP> structure
defines the services in the campus that are subjected to
the policy. The Tspec information concerning the

<GOLD>, <SILVER> and <BRONZE> service levels are
also defined in the file.

A XACML request from the video server (i.e., a PEP)
will usually identify the user by its login (uid). However,
the policy in the PDP will be described in terms of the
student status (registered or unregistered). The mapping
between the user id and the corresponding student status
is represented by the XML document illustrated in Figure
9.

<subjects>
 <user>
 <cn>Emir Toktar</cn>
 <uid>etoktar</uid>
 <mail>toktar@ppgia.pucpr.br</mail>
 <businessCategory>RegisteredStudent</businessCategory>
 </user>
 <user>
 <cn>Luis Cezar</cn>
 <uid>lcezar</uid>
 <mail>ortega@ppgia.pucpr.br</mail>
 <businessCategory>RegisteredStudent</businessCategory>
 </user>
 <user>
 <cn>guest</cn>
 <uid>guest</uid>
 <businessCategory>UnregisteredStudent</businessCategory>
 </user>
</subjects>

Figure 9. User Information

 The RSVP policy is defined in terms of a XACML

<PolicySet>, as described in section 5. The <PolicySet>
structure for the case study defines four policies, as
shown in Figure 10. The Target structure in the
<PolicySet> defines the resources to which the policy
applies. Note <ResouceMatch> elements in the <Target>
structure defined conditions that compares the
information supplied by the PEP in the Request message
(resource-id, and ip-address:sender) with the information
described in the XML Service Information File (see
Figure 8) .

Figure 11 illustrates the structure of “Policy 1” in the
<PoliceSet>. This policy defines the conditions applied to
the access of registered students from inside the campus.
The <Subject> element in the <Rule> defines that the
policy applies only to registered students. The
<Condition> of the rule determines that the policy applies
only to requests where the client host is located inside the
university campus.

A typical policy request from a PEP to the PDP is
illustrated in Figure 12. The <Subject> element will
supply the information about the receiver, i.e., user id and
IP address of its host. The <Resource> element supplies
the information about the server (i.e., the sender),
including its name (resource id) and IP address. The type

of action requested is defined as “getResorceQoS”, in this
case, the only action supported by the policy.

 <PolicySet PolicySetId="TutorialVideo"

PolicyCombiningAlgId=":policy-combining-algorithm:first-
applicable">
 <Target>
 <Resources>
 <Resource>
 <ResourceMatch MatchId=":function:string-equal">
 <AttributeValue DataType="#string">

TutorialVideo</AttributeValue>
<ResourceAttributeDesignator DataType="#string"
AttributeId=":resource:resource-id"/>

 </ResourceMatch>
 <ResourceMatch MatchId=":function:xpath-node-match">
 <AttributeValue DataType="#string">
http://pdp/resources.xml#xpointer(//service[@serviceId=”TutorialVide
oStreaming”]/sap/inetaddress/text())

</AttributeValue>
 <ResourceAttributeDesignator DataType="#string"
AttributeId=":resource:authn-locality:ip-address:sender"/>
 </ResourceMatch>
 </Resource>
 </Resources>
 </Target>
 <!-- Policy 1: Registered Students from inside the campus -->
 <Policy PolicyId=":policy:TutorialRegStudentsInternal"
RuleCombiningAlgId=":rule-combining-algorithm:first-applicable">
 </Policy>
 <!-- Policy 02: Registered Studens from outside the campus -->
 <Policy PolicyId=":policy:TutorialRegStudentsExternal"
RuleCombiningAlgId=":rule-combining-algorithm:first-applicable">
 </Policy>
 <!-- Policy 03: Unregiestered Students -->
 <Policy PolicyId=":policy:TutorialRegStudentsGuest"
RuleCombiningAlgId=":rule-combining-algorithm:first-applicable">
 <!-- Policy 04 - Deny for All -->
 <Policy PolicyId=":policy:TutorialDenyForOthers"
RuleCombiningAlgId=":rule-combining-algorithm:first-applicable">
 <Rule RuleId=":Tutorial_Deny_Rule_For_Others"
Effect="Deny"/>
 </Policy>
</PolicySet>

Figure 10. Policy Set Structure

Finally, Figure 13 illustrates the response from the
PDP to the PEP. The “Permit” information informs to the
PDP that there are services to be offered to the client. The
services are described in the <Obligations> structure. In
this example, two Tspec specifications are returned to the
PEP. These specification correspond to the service level
“GOLD” and “SILVER” offered by the VideoStreaming
server. An alternate approach could be return only the
highest service level. The structure presented in the
<Obligations> section is defined by the XACML context-
schema.

<Policy PolicyId=":policy:TutorialRegStudentsInternal"
RuleCombiningAlgId=":rule-combining-algorithm:first-applicable">
<Rule RuleId="Reg_Students_Internal_Get_Gold_Silver" Effect="Permit">
 <Target>
 <Subjects> <Subject>
 <SubjectMatch MatchId=":function:xpath-node-match">
 <!-- return of a Bag attributes of elements 'uid' that are 'RegisteredStudent' -->
 <AttributeValue DataType="#string">

http://pdp/subjects.xml#xpointer(//subjects/user
[businessCategory='RegisteredStudent']/uid/text())

 </AttributeValue>
 <SubjectAttributeDesignator AttributeId=":subject:subject-id"
 DataType="#string"/>
 </SubjectMatch>
 </Subject></Subjects>
 <Actions> <Action>
 <ActionMatch MatchId=":function:string-equal">
 <AttributeValue DataType="#string">getResourceQoS</AttributeValue>
 <ActionAttributeDesignator DataType="#string"
 AttributeId=":action:action-id:ServerAction"/>
 </ActionMatch>
 </Action></Actions>
 </Target>
 <Condition FunctionId=":function:or">
 <Apply FunctionId=":function:any-of">
 <Function FunctionId=":function:regexp-string-match"/>
 <AttributeValue DataType="#string">192.168.0.*</AttributeValue>

<SubjectAttributeDesignator
 AttributeId=":subject:authn-locality:ip-address:receiver"

 DataType="#string"/>
 </Apply>
 </Condition>
</Rule>
<Obligations>
 <Obligation ObligationId="GoldSilverStudentsInternal" FulfillOn="Permit">
 <AttributeAssignment AttributeId="qosG711" DataType="#string">

http://pdp/resources.xml#xpointer(//service/serviceLevel
[@serviceId='Gold']/ResourceRsvp/*)

 </AttributeAssignment>
<AttributeAssignment AttributeId="qosH261Q" DataType="#string">

hdp://pdp/resources.xml#xpointer(//service/serviceLevel
[@serviceId='Silver']/ResourceRsvp/*)

</AttributeAssignment>
 </Obligation>
</Obligations>

Figure 11. Policy Structure for Registered

Students in Internal Network

<Request>
 <Subject>
 <Attribute AttributeId=":subject:subject-id" DataType="#string">
 <AttributeValue>etoktar</AttributeValue>
 </Attribute>
 <Attribute AttributeId=":subject:authn-locality:ip-address:receiver"
DataType="#string">
 <AttributeValue>192.168.0.1</AttributeValue>
 </Attribute>
 </Subject>
 <Resource>
 <Attribute AttributeId=":resource:resource-id" DataType="#string">
 <AttributeValue>TutorialVideoStreaming</AttributeValue>
 </Attribute>
 <Attribute AttributeId=":resource:authn-locality:ip-address:sender"
DataType="#string">
 <AttributeValue>192.168.200.10</AttributeValue>
 </Attribute>
 </Resource>
 <Action>
 <Attribute AttributeId=":action:action-id:ServerAction" DataType="#string">
 <AttributeValue>getResourceQoS</AttributeValue>
 </Attribute>
 </Action>
</Request>

Figure 12. Example of Policy Request

<Response>
 <Result>
 <Decision>Permit</Decision>
 <Status>
 <StatusCode Value=":status:ok"/>
 </Status>
 <Obligations xmlns="urn:oasis:names:tc:xacml:1.0:policy">
 <Obligation ObligationId=":GoldSilverStudentsInternal"
FulfillOn="Permit">
 <AttributeAssignment AttributeId="RsvpClass#1"

DataType="#string"> G711</AttributeAssignment>
 <AttributeAssignment AttributeId="TokenBucketRate_r#1"

DataType="#double"> 9250.0</AttributeAssignment>
 <AttributeAssignment AttributeId="TokenBucketSize_b#1"

DataType="#double"> 680.0</AttributeAssignment>
 <AttributeAssignment AttributeId="PeakRate_p#1"

DataType="#double">13875.0</AttributeAssignment>
 <AttributeAssignment AttributeId="MinimumPoliceUnit_m#1"

DataType="#integer">13875</AttributeAssignment>
 <AttributeAssignment AttributeId="MaximumPacketSize_M#1"

DataType="#integer">13875</AttributeAssignment>
 <AttributeAssignment AttributeId="RsvpService#1"

DataType="#string">Guaranteed</AttributeAssignment>
 <AttributeAssignment AttributeId="ServiceQoS#1"

DataType="#string">FF</AttributeAssignment>

 <AttributeAssignment AttributeId="RsvpClass#2"
DataType="#string">H261QCIF</AttributeAssignment>

<AttributeAssignment AttributeId="TokenBucketRate_r#2"
DataType="#double">12000.0</AttributeAssignment>

<AttributeAssignment AttributeId="TokenBucketSize_b#2"
DataType="#double">6000.0</AttributeAssignment>

 <AttributeAssignment AttributeId="PeakRate_p#2"
DataType="#double">12000.0</AttributeAssignment>

 <AttributeAssignment AttributeId="MinimumPoliceUnit_m#2"
DataType="#integer">80</AttributeAssignment>

 <AttributeAssignment AttributeId="MaximumPacketSize_M#2"
DataType="#integer"> 2500</AttributeAssignment>

 <AttributeAssignment AttributeId="RsvpService#2"
DataType="#string">Controlled-load</AttributeAssignment>

 <AttributeAssignment AttributeId="ServiceQoS#2"
DataType="#string"> SE</AttributeAssignment>

 </Obligation>
 </Obligations>
 </Result>

/
Figure 13. Example of Policy Response

6.2. Implementation

On important advantage of the XACML approach with
respect to PCIM refers to its implementation. Because it
is defined in terms of XML, a XACML implementation
benefits from the existing tools for developing XML
applications. There are free packages for supporting
XACML in Java language (Sun XACML project) and on
C++ (by Jiffy Software).

The framework described in this paper was
implemented using the Java™ 2 SDK, Standard Edition
1.4.2, and the Sun XACML package. The Sun XACML
package includes the modules: “com.sun.xacml.
PolicySchema” and “com.sun.xacml.ContextSchema”.
The first module supports the interpretation of XACML
policies (required for implemented a PDP) and the
second, the exchange of messages between the PDP and
the PEP.

The implementation permitted to evaluate if the
proposed XACML extensions are compatible with
existing implementation packages. The strategy adopted
consisted in adding new functionalities to the XACML

framework without modifying the scheme. We observed
that it was not necessary to modify the package code,
except in the case of treatment of the <Obligations>
structure and the use of XPointer references to external
files. The packet significantly simplifies the process of
developing a PDP and embedding PEPs in existent
applications.

Next, one presents some examples of utilization of the
Sun XACML package for developing a PDP. The
following code fragment illustrates the sequence of steps
for creating a PDP instance, initialized with a policies file
defined by “PolicyQoS.xml”. The
“policyModule.addPolicy” method permits to validate the
policy with respect to the XACML policy schema. This
method was used for validating the syntax of the schema
extensions proposed in this work.

 FilePolicyModule policyModule = new FilePolicyModule();
 policyModule.addPolicy("Path/PolicyQoS.xml");

The XACML package offers classes that, through the

Hash tables, simplify the process of searching policies
(PolicyFinder) and attributes (AttributeFinder). The
fragment of typical code for the creation of an instance of
PDP is illustrated following.

 PolicyFinder polFinder = new PolicyFinder();
 Seth policyModules = new HashSet();
 policyModules.add(policyModule);
 policyFinder.setModules(policyModules);
 AttributeFinder attrFinder = new AttributeFinder();
 List attrModules = new ArrayList();
 attrFinder.setModules(attrModules);
 PDP pdp = new PDP(new PDPConfig(attrFinder, polFinder,

null));

The next fragment of code illustrates the creation of a

PEP. The RequestCtx class implements a PEP requests to
a PDP. The attributes passed in the class constructor
refers to the Target elements <Subject>, <Resource> and
<Action>. The Environment attributed is used for passing
other relevant information, concerning time, for example.

 RequestCtx request = new RequestCtx(AttribSubjects,

AttribResource, AttribAction, AttribEnvironment);

The ResponseCtx class is used for receiving the PDP

response. A ResponseCtx object encapsulates the
decision, status code and the <Obligations> structure.
The code fragment is presented next:

ResponseCtx response = pdp.evaluate(request);

7. Conclusion

In this work, XACML use was extended beyond the
access control functionalities, because the decisions

generated by the PDP include the Tspec parameters
necessary for building the PATH messages. The capacity
of returning configuration parameters through PDP
decisions is an important feature for many PBNM
scenarios. This feature, easily supported in IETF PCIM-
based models, is quite difficult to implement in XACML.
To support the RSVP scenario, modifications in the
<Obligations> structure were required, including some
features not supported by the XACML Sun package. The
1.0 XACML specification and the corresponding packet
implementation are deficient in returning results that are
not simple deny or permit decisions. In the proposed
work, some features have been added to the XACML
framework without modifying its scheme: <Obligations>
are dynamically processed and XPointer references to
external documents are used for creating policies with
reusable resources and subjects.

Some modifications on XACML scheme, however,
would be useful. First, we suggest a more flexible way of
mapping conditional <Obligations> to policies. Mapping
<Obligations> to <Rules> would permit to define
different service levels in a single policy. This
modification would certainly be useful for other
application domains. Another suggested modification is
to formalize the use of XPointer references in the
XACML scheme.

9. References

[1] Boyle, J.; Cohen, R.; Durham, D.; Herzog, S.; Rajan, R.;
Sastry, A. The COPS (Common Open Policy Service) Protocol,
RFC2748, Jan. 2000.

[2] Braden, R.; Zhang, L.; Berson, S.; Herzog, S.; Jamin, S.
Resource Reservation Protocol (RSVP) Version 1 Functional
Specification, RFC2205, Sep. 1997.

[3] Chan K.; Seligson, J.; Durham, D.; Gai, S.; McCloghrie, K.;
Herzog, S.; Reichmeyer, F.; Yavatkar, R.; Smith, A. COPS
Usage for Policy Provisioning (COPS-PR), RFC3084, Mar.
2001.

[4] Herzog, S.; Rajan, R.; Sastry, A. COPS usage for RSVP,
RFC2749, Jan. 2000.

[5] Moore, B.; Ellesson, E.; Strassner, J.; Westerinen, A. Policy
Core Information Model - Version 1 Specification, RFC3060,
Feb. 2001.

[6] Nabhen, R., Jamhour, E., Maziero C. “Policy-Based
Framework for RBAC”, Proceedings for the fourteenth
IFIP/IEEE International Workshop on Distributed Systems:
Operations & Management, October, Germany, Feb. 2003.

[7] OASIS, eXtensible Access Control Markup Language
(XACML) Version 1.0. OASIS, Feb. 2003.

[8]Ponnappan, A.; Yang, L.; Pillai, R.; Braun, P. “A Policy
Based QoS Management System for the IntServ/DiffServ Based

Internet”. Proceedings of the Third International Workshop on
Policies for Distributed Systems and Networks (POLICY.02).
IEEE, 2002 .

[9] Shenker, S.; Wroclawski, J. General Characteri-zation
Parameters for Integrated Service Network Elements, RFC
2215, Sep. 1997.

[10] Snir, Y.; Ramberg, Y.; Strassner, J.; Cohen, R. “Policy
QoS Information Model, work in progress, draft-ietf-policy-qos-
info-model-05.txt”. IETF, May. 2003.

[11] Toktar, E. Controle de Admissão de RSVP utilizando
XACML. Dissertação de Mestrado, PPGIA, PUCPR. Aug.
2003.

[12] Westerinen, A. et. al. Terminology for Policy Based
Management. RFC3198, Nov. 2001.

[13] Wroclawski, J. RSVP with INTSERV, RFC 2210, Sep.
1997.

[14] Yavatkar, R., Pendarakis, D.; Guerin, R. A Framework for
Policy-Based Admission Control, RFC2753, Jan. 2000.

[15] W3C, XPointer Framework, W3C Recommendation, 25
March 2003.

