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Abstract. There are several ways for an intruder to obtain access to a remote 
computing system, such as exploiting program vulnerabilities, stealing 
passwords, and so. The intruder can modify system utilities in order to hide 
his/her presence and to guarantee an open backdoor to the system. Many 
techniques have been proposed to detect unauthorized file modifications, but 
they usually work off-line and thus detect file modifications only when the 
system is already compromised. This paper presents an architecture to deal with 
this kind of problem. Through the combined use of digital signature techniques 
and system call interceptions, it allows for transparent on-the-fly integrity check 
of files in Unix systems. Its evaluation in real-world situations validates the 
approach, by showing overheads under 10% for most situations. 

1. Introduction 

There are several ways for an intruder to obtain access to a remote computing system, 
such as exploiting program vulnerabilities, stealing passwords, hijacking network 
connections, and so on. After getting in the system, the intruder can exploit local 
vulnerabilities to get administrative privileges. 

Once having the full control of the system, the intruder can modify some system 
utilities, in order to hide his/her presence, and to guarantee an open backdoor to that 
system. System utilities can be substituted by hacked versions that dissimulate the 
intruder’s presence, hiding files, processes, network connections, and other system 
resources. The set of hacked utilities is known as a rootkit; sophisticated rootkits are 
hard to detect and may include changes in the operating system kernel itself [4]. 

Alongside with the efforts to minimize system bugs allowing root compromise, 
some work is done in detecting and/or preventing modifications of system files. Most 
known approaches work off-line, by periodically checking the system files’ properties 
against previously stored values. One of the most known tools using this approach is 
Tripwire [11]. Although it can detect file violations, it is not able to prevent the use of 
the modified files, and the intruder may work for a while before being detected. 

This paper presents an approach allowing to detect modified files and to prevent 
their usage as soon as possible. This is achieved through the joint usage of digital 
signatures and system call interceptions. The proposed architecture allows to 



transparently and quickly verify the integrity of any kind of file at its opening, 
including executables, libraries, scripts, and data files. Experimentation results 
validate the approach, by showing overheads under 10% for most situations. 

The paper is structured as follows: section 2 introduces system call interception 
techniques; in section 3 the proposed architecture is detailed; in section 4 the 
performance results obtained with the prototype are presented and discussed; section 
5 discusses the current status of the architecture and outlines future works; section 6 
presents some related work, and section 7 concludes the paper. 

2. System Calls Interception 

To access operating system resources, such as files or sockets, processes make use of 
system calls, which are functions providing a controlled interface to the operating 
system kernel. The set of syscalls offered by the kernel constitutes its API 
(Application Programming Interface). The kernel API defines a clear separation 
between the specification and the implementation of the kernel services. This 
separation allows to transparently modifying the implementation of a given service: as 
long as the kernel API remains the same, all changes in underlying kernel services can 
be done with no need to modify the user-level code. 

Extending basic kernel services can be done by modifying the kernel functions that 
implement the service to be extended, or by capturing the corresponding syscalls and 
transferring control to a code that implements the new feature [10,18]. Several 
architectures have been proposed to facilitate building and using kernel extensions, 
through plug-in structures and specific APIs. Some projects in this direction are SPIN 
[1], Exokernel [7], and SLIC [8]. 

There are several uses for kernel extensions, like process debugging, process 
migration between hosts, file systems extensions, and host-based intrusion detection 
systems, among others. A well-known example is the Virtual File System (VFS) [9], 
which allows for applications to transparently use multiple distinct media and file 
systems. 

3. System Architecture 

The goal of the system presented here is the dynamic file integrity checking. Before 
files are opened by processes, their integrity is checked using a digital signature1 
schema, which is activated by a syscall interception. All files to be monitored should 
have been associated a digital signature, which is verified by the operating system 
kernel just before opening them. If the signature generated from the actual file 

                                                           
1 The Digital Signature Standard (DSS) [6] is the digital signature schema adopted in this 

work. The DSS aspect considered here concerns the ability to certify the integrity of a digital 
document, through an encrypted hash obtained from it. This encrypted hash is called a 
“digital signature” of the document. 



 

contents matches the corresponding signature stored in the database, the file can be 
open (i.e. the original system call can proceed), otherwise the access is denied. 

Starting from a list of files to monitor, a digital signature database should be built. 
Database entries are formed by the file paths and their respective digital signatures. At 
first, only static resources residing in the local file systems should be registered in the 
database: executable files, libraries and configuration files. The signature database 
should be built from the system in a known safe state. The best way to guarantee this 
is using a freshly installed system, avoiding the presence of intruder codes as rootkits, 
viruses, backdoors, and trojans. 

Performance is a major concern in this approach. The signature checking procedure 
can be costly, especially on large files, and imposes a considerable performance 
penalty. To solve this problem, a validation cache is defined (section 3.3). It stores 
references to files already checked, to avoid repeating integrity checks on the same 
files. This cache has proven to be essential in this approach (section 4). 

For the integrity checking mechanism to be transparent, the file system API should 
be respected. Also, the checking should be imposed on any file access, with no 
possibility to be circumvented. Thus, the system should be implemented under the 
kernel API. Considering the generic POSIX API, there are two system calls related to 
file opening that should be intercepted: execve, responsible for reading and starting 
an executable image from disk, and open, to open files for reading and writing. 

The proposed architecture is presented in figure 1 and will be detailed in the 
following sections. 
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Fig. 1. The proposed architecture 

3.1 System Call Interception Module 

The System Call Interception Module intercepts the open syscall, gets the 
complete file name, and redirects the control flow to the coordination module, for 
signature checking. If the coordination module returns ok, the original system call is 



allowed to continue, otherwise the file access is denied. The open system call is also 
used to open directories and devices, but these are excluded from the integrity 
checking. 

The execve syscall is responsible for opening an image file and preparing the 
kernel structures, in order to start the code execution. Although the file is also opened, 
this system call doesn’t use the open syscall code, but makes use of other kernel 
functions. Thus, the execve syscall is also intercepted by this module. Depending on 
the operating system, other system calls should be intercepted as well. 

3.2 Coordination Module 

This module receives the name of the file to check and tries to open it using the same 
privilege level of the process that made the system call. A lookup in the validation 
cache is performed, using the pair [i-node; device number] got from the file as a key. 
If the file to be open has an entry in the cache, its signature was already validated 
before and the file contents did not change after that. This result can be returned 
immediately to the syscall interception module (section 3.1). 

In case the file is not referenced in the validation cache, its signature should be 
verified. The Signature Verification Module is then activated, in order to check the 
integrity of the file using its previously stored digital signature. If the actual file 
signature agrees with the previously stored one, the file is valid, and a corresponding 
entry is added to the cache. Otherwise, an error is returned to the syscall interception 
module. If the file to be open has no associated signature, the Exception Policy 
Module will be activated, to decide whether to allow or to deny that access. 

3.3 Validation Cache Module 

As the signature verification is time-consuming, it is important to avoid repeating 
unnecessary verifications. This is achieved using a cache of validated files. The 
signature verification costs would turn unviable this proposal if there was not such a 
cache, as demonstrated by the results presented in the section 4. This module 
implements three operations on the cache: insert, delete, and lookup of files entries. 

One main aspect in the cache management concerns entry deletions. An entry 
should be deleted from the cache if, and only if, the corresponding file is modified or 
removed. Some mechanisms from the VFS (Virtual File System) abstraction, present 
in most Unix systems, are used for detecting such events. In the implementation 
presented here, a hook was put in the VFS function mark_inode_dirty, which is 
called whenever a file is modified or removed. 

3.4 Signature Validation Module 

This module makes use of a digital signature algorithm to check the integrity of a file. 
For its application the module uses the digital signature of the file, obtained from the 
signature database, the hashing value of the current file content and the public key of 



 

the signature database. The access to this public key is a critical issue and will be 
discussed in section 5. 

Before calculating the hash value for the file being open, its digital signature 
should be requested to the Signature Management Module. The hash value for the 
file is then calculated, using as input the following information: file contents, i-node 
number, device, size, owner, group, permissions, creation date, and last modification 
date. The simultaneous application of file attributes in the hash function simplifies the 
attribute verification procedure. 

The digital signature standards adopted were SHA-1 [5] for the hash generation 
procedure, and FIPS 186-2 ECDSA [6] for the encryption procedure. The FIPS 186-2 
ECDSA algorithm was chosen for its smaller execution time, smaller memory 
footprint, and smaller keys for the same protection level when compared to DSA [12]. 

3.5 Signature Management Module 

This module was included in the architecture to provide transparency on the signature 
database location. Basically only two parameters are needed to uniquely identify a 
file: its complete path and the name of the host where it is stored. Using them, this 
module retrieves the signature value from the database and returns it to the signature 
validation module. The digital signature database can then be located anywhere, from 
a file in the local system to a remote LDAP server. Details regarding its 
implementation issues are discussed in section 5. 

3.6 Exception Policy Module 

It is not worthwhile to maintain up-to-date signatures for files whose contents are 
always changing, like log files and mailboxes. The Exception Policy Module was 
included in this proposal to implement policies to deal with these exceptions, allowing 
to define unsigned directories and files. 

The coordination module activates it in order to verify whether a requested 
operation is allowed or not, according to policies defined by a rule set. The current 
implementation uses simple rules based on files, directories, users, groups, and 
operations (open/execve). 

4. Implementation and Evaluation 

The prototype implementation was done using a Linux kernel version 2.4.4; all the 
modules described here were implemented, some of them in a simplified way. The 
tests were run on a Pentium II 233MHz system, with 128 Mbytes of RAM and an IDE 
ultra-DMA33 hard disk (seek time around 13 ms). 

Three distinct situations were chosen to evaluate the impact of the architecture: 
compilation, file compression, and user application. They have very different 
behaviors regarding resource usage (CPU, memory, I/O) and represent frequent 
situations. Due to the validation cache, subsequent accesses to a file are much faster 



than its first access. To measure this effect, each test was run in three situations: a) 
without the use of signature verification (the reference system), b) a first execution 
after system initialization (the validation cache is empty) and c) a second execution 
after system initialization (the validation cache has entries generated by the first 
execution). Each test was run several times, and the results obtained are stable. 

To simplify the analysis of results, a “dummy” exception policy was adopted, 
allowing any file to be accessed, even if is not signed or if it’s signature is not valid. 
For the tests, all files were signed, excepting temporary ones (in /tmp and 
/var/log directories). 

4.1 Compilation 

This test consisted on compiling the Linux kernel source (version 2.4.4, with standard 
parameters: make bzImage modules). The source tree occupies 135 Mbytes on 
disk and has 8875 files, but only 2051 of them were read in the compilation. The table 
1 presents the results obtained. 

Table 1. Compilation test results 

 
Measurement Reference system 1st execution 2nd execution 

#open operations 115494 115494 115494 
#open cache hit — 113424 98.2% 114661 99.3% 
#open cache miss — 2070 1.8% 833 0.7% 
#execve operations 2344 2344 2344 
#execve cache hit — 2326 99.2% 2340 99.9% 
#execve cache miss — 18 0.8% 4 0.1% 
user time (s) 663.12 664.80 662.24 
system time (s) 41.42 134.70 90.01 
total time (s) 704.54 799.50 752.25 
overhead (%) — 13.47% 6.77% 

 

The meaning of the table fields are: 
 

• #RSHQ (#H[HFYH): total number of syscalls invoked by the process(es). 
• #RSHQ cache hit (#H[HFYH cache hit): number of syscalls in which the file was 

found in the cache. 
• #RSHQ cache miss (#H[HFYH cache miss): number of syscalls in which the file 

was not found in the cache, forcing a complete signature verification. 
• User time (s): time spent by the process(es) at user level. 
• System time (s): time spent by the process(es) at kernel level. 
• Total time (s): total time spent by the process(es). 
• Overhead (%): the execution time compared to the reference system time. 



 

4.2 File Compression 

This test consisted on applying a tar -czf command on the Linux kernel source 
tree. This command applies both data compression (using the gzip tool) and 
agglutination of the files to generate an archive containing all the source files 
compressed. The obtained results are presented in table 2. 

Table 2. Compression test results 

 
Measurement Reference system 1st execution 2nd execution 
#open operations 8876 8876 8876 
#open cache hit — 12 0.14% 8876 100% 
#open cache miss — 8864 99.86% 0 0% 
#execve operations 2 2 2 
#execve cache hit — 0 0% 2 100% 
#execve cache miss — 2 100% 0 0% 
user time (s) 55.28 55.75 55.27 
system time (s) 2.56 293.33 3.31 
total time (s) 57.84 349.08 58.58 
overhead (%) — 503.5% 1.28% 

4.3 Execution 

This experiment used the JY application, a popular PostScript file viewer. It consisted 
on opening a 40-pages PostScript file, quickly viewing all pages and closing it. The 
obtained results are shown on table 3. 

Table 3. Execution test results 

 
Measurement Reference system 1st execution 2nd execution 
#open operations 117 117 117 
#open cache hit — 46 39.3% 117 100% 
#open cache miss — 71 60.7% 0 0% 
#execve operations 2 2 2 
#execve cache hit — 0 0% 2 100% 
#execve cache miss — 2 100% 0 0% 
user time (s) 20.56 20.83 20.59 
system time (s) 1.52 11.31 1.57 
total time (s) 22.08 32.14 22.16 
overhead (%) — 45.56% 0,36% 

 

The results got from this test should not be considered as-is. Their goal is just to give 
a feeling about the performance impact of the system, from an ordinary user 
perspective. For a more precise numeric evaluation of this test case, one would need 



to measure the time spent by the graphical interface processes, the I/O devices, and 
the user latency on controlling the application. 

4.4 Result Analysis 

The signature verification procedure imposes a significant computing overhead, as 
shown by the differences between the first execution and the reference system 
execution. The first execution can be very time-consuming, because the validation 
cache is barely used. This is perceptible in the compression experiment: the first 
execution takes 503% more time than the reference system. This bad performance 
occurs because each file being compressed is accessed only once (cache miss ratio 
near to 100%). The validation cache influence is visible on the second execution of 
this experiment, which states an overhead of only 1.28% and cache hit ratios of 100%. 
This allows concluding that the overhead is around 1% if the cache is fully used. 

On the other hand, the compilation experiment shows a much better picture for its 
first execution: only 13% overhead. This is due to the way compilation is done: 
header files are often included on several different files, generating lots of accesses on 
them. This can be seen on table 1: although 115494 open syscalls were performed, 
they generated only 2070 cache misses. The same can be concluded on the execve 
side: few tools (assembler, compiler, linker, etc) are extensively called, generating 
high cache hit ratios. Here, the second execution shows results not so good as in the 
compression experiment. This is due to the fact that the compilation modifies 
configuration scripts and object files that should be checked again. 

The execution experiment shows that the performance impact for an average 
interactive user is acceptable. Although the first execution presents an overhead 
around 45%, the second execution overhead is near zero. In a multi-user environment, 
only the first user of an application will suffer from the first execution overhead. In 
this case, subsequent users will notice no overhead. 

5. Current Status 

Presently, the system is able to check file signatures and to allow/deny access to files 
depending on their signatures. This makes it useable in servers for common services 
like e-mail, web, proxy, and file sharing. Considerable work remains to be done in the 
signature generation and management aspects, before the system is ready for 
production multi-user systems. Some points for future work are outlined here. 

As results show, the first access to a file is time-consuming. For large applications, 
this means an uncomfortable starting delay for its first user. For network service 
daemons, such response delay can leads a network client to time-out. This problem 
can be minimized by “proactively” populating the validation cache (by running a 
routine to check all files registered in the signature base, in moments of low system 
activity). 

The system public key needs to be accessible to the kernel during the system 
initialization. It can be passed as a kernel boot parameter, made available from a read-



 

only external media, or even be fetched from a remote key server. The public key 
should not be available for write access during system operation. If the public key is 
modifiable, the signature validation mechanism can be bypassed by tampering the 
signature base and re-signing all registered files. 

Presuming that the public key is kept safe from tampering, the signature base file 
can be maintained on the local file system, protected from access by normal users. It 
does no need to be encrypted, as it is also signed and will be verified like other files. 
This is also valid for the exception rules file. In the case one of these control files is 
corrupted or removed, access to the signed files will be denied. As a consequence, the 
system will be useless, but preserving its integrity. A better solution would be to store 
these files in a remote server, to be fetch during system initialization. 

User files are frequently modified. The file signature base would need to be 
frequently adjusted to reflect changes in those files, but this can be unfeasible if the 
signature base is a static and protected resource. One solution to this problem is to 
create exception rules for user directories, as stated in section 3.6. However, allowing 
file execution in user directories can open security breaches. A safer approach would 
be to allow trusted users to sign their executable files, using personal keys. This can 
be achieved by creating a local Public Key Infrastructure (PKI). The trusted users’ 
keys should be certified by the system public key, and would be used to generate 
signatures for their files, which are stored in personal signature bases. 

6. Related Work 

The most known work in the domain on file integrity check is the Tripwire system 
[11], which inspired this work. It is a user-level application operating in batch mode 
(usually when the system load is low). Tripwire is strong in detecting file 
modifications, but is unable to prevent them. The Bsign project [17] is similar to 
Tripwire, but applies only to executable files in ELF format. It stores each file 
signature in the executable file itself (ELF files support “sections” in which particular 
data can be stored). The SOFFIC system [16] and the system presented in [2] for the 
NetBSD operating system have a similar approach to the system presented here, but at 
this moment there are no concrete results or analysis widely available about them. 

The idea of signing files and checking their signatures on demand is not new and 
can be applied to different domains. The work presented in [15] uses this approach to 
validate web pages by the web server, as they are requested by remote clients. Their 
goal is to prevent delivering hacked pages to the Internet. 

7. Conclusion 

In this paper we present a software architecture to improve the security of a 
computing system using file integrity checking. It does not prevent a system to be 
intruded, but denies access to tampered files or to files dropped in protected areas. 
The proposed approach makes use of digital signature and system call interception 



techniques. Although it was implemented on an UNIX-like operating system, it can 
be adapted to other operating systems. 

The performance results presented show that the proposed approach is worthwhile 
in real situations. Once the validation cache has enough information, the overhead 
imposed on the applications considered is under 10%. 

The proposal is not complete, as it lacks features to improve user key management. 
Some possibilities to improve it were enumerated, but there are other approaches to 
consider. We are currently studying aspects related to user key management using a 
distributed PKI, and defining strategies in the case of network outage. 
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