
A Policy Based Framework for Access Control

Ricardo Nabhen, Edgard Jamhour, Carlos Maziero

PPGIA – PUC PR – CURITIBA – PARANÁ - BRAZIL
{ rcnabhen, jamhour, maziero} @ppgia.pucpr.br

Abstract. This paper presents a policy-based framework for managing access
control in distributed heterogeneous systems. This framework is based on the
PDP/PEP approach. The PDP (Policy Decision Point) is a network policy server
responsible for supplying policy information for network devices and
applications. The PEP (Policy Enforcement Point) is the policy client (usually,
a component of the network device/application) responsible for enforcing the
policy. The communication between the PDP and the PEP is implemented by
the COPS protocol, defined by the IETF. The COPS (Common Open Policy
Service) protocol defines two modes of operation: outsourcing and
provisioning. The choice between outsourcing and provisioning is supposed to
have an important influence on the policy decision time. This paper evaluates
the outsourcing model for access control policies based on the RBAC (Role-
Based Access Control) model. The paper describes a complete implementation
of the PDP/PEP framework, and presents the average response time of PDP
under different load conditions.

1. Introduction

In policy-based networking (PBN), a policy is a formal set of statements that define
how the network's resources are allocated among its clients. Policies may be used to
achieve better scaling in network management by describing common attributes of
classes of objects, such as network devices, software services and users, instead of
individually defining attributes for these elements. In order to implement PBN it is
important to define a vendor independent method for representing and storing
network policies. A formal method for representing users, services, groups and
network elements is also required. An important work in this field, called CIM
(Common Information Model), was proposed by the DMTF (Distributed Management
Task Force) [4]. The CIM model addresses the problem of representing network
resources. PCIM (Policy Core Information Model) is an information model proposed
by IETF that extends CIM classes in order to support policy definitions for managing
these resources [5]. PCIM is a generic policy model. Application-specific areas must
be addressed by extending the policy classes and associations proposed by PCIM. For
example, QPIM (QoS Policy Information Model) is a PCIM extension for describing
quality of service polices [11]. In this context, this paper describes a PCIM extension
for access control, called RBPIM (Role Based Policy Information Model), which
permits to represent network access control policies based on roles, as well as static
and dynamic constraints, as defined by the proposed NIST RBAC standard [1].

Typically, PCIM is implemented using a PDP/PEP approach [9]. The PDP
(Policy Decision Point) is a network policy server responsible for supplying policy
information for network devices and applications. The PEP (Policy Enforcement
Point) is the policy client (usually, a component of the network device/application)
responsible for enforcing the policy. The communication between the PDP and the
PEP is implemented by the COPS protocol, defined by the IETF [10]. The COPS
(Common Open Policy Service) protocol defines two modes of operation: outsourcing
and provisioning. In the outsourcing model, the PDP receives policy requests from the
PEP, and determines whether or not to grant these requests. Therefore, in the
outsourcing model, the policy rules are evaluated by the PDP. In the provisioning
model the PDP prepares and "pushes" configuration information to the PEP. In this
approach, a PEP can take its own decisions based on the locally stored policy
information.

The motivation for defining RBAC in PCIM terms can be summarized as
follows. First, there are several situations where the same set of access control
policies should be available for heterogeneous applications in a distributed
environment. This feature can be achieved by adopting the PDP/PEP framework.
Second, an access control framework requires having access to information about
users, services and applications already described in a CIM/PCIM repository.
Implementing access control in PCIM terms permits to leverage the existing
information in the CIM repository, simplifying the task of keeping a unique source of
network information in a distributed environment.

The remaining of this paper is organized as follows: Section 2 presents a short
description of the RBAC model used in this paper. Section 3 reviews some related
works. Section 4 presents RBPIM. Section 5 presents the RBPIM framework
implemented using the outsourcing model. Section 6 presents the performance
evaluation results of a prototype of the RBPIM framework under various load
conditions. Finally, the conclusion summarizes the main aspects in this project and
points to future works.

2. RBAC Model

RBAC models have received a broad support as a generalized approach to access
control, and are well recognized for their many advantages in performing large-scale
authorization control. Several RBAC models have been proposed, each one exploring
features that, supposedly, exhibit true enterprise value. The RBAC model adopted by
the RBPIM framework is based on the proposed NIST (National Institute of
Standards and Technology) Standard [1]. The RBPIM framework accommodates the
most important RBAC features described in [1]. Also, the PEP implementation in the
RBPIM framework (called RBPEP – Role Based PEP) is based on API’s described in
the proposed NIST RBAC functional specification [1]. This section will present a
summary of the RBAC features used in the RBPIM framework. The purpose of this
summary is to define a standard nomenclature for presenting the RBPIM framework
in sections 4 and 5. For a more complete description, please, refer to the proposed
NIST standard [1].

The proposed NIST standard presents a RBAC reference model based on four
components: Core RBAC, Hierarchical RBAC, Static Separation of Duty Relations
and Dynamic Separation of Duty Relations. The idea of organizing the reference
model in components is to permit vendors to partially implement RBAC features in
their products. The Core RBAC model element includes sets of five basic data
elements called users (USER), roles (ROLES), objects (OBS), operations (OPS), and
permissions (PRMS). The main idea behind the RBAC model is that permissions are
assigned to roles instead of being assigned to users. The User Assignment (UA) is a
many-to-many relationship. An important concept in RBAC is that roles must be
activated in a session. That means that user must select the roles he wants to activate
within a session in order to get the permissions associated to the roles. A session is
associated with a single user, and each user is associated with one or more sessions.
The Permission Assignment (PA) is also a many-to-many relationship (i.e., a
permission can be assigned to one or more roles, and a role can be assigned to one or
more permissions). A permission is an approval to perform an operation (e.g., read,
write, execute, etc.) on one or more RBAC protected objects (e.g., a file, directory
entry, software application, etc.). The Hierarchical RBAC model element introduces
role hierarchies (RH). Role hierarchies simplify the process of creating and updating
roles with overlapping capabilities. In the proposed RBAC model, role hierarchies
define an inheritance relation of permissions among roles; e.g., r1 “ inherits” role r2 if
all privileges of r2 are also privileges of r1. The Static Separation of Duty (SSD)
model element introduces static constraints to the User Assignment (UA) relationship
by excluding the possibility of the user to assume conflicting roles. The proposed
RBAC model defines SSD with two arguments: a role set that includes two or more
roles, and a cardinality greater than one indicating the maximum combination of roles
in the set a user can be assigned, e.g., for constraining a user to assume the roles “r1”
and “r2” , one must define a set { r1, r2} with cardinality 2 (the user can assume
cardinality-1 roles in the set). The Dynamic Separation of Duty (DSD) model element
introduces constraints on the roles a user can activate within a session. The strategy
for imposing constraints on the activation of roles is similar to the SSD approach,
using a set of roles and cardinality greater the one. Note that SSD imposes general
constraints on which roles a user can assume, while DSD imposes constraints on
which roles a user can simultaneously activate in a session.

The RBPIM framework described in sections 4 and 5 supports all four elements
of the proposed NIST standard and proposes a more flexible method for defining UA
relationships by combining Boolean conditions as defined by the PCIM standard and
its extensions [6].

3. Related Works

Recent works starts exploring the advantages of the PDP/PEP approach for
implementing an authorization service that could be shared across a heterogeneous
system in a company. An interesting work in this field is the XACML (eXtensible
Access Control Markup Language), proposed by the OASIS consortium [12].
XACML is a XML based language that describes both an access control policy
language and a request/response language. The policy language is used to express

access control policies. The request/response language is used for supporting the
communication between PEP clients and PDP servers. RBPIM framework described
in this paper also uses the PDP/PEP approach. However, our approach differs from
XACML on several points. First, the RBPIM uses a standard COPS protocol for
supporting the PEP/PDP communication, instead of XML. Second, the information
model used for describing policies is based on a PCIM extension. Third, RBPIM has
been implemented for supporting a specific access control method, the RBAC. That
permits to define a complete framework that includes the algorithms in the PDP,
especially conceived for evaluating policies that includes hierarchy of roles and both,
dynamic and static separation of duties.

Most of the research efforts found in the literature refer to the use of the PCIM
model and its extensions for developing policy management tools for QoS support
[11]. However, a pioneer work for defining a PCIM extension for supporting RBAC,
called CADS-2, has been proposed by BARTZ, L.S. [3]. The CADS-2 is a review of a
previous work, called hyperDRIVE, also proposed by BARTZ [2]. The hyperDRIVE
is a LDAP [7] schema for representing RBAC. This schema can be considered as a
first step for implement RBAC using the PDP/PEP approach. However, hyperDRIVE
was elaborated before the PCIM standard, and has been discontinued by the author.
As hyperDRIVE, CADS-2 defines classes suitable to be implemented in a directory-
based repository, such as LDAP. CADS-2 defines RBAC roles in terms of policy
objects, and introduces classes to support different comparison operators, e.g., equal,
greaterThan, lessThan. These operators permit to represent complex comparison
expressions with the attribute values of other object stored in a LDAP repository.
These expressions are used to represent the conditions a user must satisfy in order to
assume a RBAC role. The RBIM model described in the section 5 uses some ideas
presented in the CADS-2 model. Specially, the idea of mapping roles to users using
Boolean expressions. Note that this approach offers an additional degree of freedom
for creating RBAC policies because the UA (User Assingment) relationship can be
expressed through Boolean expressions instead of a direct mapping between user and
roles. However, a recent IETF publication called PCIMe (PCIM Extensions) proposes
a different approach for representing Boolean expressions [6]. The RBPIM
framework adopts the PCIMe strategy. Also, many features have been introduced in
order to support the other elements of the RBAC model, such as hierarchy of roles,
DSD and SSD, not supported in the original CADS-2 model.

4. RBPIM: The Role Based Policy Information Model

Figure 1 shows the PCIM model, and the proposed RBPIM extensions for supporting
RBAC policies. In the PCIM approach, a policy is defined as a set of policy rules
(PolicyRule class). Each policy rule consists of a set of conditions (PolicyCondition
class) and a set of actions (PolicyAction class). If the set of conditions described by
the class PolicyCondition evaluates to true, then a set of actions described by the class
PolicyAction must be executed. A policy rule may also be associated with one or
more policy time periods (PolicyTimePeriodCondition class), indicating the schedule
according to which the policy rule is active and inactive. Policy rules may be

aggregated into policy groups (PolicyGroup class) and these groups may be nested, to
represent a hierarchy of policies.

-ConditionGroupNumber

PolicyCondition PolicyAction (abstract)

-TimePeriod

PolicyTimePeriodCondition

* *

* *

-RoleName
-InheritedRoles[]

RBACRole **

-PermissionName

RBACPermission **

RBACPolicyGroup **

-AssignedRBACPermission

AssignerRBACPermission **

-DSDName
-RoleSet[]
-Cardinality

DSDRBAC **

-AssignedOperation[]

AssignerOperation **

-DSDName
-RoleSet[]
-Cardinality

SSDRBAC **

**

*

*

SimplePolicyCondition

+ConditionListType
-RulePriority

PolicyRule

*

*

*

*

PolicyVariable

PolicyValue

*

1

*

1

**
RBPIM
classes

Fig.1. PCIM class hierachy and RBPIM extensions.

In a PolicyRule, rule conditions can be grouped by two different ways: DNF

(Disjunctive Normal Form) or CNF (Conjunctive Normal Form). The way of
grouping policy conditions is defined by the attribute ConditionListType in the
PolicyRule class. Additionally, the attributes GroupNumber and ConditionNegated, in
the association class PolicyConditionInPolicyRule helps to create condition
expressions. In DNF, conditions within the same group number are ANDed (∧) and
groups are Ored (∨). In CNF, conditions within the same group are ORed (∨) and
groups are ANDed (∧). In order to illustrate this approach, suppose we have a set of
five PolicyConditions Ci(GroupNamber,ConditionNegated) as follows:
C={C1(1,false), C2(1,true), C3(1,false), C4(2,true), C5(2,false)}. Then, the overall
condition for the PolicyRule will be defined as:

If ConditionListType = DNF then: () () () C C C C!C evaluate 54321 ∧∨∧∧=C

If ConditionListType = CNF then: () () () C C C C!C evaluate 54321 ∨∧∨∨=C

The RFC 3460 proposes several modifications in the original PCIM standard.

These modifications are called PCIMe (Policy Core Information Model Extensions)
[6]. PCIMe solves many practical issues raised after the original PCIM publication.
For example, PolicyCondition have been extended in order to support a
straightforward way for representing conditions by combining variables and values.
This extension is called SimplePolicyCondition.

The strategy defined by SimplePolicyCondition is to build a condition as a
Boolean expression evaluated as: does <variable> MATCH <value>? Variables are
created as instances of specializations of PolicyVariable. The values are defined by
instances of specializations of PolicyValue. The MATCH element is implicit in the
model. PCIMe defines two types of variables: explicit (PolicyExplicitVariable) and
implicit (PolicyImplicitVariable).

Explicit variables are used to build conditions that refer to objects stored in a
CIM repository. For example, considers the following condition: Person.Surname
MATCH “Doe”. Person.Surname refers to the Surname attribute of the class Person
in the CIM model. This condition is expressed as PolicyExplicitVariable.ModelClass

= “Person” and PolicyExplicitVariable.Property = “ Surname” . Because
Person.Surname is a string, the PolicyStringValue subclass must be used in this
condition, i.e., PolicyStringValue.StringList = “Doe”. Observe that explicit variables
are a very powerful instrument for reusing CIM information in policy based
management tools.

Implicit variables are used to represent objects that are not stored in a CIM
repository. They are especially useful for defining filtering rules with conditions
based on protocol headers, such as source and destination addresses or protocol types.
For supporting filtering rules, PCIMe defines several specializations of
PolicyImplicitVariable, such as PolicySourceIPv4Variable,
PolicySourcePortVariable, etc. These specializations have no properties. For
example, the condition “source IPv4 address” MATCH “192.168.0.0/24” would be
represented using the class PolicySourceIPv4Variable and PolicyIPv4AddrValue.
IPv4AddrList = “192.168.0.0/24”. PCIMe offers also the possibility of creating
conditions that use sets or range of values instead of single values. For example, the
condition “source port” MATCH “[1024 to 65535]” would be represented using the
class PolicySourcePortVariable and PolicyIntegerValue.IntegerList=” 1024..65535” .
Values with wildcards are also permitted. Please, refer to the RFC 3460 for more
details about this approach.

*

*

-RoleName
-InheritedRoles[]

RBACRole

SimplePolicyCondition

-AssignedRBACPermission

AssignerRBACPermission

-TimePeriod

PolicyTimePeriodCondition
-PermissionName

RBACPermission

SimplePolicyCondition

-AssignedOperation[]

AssignerOperation
*

*

**

* ***

Fig.2. RBPIM class associations

 The RBPIM model is a PCIM extension for representing RBAC policies. The
RBPIM class hierarchy is shown in the Figure 1. The following classes have been
introduced: RBACPermission and RBACRole (specializations of PolicyRule),
AssignerPermission and AssignerOperation (specializations of PolicyAction),
DSDRBAC and SSDRBAC (specializations of Policy). The RBACPolicyGroup class
(specialization of PolicyGroup) is used to group the information of the constrained
RBAC model. As shown in Figure 2, the approach in the RBPIM model consists in
using two specializations of PolicyRule for building the RBAC model: RBACRole (for
representing RBAC roles) and RBACPermission (for representing RBAC
permissions). RBACRole can be associated to lists of SimplePolicyCondition,
AssignerRBACPermission and PolicyTimePeriodCondition instances. The instances
of SimplePolicyCondition are used to express the conditions for a user to be assigned
to a role (UA relationship). The instances of AssignerRBACPermission are used to
express the permissions associated to a role (PA relationship). The instances of
PolicyTimePeriodCondition define the periods of time a user can activate a role.
RBACPermission can be associated to a list of SimplePolicyCondition and
AssignerOperation instances. The instances of SimplePolicyCondition are used to

describe the protected RBAC objects and the instances of AssignerOperation are used
to describe approved operation on these objects.

5. RBPIM Framework

5.1. Overview

Several IETF works describe the implementation of policy-based network
management tools using the PDP/PEP approach [9,10]. The IETF defines that the
PEP and the PDP communicates using the COPS (Common Open Policy Service)
protocol [10]. The COPS is an object-oriented protocol that defines a generic message
structure for supporting the exchange of policy information between a PDP and its
clients (PEPs). The COPS protocol defines two models of operation: outsourcing and
provisioning. The choice between outsourcing and provisioning is supposed to have
an important influence on the policy decision time. In environments where network
polices are mostly static, one can suppose that the provisioning approach will be
faster than the outsourcing approach. However, if external events trigger frequently
policy changes, the performance in the provisioning approach can be significantly
reduced, and outsourcing model could be a better choice. Also, it is possible to
conceive hybrid approaches, combining the outsourcing and provisioning features.

The RBPIM framework described in this paper uses a “pure” outsourcing model.
Figure 3 illustrates the main elements in the RBPIM framework. RBPIM framework
adopts the PDP/PEP model using the outsourcing approach, i.e., the PDP carries most
of the complexity and the PEP is comparatively light. In the RBPIM framework, the
PEP is called Role-Based PEP (RBPEP). The Role-Based PDP (RBPDP) is a
specialized PDP responsible for answering the RBPEP questions. Observe that the
RBPDP has an internal database (called State DataBase) used for storing the state
information of the RBPEP. The CIM/Policy Repository is a LDAP server that stores
both: objects that represent network information such as users, services and network
nodes and objects that represents policies (including the RBPIM model described in
the section 4). The PCLS (Policy Core LDAP Schema) supplies the guidelines for
mapping PCIM into LDAP classes [8]. RBPIM is mapped to a LDAP schema as
defined by PCLS. The Policy Management Tool is the interface for updating
CIM/Policy repository information and for administrating the PDP service.

Network Node TCP PORT
(3288)

COPS
Protocol

RBPEP RBPDP

State
Da taBase

RBAC
Outsou rcing
Algo rithms

CIM/Po licy
Repository

(LDAP)

Policy Management
Tool

LDAP

LDAPRBAC
A PI

app lica tion

Ne twork Node

RBPEPRBAC
A PI

app lica tion

Fig.3. RBPIM Framework Overview

5.2. RBAC API ’s

As show in Figure 3, the RBPEP offers a set of API for permitting developers to build
RBAC-aware applications without implementing a COPS interface. The RBPIM
framework defines a set of five APIs:

• RBPEP_Open ()
• RBPEP_CreateSession(userdn:string; out session:string, roleset[]:string, usessions:int)
• RBPEP_SelectRoles(session: string, roleset[]:string; out result:BOOLEAN)
• RBPEP_CheckAccess(session: string, operation:string, objectfilter[]: string; out result:BOOLEAN)
• RBPEP_CloseSession(session:string)

 The RBPEP_Open is the only API not related to RBAC. It establishes the
connection between the PEP and the PDP. The API could be used by an application to
ask the RBPEP to initiate the RBAC service. The RBPEP will process the API only if
it is not already connected to the PDP.
 The RBPEP_CreateSession API establishes a user session and returns the set of
roles assigned to the user that satisfies the SSD constraints. This approach differs
from the standard CreateSession() function proposed by the NIST because it does not
activate a default set of roles for the user. Instead, the user must explicitly activate the
desired roles in a subsequent call to the RBPEP_SelectRoles API. This modification
avoids the need of the user to drop unnecessarily activated roles in order to satisfy
DSD constraints. In order to call the CreateSession API, an application must specify
the user through a DN (distinguish name) reference to a CIM Person object that
represents the user (userdn). The RBPIM framework does not interfere in the
authentication process. It supposes the application have already authenticated the user
and mapped the user login to the corresponding entry in the CIM repository. Because
the DSD constraints are imposed only within a session, the CreateSession API returns
to the application the number of sessions already open by the user (usessions).
Finally, the session parameter is a unique value generated by the RBPEP and returned
to the application in order to be used in the subsequent calls.
 The RBPEP_SelectRoles API activates the set of roles defined by the roleset[]
parameter. This API evaluates the SSD constraints in order to determine whether the
set of roles can be activated or not. If all roles in the set roleset[] can be activated, the
function returns result=TRUE. The SelectRoles API, differently from the standard
AddActiveRole function proposed by the NIST, can be evocated only once in a
session. Also, in the RBPIM approach, the standard function DropActiveRole
proposed by the NIST was not implemented. We have evaluated that allowing a user
to drop a role within a session would offer too many possibilities for violating SSD
constraints.
 The RBPEP_CheckAccess API is similar to the standard CheckAccess function
proposed by the NIST. This API evaluates if the user has the permission for executing
the operation on the set of objects specified by the filter objectfilter[]. The
objectfilter[] is a vector of expressions of type “PolicyImplicitVariable=PolicyValue”
or “PolicyExplictyVariable=PolicyValue” used for discriminating one or more
objects. In the current RBPIM version, the expressions in objectfilter[] are ANDed,
i.e., only the objects that simultaneously satisfy all the conditions in the vector are
considered for authorization checking. For example,

{ “PolicyDestinationIPv4Variable=192.168.2.3” ,
“Directory.Name=/usr/application” } , specifies the object directory /usr/application in
the host 192.168.2.3. The objectfilter[] vector is confronted with the conditions
specified by the RBACPermission objects in the RBPIM model. If the user has the
right to execute the operation on all the objects that satisfy the objectfilter[] vector,
the function returns result=TRUE. The RBPIM framework does not considers
relationship between the CIM classes. The explicit variables expressions are evaluated
independently, and must belong to the same object class in order to avoid an empty
set of objects. To consider association between the CIM classes is a complex issue let
for future studies. As an alternative, a condition “DN=value” , based on the
distinguished-name of an object, can be passed in the object filter to uniquely identify
a CIM object, leaving to the application the responsibility of querying the CIM
repository. The RBPEP_CloseSession terminates the user session, and informs to the
PDP that the information about the session in the “state database” is no longer needed.
The RBPEP_API is currently implemented in Java, and throws exceptions for
informing the applications about the errors returned by the PDP. Examples of
exceptions are: “RBPEP_client not supported” , “non-existent session” , “userdn not
valid” , etc.

5.3. COPS Messages

The COPS protocol version used in the RBPIM protocol is based on the RFC 2748.
This section presents a short summary of the COPS protocol, please, refer to [10] for
a more detailed description. Each COPS message consists of a common header
followed by a number of typed objects. A field in the common header called “op-
code” identifies the type of COPS message being represented. The RFC 2748 defines
ten types of COPS messages. In order to understand how these messages are used, it
is important to note that the COPS protocol assumes a stateful operation mode.
Requests from the PEP are installed or remembered by the remote PDP until they are
explicitly deleted. A PEP requests a PDP decision using the REQ (Request) message,
and PDP responds to the REQ with a DEC (Decision) message (see Figure 4). The
RPT message is used by the PEP to communicate to the PDP its success or failure in
carrying out the PDP’s decision. The DRQ message is sent by the PEP to remove a
decision state from the PDP. A field in the common header called “client-type”
identifies the policy client. The interpretation of all encapsulated objects that follow
the common header is relative to the “client-type” . A PEP sends an OPN (Open)
message in order to verify if its specific client-type is supported by the PDP. The PDP
responds with a CAT (Client-Accept) message or with a CC (Client-Close) message
(the client is rejected). The CAT message specifies a timer in seconds (called KA
timer), used for each side validating that the connection is still functioning when there
is no other messaging. The PEP sends KA (Keep-Alive) messages to the PDP and the
PDP echoes the PEP also using the KA messages. All the RBPEP APIs described in
the previous section are mapped to COPS messages. The Figure 4 illustrates the
RBPEP API to COPS mapping. The general structure of each COPS messages is also
illustrated in the Figure 4.

Application RBPEP PDP

RPEP_API
COPS OPN

Return

COPS CAT or CC

COPS OPN: <Common Header><PEPID>
COPS CAT: <Common Header> <KA Timer>
COPS CC: <Common Header> <Error>

Application RBPEP PDP

COPS_REQ

Return

COPS_DEC

COPS_RPT

COPS REQ: <Common Header><Client Handle><Context><ClientSI>
COPS DEC: <Common Header> <Client Handle><Decision(s)>|<Error>
 <Decision> ::= <Context><Decision: Flags>[<ClientSI Data>]
COPS RPT: <Common Header> <Client Handle> <Report-Type>

RBPEP_API

RBPEB_Open

RBPEP_CreateSession
RBPEP_SelectRoles

RBPEP_CheckAccess

Application RBPEP PDP

RBPEP_API
COPS_DRQ

Return

COPS DRQ: <Common Header><Client
Handle><Reason>

RBPEB_CloseSession

 Fig.4. RBPEP API to COPS Mapping

The RBPEP_Open API is mapped to the COPS OPN, CAT and CC messages. In

all messages, the <Common Header> uses the client-type 0x8000 for identifying a
RBPEP client to the PDP. This value belongs to the range defined for enterprise
specific client-types (0x8000 to 0xFFFF). The OPN message carries the specific
object <PEPID> that identifies the RBPEP to the PDP. The <PEPID> is a symbolic
string, usually representing the IP or the FQDN of the RBPEP host. If the PDP
supports the RBPEP-type client, and the <PEPID> belongs to the list of authorized
clients, it returns a CAT message; otherwise, it returns a CC message. The RBPEP
will process the API only if it is not already connected to the PDP. The three APIs,
RBPEP_CreateSession, RBPEP_SelectRoles and RBPEP_CheckAccess are mapped to
the COPS REQ, DEC and RPT messages. In all messages, the object <Client Handle>
encapsulates the session identifier. In the REQ message, the <Context> object
identifies the API to the PDP and the <ClientSI> (Client Specific Information) objects
are used to transport the parameters of the API. In the DEC message, the objects
<Decision> are used to encapsulate the parameters returned by the PDP. In the RPT
message, the <Report-Type> object carries the information about the success or
failure of the RBPEP object implementing the decision delivered by the PDP.
Because the RPT message is automatically generated by the RBPEP, the <Report-
Type> always returns a success status. The RBPEP_CloseSession API is mapped to
the COPS DRQ message. Like the other messages, the <Client Handle> object
identifies the session. The <Reason> object transport a code that identifies the reason
that justifies why the state (session) is being removed. The codes used by the
<Reason> object are identified by the RFC 2748 [10].

6. Evaluation

In order to evaluate the performance the RBPIM framework, a Java based RBPDP
and a RBPEP scenario simulator was implemented (see Figure 5). This prototype is
available for download in [13]. In the evaluation scenario, twenty RBPEP clients
request the RBPIM policy service provided by a single RBPDP. Each RBPEP keep a
distinct COPS/TCP connection with the RBPDP. The RBPEP clients simulate typical
access control scenarios created by text input files. Each line of these input files

corresponds to an API call presented in section 5.2. Several user sessions were created
in the context of each RBPEP connection. For each connection served, the RBPDP
generates an output file containing all COPS messages associated with the
correspondent API call in the input file and the elapsed time from the instant of
receiving the RBPEP’s COPS message to the RBPDP’s decision. In order to simulate
different load scenarios, we have introduced a random delay between each API call
contained in the input files. By varying the range of the random delay, we have
created six load scenarios as shown in Figure 6. The load scenario “1” is the lightest
scenario and the number “6” is the heaviest one. The former makes the RBPDP to
receive 2.7 requests/second (average) and the latter increases this number to 40
requests/second (average). The Figure 6 presents the results obtained with the Java
prototype, using a Pentium IV 1.5 Ghz 256 Mb RAM for hosting the RBPDP, and
other identical machine for hosting the 20 RBPEP clients.

Initially, we defined a small set with five role objects hierarchically related and
six permission objects, corresponding to a small set of departmental policies grouped
in a single RBACPolicyGroup object. Each role and permission object has been
defined considering a small set of three or four conditions combining implicit and
explicit variables. Also, three SSD constraints and one DSD constraint were
considered. One observes from the results that the RBPEP_CreateSession API
correspond to the longest decision time. This is justified by the fact that this API
prepares the state database by retrieving the list of the roles assigned to the user, free
of SSD constrains.

RBPEP

Pen t ium IV, 1.3 GHz
256 Mb RAM

SUN ONE
Directo ry Serve r 5 .1

Pent ium II I Dua l, 1 .3 GHz
512 Mb RAM
L inux O.S.

Pen t ium IV, 1.3 GHz
256 Mb RAM

Windows 2000

RBPEP

RBPEP

...

Application20

Application2

Application1app1.out

app2.out

app20 .ou t

...

results

3288

Sta te
Da tabase
(MySQL)

RBPDP

389

CIM/PCIM
Repository

LDAP Server

RBPEPs

app1. in

app2. in

app20 .in

...

inpu t

LDAP

TCP/COPS

TCP/COPS

TCP/COPS

 Fig.5. Simulation Scenario

After this initial test, the number of RBPIM objects has been increased. Each

RBPIM object affects differently the response time of the RBPEP_APIs. Because of
the flexibility introduced in the UA relationship by the RBPIM approach, the number
of roles objects significantly affects the RBPEP_CreateSession API. Increasing the
number of roles from five to twenty has almost doubled the average response time. By
the other hand, the effect of increasing the number of SSD objects is not important.
The response time of other APIs are not affected because the roles assigned to the
user are saved in the state database for subsequent calls. The RBPEP_SelectRoles is
almost imperceptible affected by the number of DSD objects and it is not affected by
the other RBPIM objects. The RBPEP_CheckAccess should be affected by the
number of permission objects associated to the roles. However, our tests shown that
increasing the average number of permissions per role from two to ten has no
significant effect in the response time. As a final remark, in all APIs, increasing the

number of conditions associated to a role or permission object has no significant
effect, because the DNF or CNF conditions are transformed in a single LDAP query.

The results of the evaluation tests show the number of role (RBACRole) objects
as the most important parameter affecting the response time in the RBPIM
framework. The results also show reasonable response times considering the Java
implementation and the CPU capacity of the machines used in the simulation. A
response time of 50 ms for RBPEP_CreateSession (100 ms with twenty roles) in
scenario 4 is a reasonable result for an API that is evocated only once in a session.
Also, the RBPEP_CheckAccess average response time API has presented reasonable
results for applications that requires decisions based on user events, and is not
significantly affected by the number RBAC policy objects.

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6

RBPEP_CreateSession

RBPEP_SelectedRoles

RBPEP_CheckAccess

Average response time (ms) Maximum response time (ms)
Load
Scenario

Delay
Range

API
calls/s

1 5 to 10 s 2.7
2 4 to 8 s 3.3
3 3 to 6 s 4.4
4 2 to 4 s 6.7
5 1 to 2 s 13.3
6 0 to 1 s 40.0

 Fig.6. RBPDP decision time x API calls.

7. Conclusion

This paper has presented a complete policy based framework for implementing
RBAC policies in heterogeneous and distributed systems. This framework, called
RBPIM, has been implementing in accordance with the IETF standards PCIM and
COPS, and also, the proposed NIST RBAC standard. The framework proposes a
flexible RBAC model by permitting specify the relationship between users, roles,
permissions and resource objects by combining Boolean expressions. The
performance evaluation of the outsourcing model indicates that this approach is
suitable for supporting RBAC applications that requires decisions based on user
events. This paper does not discuss the problems that could rise if the PDP breaks.
Future works must evaluate alternative solutions for introducing redundancy in the
PDP service. Also, additional specifications are required for assuring a secure COPS
connection between the PDP and the RBPEPs. These studies will be carried out in
parallel with the evaluation of provisioning and hybrid approaches for implementing
the RBPIM framework. Also, some important PCIMe modifications must be taken
into account in a revised version of the RBPIM information model. Finally, some
studies are being developed for evaluating the use of the RBPIM framework for QoS
management based on RBAC rules.

References

1. D.F. Ferraiolo, R.S. Sandhu, G. Serban, “A Proposed Standard for Role-Based Access
Control”, ACM Transactions on Information System Security, Vol. 4, No. 3, August
2001, pp. 224-274.

2. L.S. Bartz, “LDAP Schema for Role Based Access Control”, IETF Internet Draft,
expired, October 1997.

3. L.S. Bartz, “CADS-2 Information Model”, not published, IRS: Internal Revenue
Service, 2001.

4. Distributed Management Task Force (DMTF), “Common Information Model (CIM)
Specification”, URL: http://www.dmtf.org.

5. B. Moore, E. Elleson, J. Strasser, A. Weterinen, “Policy Core Information Model”,
IETF RFC 3060, February 2001.

6. B. Moore, E. Elleson, J. Strasser, A. Weterinen, “Policy Core Information Model
Extensions”, IETF RFC 3460, February 2003.

7. W. Yeong, T. Howes, S. Killie, “LightWeight Directory Access Protocol”, IETF RFC
1777, March, 1995.

8. J. Strassner, E. Ellesson, B. Moore, R. Moats, "Policy Core LDAP Schema", IETF
Internet Draft, January 2002.

9. R. Yavatkar, D. Pendarakis, R. Guerin, “A Framework for Policy-based Admission
Control”, IETF RFC 2753, January 2000.

10. D. Durham, Ed., J. Boyle, R. Cohen, S. Herzog, R. Rajan, A. Sastry, The COPS
(Common Open Policy Service) Protocol, IETF RFC 2748, January 2000.

11. Y. Snir, Y. Ramberg, J. Strassner, R. Cohen, B. Moore, "Policy QoS Information
Model", IETF internet-draft, November 2001.

12. OASIS, "eXtensible Access Control Markup Language (XACML) -Version 1.03”,
OASIS Standard, 18 February 2003, URL: http://www.oasis-open.org

13. RBPIM Project WebSite. http://www.ppgia.pucpr.br/~jamhour/RBPIM

