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This paper describes the addition of an extra piece of software, a rollback manager, to implement state saving and
rollback management for optimistic federates in the High Level Architecture (HLA). This mechanism uses computa-
tional reflection techniques to create a rollback manager meta-object that extends the low-level time management
services provided by HLA. The main propose of the rollback manager is to relieve the federate from the burden of
handling problems related to the federate state saving management and recovery. Some experimental results are shown,

to prove the feasibility of the proposed mechanism.
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1. Introduction

The research activities in distributed smulation can be
classed in two main areas The PADS (Parallel and
Distributed Simulation) area has its emphass on how to
achieve high performance in distributed simulations
while insuring all the causdlity constraints between
events being processed in paralld. Two main ap-
proaches were proposed to solve this problem: the
conservative approach [1] and the optimigtic one [2,3].
The second area, called DIS (Distributed Interactive
Simulation), looks for the development of highly inter-
active simulation environments, allowing remote users
tointeract in real-time.

Several problems remained open in both aress,
mainly related to performance aspects, efficient network
usage, smulation code reuse, and interoperability in
heterogeneous environments. To cover these issues, the
US DD proposed the High Level Architecture initiative
[4], defining a standard architecture for the modeling
and smulation of complex systems. It is a software
environment designed to ease the interoperability
among different models, through standard interfaces.
Also, it uses object orientation techniques to allow
component reuse.

However, as shown hereafter, some HLA
services are very low-level and hard to use when build-
ing Smulation models that use peculiar time synchroni-
zation schema. In this paper we present a generic
rollback manager, able to detect causality violations and
providing all the state saving and rollback mechanisms
needed by optimistic Smulation entities, transparently.

This paper is organized as follows. section 2
presents the main HLA architectural aspects; section 3
explores the HLA time management mechanisms,
section 4 presents the computationa reflection concepts
used to define the rollback manager, which is fully
defined in section 5; finally, section 6 shows some
experimental results.

2. The High Level Architecture

The High Level Architecture congtitutes a common
technical framework for modeling and execution of
distributed smulations. Its main components are the
Object Model Templates, the HLA Compliance Rules,
and the Runtime Infrastructure [4].

Each HLA simulation is defined by a federa-
tion, in which a group of federates interact exchanging
data and events. These interactions are defined using the
Object Model Templates - OMT, which allows describ-
ing the objects that congtitute the federation, their
attributes, and relationships. Each federation defines a
Federation Object Model — FOM, describing all the
shared information (objects, attributes, associations, and
interactions) used in the federation. Beyond the FOM,
the Simulation Object Model (SOM) describes objects,
attributes, and interactions that can be used externally.
To be considered as according the HLA specifications,
the federation should respect the #é&h4 Compliance
Rules. They define the responsibility and relationships
among all the federation components.

The federates interact using tRen-Time In-
Jrastructure - RTI, which can be seen as a distributed
generic operating system that provides communication



and coordination services to the federates. All interac-
tions in the federation should be done through the RTI.
The interaction between a federate and the RTI uses
method calls from two different classes: R7/Ambassa-
dor and FederateAmbassador. The RTIAmbassador
class contains all methods offered by the RTI to the
federates. Its implementation is done by the RTI and is
not accessible to the smulation programmer. On the
other hand, the FederateAmbassador classis an abstract
class, implemented by the smulation programmer, that
identifies all methods that each federate should provide
tothe RTI for callback operations on the federate itsalf.
The services provided by the HLA to federates
are classed in six categories [4]. The focus of this paper
is on the 7ime AManagement category, which provides
coordination and logical time services to the federates.

3. Time Management in the HLA

The main time management aspects covered by the
HLA specification are the federates’ time policies, the
message ordering definitions, and the logical time
advance strategies.

3.1. Time policies

In HLA, federates can adopt different time policies,
resulting in different behaviors with respect to the
federation logical time. A federate can adopt a
time-regulating policy, allowing it to produce time-
stamped events. Some federates can use a
time-constrained policy, forcing it to consume time-
stamped events (sent by timeregulating federates).
Thus, a given federate can be regulating, constrained,
regulating and constrained, Or not regulating nor
constrained (the initial default behavior). The federates
can enable or disable these time policies at any time,
through RTI method calls. A federation can have
federates using any of these time palicies.

3.2. Message ordering

Much of the time management is done by the correct
ordering of messages sent by the federates. The RTI
manages input queues for each federate. Messages are
stored in the RTI queues according the existence of
timestamps (TSO 7ime-Stamp Ordered messages) or
not (RO -Receive Ordered messages), and according
the time policies used by the sender and the receiver.
RO messages are simply put in the FIFO input queue of
the receiving federate, and are immediatelgilable to

it. TSO messages are put in the time-ordered input
gueue of the receiving federate, and delivered to it in
time-stamp order. A TSO message can be delivered to a

federate only when no more messages having a smaller
timestamp will be eceived by that federate.

3.3. Time advancing approaches

The logical time advance in the federates is done ex-
plicitly: the federate requests the RTI to advance its
logical time and then waits for a confirmation callback.
This procedure is needed to insure that the federate will
not receive any TSO message with a timestamp smaller
than its local logical time. This condition should be
guaranteed by the TSO message delivery mechanism of
the RTI. Thus, the federate logical time only can ad-
vance when authorized by the RTI.

Due to the large diversity of simulations, the
requirements in time management can vary largely from
a simulation to another. The three most common ap-
proaches for time management in HLA ar@ne
stepped, event driven and optimistic [5]. In the event-
driven approach, the events are processed according
their timestamp order, thus the logical time advance is
bound to the events timestamps. This corresponds to the
conservative approach. In the optimistic approach, the
events can be processed in any order.

3.4. The Optimistic approach

In the optimistic approach, the messages carrying events
are delivered to the federates without considering their
timestamp order. The federate uses fla@hQueueRe-
quest method to ask the RTI for all TSO messages
present in its input queue. After delivering the mes-
sages, the RTI invokes the callback methiadeAd-
vanceGrant in the federate, authorizing it to advance its
logical time.

If the federate receives an out-of-order time-
stamped message, it should rollback its local execution,
to correctly consider the ordering of all messages
received. This recovery procedure includes unrolling the
simulation to a execution point before the out-of-order
message timestamp, re-processing events, canceling
scheduled events, and canceling messages erroneously
sent to other federates. The message cancellation is
done using through RTI methéttract, used with the
JlushQueueRequest service (figure 1).
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Figure 1. Optimistic federate retraction



If the message to be canceled was already de-
livered to another federate, it should also be rolled back.
The RTI cdls its requestRetraction callback method,
and the federate should then undo any processing done
for events received improperly. All these federate
actions should be implemented by the simulation
programmer.

Our work, presented in this paper, consists in
the use of computational reflection techniques to build a
generic rollback manager. This manager is charged to
detect causality violations and to provide all state saving
and rollback mechanisms needed by a federate, in a
transparent way. It frees the simulation programmer of
programming tasks not related to the simulation model
itself.

4. Computational Reflection

Computational reflection is a development technique
that allows a system to interact with itself, through a
self-representation. Using this, the system can control
its own behavior, allowing a clear separation between
the functionality provided by the system to end users
and the functions provided to configure and manage the
system. This is done through a set of structures used by
the system to represent its own aspects, both structural
and computational.

According to [6], a reflexive architecture com-
putational system is constituted by two levels: a base
level and a meta level. The base level is responsible for
solving problems belonging to an externa domain,
normally related to the system’s functionality. The meta
level isin charge of the control and management of the
base level. This allows a better modularity, separating
the application code (base level) from the management
code (meta levedl).

5. A Rollback Manager

The mechanism proposed here provides an automatic
and generic way to deal with the requestRetraction
callbacks, freeing the optimistic federates (and the
programmer) of this complex task. Our proposal uses
some computational reflection techniques [6] to create a
time management meta-level between the RTI and each
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Figure 2. The rollback manager

Using this approach, the rollback manager takes to itself
the control of the federate's state rollback, including
canceling received or sent messages. The federate will
continue calling the same methods of RidAmbassa-

dor class to interact with the RTI and it will receive RTI
callbacks through the sant@derateAmbassador class
methods. However, some time management method
calls will be intercepted and addressed to the rollback
manager. Only some time management methods, mostly
related to retraction operations, are intercepted; all the
other methods are passed directly toRt&dmbassador
andFederateAmbassador implementations.

The methods that should be reflected are those
related to time management operations in optimistic
federates, agushQueueRequest andtimeAdvanceGrant.
Using this approach, the federate can adopt an optimis-
tic behavior without worrying about possible rollbacks.
For the rollback manager be able to control rollbacks
transparently, it should keep periodic snapshots of the
federate's internal state (state checkpoints), in order to
restore some previous state when a rollback occurs.
Thus, the rollback manager should have access to the
federate's state at any time. To provide that, each feder-
ate should implement two callback methods that give
controlled access to its internal state.

As the rollback manager only needs access to
the federate's state to save its current state and to restore
a previous state, it is enough to implement two methods
providing these operatichs a geStare(S,, t. ) method,
which returns the federate's current state in thet{|S
state vector, and thesState(S,, t. ), which restores the
federate's state to the state saved in the state vegtor [S
t). The rollback manager uses therState method to
maintain a list of previous states of the federate, and the
setState method to restore a previous state, when a
rollback occurs. Using this approach, the implementa-
tion of optimistic federates becomes easier; its sole

federate. The time management method calls between responsibility about rollbacks is the correct implemen-
them are intercepted (reflected) by the rollback man- tation of the methodgerState() andserState ).

ager, which implements the rollback management in

Using the state saving methods, the rollback

behalf of the federate. The figure 2 illustrates the gen- Manager can save the federate state at given times in

eral structure of the proposed mechanism:

which all TSO events sent to the federate are guaran-

! These operations were inspired from Isis System [7], for the replica’s
state management in groups of fault tolerant processes.



teed. An event is considered safe if it can be processed
without any cancellation risk in the future, unless its
retraction is explicitly requested. The cdls to the flush-
QueuneRequest method are intercepted by the rollback
manager, which interacts with the RTI to obtain the
TSO messages. Thisis done in two phases: initialy the
rollback manager uses a conservative approach to
receive the TSO messages from the RTI. Through the
method nextEventRequest, it requests that RTI deliver
all the messages RO available insde its input queue and
all the messages TSO with time stamps smaller than the
federate current time. When there are no more TSO
messages that match this requirement, the RTI author-
izes the federate time to advance, through a callback to
the fimeAdvanceGrant method. This callback passes a
future time value t; as a parameter, to indicate that the
federate’s logical time can be advanced to t; . At this
point, the manager had pessimistically received all the
safe messages, so the RTI can guarantee that all the
TSO messages with time stamps smaller than thad been
delivered. Thistimet; can be considered as a checkpoint
time, indicating a point in the simulation time where the
state of the federateis safe, with no rollback risks. Thus,
the manager saves the federate’s state at t; as a check-
point, using the gerState call defined above. After this
pessimist phase, the manager calls the flushQueueRe-
quest method on the RTI. At this point, the RTI will
deliver all other TSO messages sent to the federate,
without worrying about their timestamps. These mes-
sages are considered unsafe and can suffer rollback,
since the RTI doesn't guarantee that messages with
smaller timestamps won't be sent to that federate in the
future. If a rollback occurs, the rollback manager has
access to al the needed information to undo the proc-
essing improperly done, to cancel scheduled events, and
to restorethe last safe state of the federate.

5.1. The Rollback Procedure

If the federate receives a message older than its current
logical timet. , the federate's state should be rolled back
to a previous safe state, in order to guarantee the cau-
sality congtraints. The rollback manager can detect the
need of arollback operation, because it receives al the
messages addressed to the optimistic federate. In HLA,
there are four major event types that can change objects
and their attributes. These events should be managed
separately by the rollback manager, to allow it to main-
tain the whole control on all modifications performed in
the federate state. These events will be described in the
next items of this text; at this point we can consider all
the received events in a generic way. When receiving a
TSO message the manager will compare its timestamp
tm With the current logical time t. (the rollback manager
is a the same simulation time as the federate it man-

ages). If t, < t. a causality violation is detected, and the
manager should restore the federate state to a previous
safe state [Ss , t with ts < t,, . The rollback manager
should also keep track of all messages sent by the
federate during ts < t < t, i.e. after the [S;, tJ check-
point, to be able to cancel them. Therefore, the manager
can invoke the Refract method on the RTI to cance
messages sent to other federates. For doing this, the
manager should keep track of all the message handles
(EventRetractionHandles) for the messages sent during
the timeinterval [ts; t. ]. Also, the manager can receive
cancellation requests for messages improperly sent by
other federates. The RTI will forward to the receiver the
cancellation requests through the requestRetraction
callback. Normally it is up to the federate to implement
the needed procedures to deal with these cancellation
messages. In our proposal, the rollback manager will
perform this task.

5.2. The Rollback Manager Operation

In our schema, the messages received are passed to the
rollback manager and later forwarded to the optimistic
federate. The messages received with attributes (Attrib-
ute Handle Vaue Pair Set) or parameters (Parameter
Handle Value Pair Set) can be two: ReflectAttributel al-
ues (RAV) and Receivelnteraction (RI). In this case,
before forwarding the messages to the federate, the
rollback manager should save the old attribute values
and the federate state to allow a possible rollback.

This mechanism can be presented through a
time diagram with all the interactions between the
entities (federate, manager and RTI), as shown in the
figure 3. This figure shows the interactions during the
normal execution of an optimistic federate. When the
manager detects a message older than the current time
(tm < t), it interacts with the federate and the RTI to
execute the rollback. The RTI normally calls the re-
questRetraction method on the federate when a message
already delivered to it should be canceled. The event
handler EventRetractionHandle for that message is
passed with the request, which is intercepted by the
manager. Using this handler, the rollback manager can
recover the old values for the attributes or parameters.
The old values were passed to the federate through the
methods ReflectAttributeValues and Receivelnteraction.
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Figure 3. Timediagram for theinteractions

Therefore, the federate doesn't need to worry
about the cancellation of this event. If an improper
processing has resulted in sending some messages to
other federates, the manager will request their cancella-
tion through the RTI method Retract. The rollback
manager keeps track of all messages sent and their
handles.

6. Experimental Results

To validate this proposal, a smple federation involving
several optimistic federates was developed. In this work
we are using RTI 1.3 version 6 for C++. A Java binding
package is aso being used for the devel opment of Java
federates. Our development platform is a Solaris 2.6
Sun workstation with the Java Development Kit 1.1.6.
The prototype federation is currently being tested, and
some measurements are done. In this simulation, the
federate sate size was 200 bytes.

The inclusion of a rollback manager increased
the total execution time of this simulation. This over-
head is due to the reflection on method invocations.
These method invocations represent the message trans-
fers among federates and the RTI. The message time-
stamps are checked by the rollback manager, in order to
ensure the causality constraints. This procedure adds
some overhead to the overall smulation performance. In
order to measure this overhead we did some experi-
ments with the prototype simulation. The first experi-
ment was built changing the number of interactions in
the simulation execution. First, the original was exe-
cuted several times to obtain the average execution
time. The number of interactions ranged from 500 to
2000 to measure the simulation performance without the
rollback manager. Thevalues, in m ss format, obtained
are shown in table 1.

Simulation Number of Interactions

500 1000 | 1500 | 2000

1 221 | 425 | 642 | 830

2 242 | 424 | 644 | 816

3 229 | 435 | 6:12 | 818

4 233 | 431 | 637 | 822

5 241 | 422 | 6:23 | 827
Average 233 | 427 | 632 | 823

Table 1. Execution times without
the Rollback Manager

The same experiment was repeated adding the
rollback manager to perform the rollback procedure,
instead of leaving this task to the federate. The execu-
tion times obtained showed us the overhead caused by
the incluson of the rollback manager. The values, in
m ss format, are shown in table 2.

Simulation [Number of Interactions
500 1000 (1500 [{2000
334 |6:21 |9:16 12:13
336 |6:14 (9:34 |12:16
344 622 |9:22 12:23
322 |6:31 (945 |12:12
5 352 |6:33 (939 |12:17
Average (3:38 |6:24 |9:31 12:16

AIWIN|PF

Table 2. Execution times with the Rollback Manager

In this simulation, two messages (updateAt-
tributeValues and reflectAttributeValues) are ex-
changed among the federates through the RTI. These
messages must be intercepted and anayzed by the
rollback manager, so this procedure adds an extra
processing time to the execution. Therefore, when the
number of messages increases, the computational
overhead increases as well. The figure 4 shows the
execution times before and after adding the rollback
manager.
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One important point to be analyzed is the re-
lationship among the execution times. As suggested in
[8], this relationship defines the overhead factor by
compuitational reflection techniques.

The overhead factors are calculated dividing
the execution time with the rollback manager by the
original execution time. They are shown in table 3.

Execution Times

Interactions 500 | 1000 | 1500 | 2000

Without RM 2:33| 427 632 822
With RM 3:38| 6:24) 9:31| 12:16
Factor 145 1.46| 147 148

Table 3. Overhead Factors

The results of these measurements show that
the simulation execution with rollback manager is
amost 1.5 times dower than the origina Smulation
execution. The evolution of this overhead factor is

presented on figure 5.
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Figure 5. Overhead Factors Evolution

If the increased overhead factor of computa-
tional reflection techniques is under a 10 factor, the
advantage of those techniques is worthwhile [8]. The
results of these measurements show that the factor is
amost stable in 1.5, so the use of a reflexive rollback
manager can be considered worthwhile.

This overhead can be reduced by a proper ap-
plication design. The simulation prototype was design
just to show the proposed mechanism’s feasibility. The
source code could be optimized to reduce this overhead.

Another very important point in this proposed
mechanism is the fact that the rollback manager is
initialized only when the federate assumes a optimistic
behavior. Thus, if the federate never invokes fthe:-
QueuneRequest method from theR7i4dmbassador class,
the simulation performance will not be affected.

The rollback manager was implemented as an
additional class that is instantiated only when the
federate invokes thelushQueueRequest method, as
mentioned before. When this class is instantiated, there
is an increase of the total memory amount allocated by
the simulation execution. This memory utilization
increase was measured and the values are showed in
table 4.

Simulation Allocated Memory (Mb)

Total Resident
Without RM 15 10
With RM 16 13
Overhead 6,67% 30%

Table 4. Memory Allocation

The memory utilization was calculated using
standard Solaris operating system commands and tools.
Thus, these commands outputs are not exacts but can be
used to measure the memory allocation overhead.

The impact of the proposed mechanism on the
system performance remains acceptable, but more
extensive measurements should be done before giving
concrete results.

7. Conclusion

The use of computational reflection techniques in the
presented work showed to be useful, to simplify build-
ing optimistic federates. All the aspects related to
rollback operations can be taken in charge by the
rollback manager in behalf of the federate. This ap-
proach helps hiding the complexity of the optimistic
approach from the simulation model programmer.

The manager is capable to identify the need for
a rollback, as well as to take all the proper actions to



ensure that the federate returns to a safe state before the
causality violation. It also takes for itsaf the responsi-
bility of canceling messages improperly sent to other
federates. The rollback manager will accomplish tasks
that are common to every optimistic federate, and does
not depend on a specific federate behavior. The federate
code becomes simpler, because the whole control and
management of the rollback are under the manager’s
responsibility.

The tests carried out with the rollback manager
presented in this paper were done by manually substi-
tuting the RTI method call, to the meta-object methods.
This procedure was used for the validation of the
proposed mechanism. With the use of a reflective
language, the method deviations can be done in a [7]
transparent way. Such a language allows to define and
transparently manage reflective objects. All the method
invocations to the base objects are transparently devi-
ated to their respective meta-level objects. There are [8]
several programming hguages supporting meta-object
protocols [9]. One of them can be used to implement the
rollback manager proposed here. The most used lan-
guages are: CLOS, OpenC++ and OpenJava. As all the
RTI code is available in C++, the OpenC++ language [9]
would be a good choice, as it uses the C++ syntax. In
the specific case of our proposal, a better choice would
be OpenJava [10]. In OpenJava, all the reflective objects
are defined through the OpenJava MOP (Meta-Object
Protocol). The OpenJava code is pre-processed to
generate standard Java code. However, OpenJava is no{10]
yet mature (current version is 1.0) and does not support
some characteristics essential to the development of
distributed simulations using the HLA architecture. As
OpenJava, there are other proposals for Java reflective
implementations, like MetaXa [11], that could be
incorporated to this work.

[4]

[5]

[6]

[11]
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