
$�*HQHULF�5ROOEDFN�0DQDJHU�IRU�2SWLPLVWLF�+/$�6LPXODWLRQV

)HUQDQGR�9DUGkQHJD��&DUORV�0D]LHUR

*UDGXDWH�3URJUDP�LQ�$SSOLHG�&RPSXWHU�6FLHQFH��3RQWLILFLD�8QLYHUVLGDGH�&DWyOLFD�GR�3DUDQi
�����������&XULWLED���%UD]LO��H�PDLO��^YDUGDQHJD��PD]LHUR`#SSJLD�SXFSU�EU

7KLV�SDSHU�GHVFULEHV� WKH�DGGLWLRQ�RI�DQ�H[WUD�SLHFH�RI� VRIWZDUH��D� UROOEDFN�PDQDJHU�� WR� LPSOHPHQW� VWDWH� VDYLQJ� DQG
UROOEDFN�PDQDJHPHQW� IRU�RSWLPLVWLF� IHGHUDWHV� LQ� WKH�+LJK�/HYHO�$UFKLWHFWXUH� �+/$��� 7KLV�PHFKDQLVP� XVHV� FRPSXWD�
WLRQDO� UHIOHFWLRQ� WHFKQLTXHV� WR� FUHDWH� D� UROOEDFN� PDQDJHU� PHWD�REMHFW� WKDW� H[WHQGV� WKH� ORZ�OHYHO� WLPH� PDQDJHPHQW
VHUYLFHV�SURYLGHG�E\�+/$��7KH�PDLQ�SURSRVH�RI� WKH� UROOEDFN�PDQDJHU� LV� WR� UHOLHYH� WKH� IHGHUDWH� IURP� WKH� EXUGHQ� RI
KDQGOLQJ�SUREOHPV�UHODWHG�WR�WKH�IHGHUDWH�VWDWH�VDYLQJ�PDQDJHPHQW�DQG�UHFRYHU\��6RPH�H[SHULPHQWDO�UHVXOWV�DUH�VKRZQ�
WR�SURYH�WKH�IHDVLELOLW\�RI�WKH�SURSRVHG�PHFKDQLVP�

.H\ZRUGV��Distributed Simulation, HLA, Time Management, Computational Reflection

���,QWURGXFWLRQ

The research activities in distributed simulation can be
classed in two main areas. The PADS (3DUDOOHO� DQG
'LVWULEXWHG�6LPXODWLRQ) area has its emphasis on how to
achieve high performance in distributed simulations
while insuring all the causality constraints between
events being processed in parallel. Two main ap-
proaches were proposed to solve this problem: the
conservative approach [1] and the optimistic one [2,3].
The second area, called DIS ('LVWULEXWHG� ,QWHUDFWLYH
6LPXODWLRQ), looks for the development of highly inter-
active simulation environments, allowing remote users
to interact in real-time.

Several problems remained open in both areas,
mainly related to performance aspects, efficient network
usage, simulation code reuse, and interoperability in
heterogeneous environments. To cover these issues, the
US DoD proposed the +LJK�/HYHO�$UFKLWHFWXUH initiative
[4], defining a standard architecture for the modeling
and simulation of complex systems. It is a software
environment designed to ease the interoperability
among different models, through standard interfaces.
Also, it uses object orientation techniques to allow
component reuse.

However, as shown hereafter, some HLA
services are very low-level and hard to use when build-
ing simulation models that use peculiar time synchroni-
zation schema. In this paper we present a generic
rollback manager, able to detect causality violations and
providing all the state saving and rollback mechanisms
needed by optimistic simulation entities, transparently.

This paper is organized as follows: section 2
presents the main HLA architectural aspects; section 3
explores the HLA time management mechanisms;
section 4 presents the computational reflection concepts
used to define the rollback manager, which is fully
defined in section 5; finally, section 6 shows some
experimental results.

���7KH�+LJK�/HYHO�$UFKLWHFWXUH

The +LJK� /HYHO� $UFKLWHFWXUH constitutes a common
technical framework for modeling and execution of
distributed simulations. Its main components are the
2EMHFW� 0RGHO� 7HPSODWHV, the +/$� &RPSOLDQFH� 5XOHV,
and the 5XQWLPH�,QIUDVWUXFWXUH�[4].

Each HLA simulation is defined by a IHGHUD�
WLRQ, in which a group of IHGHUDWHV� interact exchanging
data and events. These interactions are defined using the
2EMHFW�0RGHO�7HPSODWHV�- OMT, which allows describ-
ing the objects that constitute the federation, their
attributes, and relationships. Each federation defines a
)HGHUDWLRQ� 2EMHFW� 0RGHO� – FOM, describing all the
shared information (objects, attributes, associations, and
interactions) used in the federation. Beyond the FOM,
the 6LPXODWLRQ�2EMHFW�0RGHO�(SOM) describes objects,
attributes, and interactions that can be used externally.
To be considered as according the HLA specifications,
the federation should respect the ten +/$�&RPSOLDQFH
5XOHV. They define the responsibility and relationships
among all the federation components.

The federates interact using the 5XQ�7LPH� ,Q�
IUDVWUXFWXUH - RTI, which can be seen as a distributed
generic operating system that provides communication

and coordination services to the federates. All interac-
tions in the federation should be done through the RTI.
The interaction between a federate and the RTI uses
method calls from two different classes: 57,$PEDVVD�
GRU and)HGHUDWH$PEDVVDGRU. The 57,$PEDVVDGRU
class contains all methods offered by the RTI to the
federates. Its implementation is done by the RTI and is
not accessible to the simulation programmer. On the
other hand, the)HGHUDWH$PEDVVDGRU class is an abstract
class, implemented by the simulation programmer, that
identifies all methods that each federate should provide
to the RTI for callback operations on the federate itself.

The services provided by the HLA to federates
are classed in six categories [4]. The focus of this paper
is on the 7LPH�0DQDJHPHQW category, which provides
coordination and logical time services to the federates.

���7LPH�0DQDJHPHQW�LQ�WKH�+/$

The main time management aspects covered by the
HLA specification are the IHGHUDWHV¶� WLPH� SROLFLHV, the
PHVVDJH� RUGHULQJ� GHILQLWLRQV, and the ORJLFDO� WLPH
DGYDQFH�VWUDWHJLHV.

�����7LPH�SROLFLHV

In HLA, federates can adopt different WLPH� SROLFLHV,
resulting in different behaviors with respect to the
federation logical time. A federate can adopt a
WLPH�UHJXODWLQJ� policy, allowing it to produce time-
stamped events. Some federates can use a
WLPH�FRQVWUDLQHG� policy, forcing it to consume time-
stamped events (sent by time-regulating federates).
Thus, a given federate can be UHJXODWLQJ, FRQVWUDLQHG,
UHJXODWLQJ� DQG� FRQVWUDLQHG, or QRW� UHJXODWLQJ� QRU
FRQVWUDLQHG (the initial default behavior). The federates
can enable or disable these time policies at any time,
through RTI method calls. A federation can have
federates using any of these time policies.

�����0HVVDJH�RUGHULQJ

Much of the time management is done by the correct
ordering of messages sent by the federates. The RTI
manages input queues for each federate. Messages are
stored in the RTI queues according the existence of
timestamps (TSO - 7LPH�6WDPS�2UGHUHG�messages) or
not (RO - 5HFHLYH� 2UGHUHG�messages), and according
the time policies used by the sender and the receiver.
RO messages are simply put in the FIFO input queue of
the receiving federate, and are immediately available to
it. TSO messages are put in the time-ordered input
queue of the receiving federate, and delivered to it in
time-stamp order. A TSO message can be delivered to a

federate only when no more messages having a smaller
timestamp will be received by that federate.

�����7LPH�DGYDQFLQJ�DSSURDFKHV

The logical time advance in the federates is done ex-
plicitly: the federate requests the RTI to advance its
logical time and then waits for a confirmation callback.
This procedure is needed to insure that the federate will
not receive any TSO message with a timestamp smaller
than its local logical time. This condition should be
guaranteed by the TSO message delivery mechanism of
the RTI. Thus, the federate logical time only can ad-
vance when authorized by the RTI.

Due to the large diversity of simulations, the
requirements in time management can vary largely from
a simulation to another. The three most common ap-
proaches for time management in HLA are WLPH
VWHSSHG, HYHQW� GULYHQ� and RSWLPLVWLF� [5]. In the event-
driven approach, the events are processed according
their timestamp order, thus the logical time advance is
bound to the events timestamps. This corresponds to the
conservative approach. In the optimistic approach, the
events can be processed in any order.

�����7KH�2SWLPLVWLF�DSSURDFK

In the optimistic approach, the messages carrying events
are delivered to the federates without considering their
timestamp order. The federate uses the IOXVK4XHXH5H�
TXHVW method to ask the RTI for all TSO messages
present in its input queue. After delivering the mes-
sages, the RTI invokes the callback method WLPH$G�
YDQFH*UDQW in the federate, authorizing it to advance its
logical time.

If the federate receives an out-of-order time-
stamped message, it should rollback its local execution,
to correctly consider the ordering of all messages
received. This recovery procedure includes unrolling the
simulation to a execution point before the out-of-order
message timestamp, re-processing events, canceling
scheduled events, and canceling messages erroneously
sent to other federates. The message cancellation is
done using through RTI method 5HWUDFW, used with the
IOXVK4XHXH5HTXHVW service (figure 1).

)LJXUH��. Optimistic federate retraction

Federate RTIIOXVK4XHXH5HTXHVW

WLPH$GYDQFH*UDQW

5HWUDFW

If the message to be canceled was already de-
livered to another federate, it should also be rolled back.
The RTI calls its UHTXHVW5HWUDFWLRQ callback method,
and the federate should then undo any processing done
for events received improperly. All these federate
actions should be implemented by the simulation
programmer.

Our work, presented in this paper, consists in
the use of computational reflection techniques to build a
generic rollback manager. This manager is charged to
detect causality violations and to provide all state saving
and rollback mechanisms needed by a federate, in a
transparent way. It frees the simulation programmer of
programming tasks not related to the simulation model
itself.

���&RPSXWDWLRQDO�5HIOHFWLRQ

Computational reflection is a development technique
that allows a system to interact with itself, through a
self-representation. Using this, the system can control
its own behavior, allowing a clear separation between
the functionality provided by the system to end users
and the functions provided to configure and manage the
system. This is done through a set of structures used by
the system to represent its own aspects, both structural
and computational.

According to [6], a reflexive architecture com-
putational system is constituted by two levels: a EDVH
level and a PHWD level. The base level is responsible for
solving problems belonging to an external domain,
normally related to the system’s functionality. The meta
level is in charge of the control and management of the
base level. This allows a better modularity, separating
the application code (base level) from the management
code (meta level).

���$�5ROOEDFN�0DQDJHU

The mechanism proposed here provides an automatic
and generic way to deal with the UHTXHVW5HWUDFWLRQ
callbacks, freeing the optimistic federates (and the
programmer) of this complex task. Our proposal uses
some computational reflection techniques [6] to create a
time management meta-level between the RTI and each
federate. The time management method calls between
them are intercepted (reflected) by the rollback man-
ager, which implements the rollback management in
behalf of the federate. The figure 2 illustrates the gen-
eral structure of the proposed mechanism:

F
E
D
E
R
A
T
E

R
T
I

RTIAmbassador

Rollback Manager

FedAmbassador

)LJXUH��. The rollback manager

Using this approach, the rollback manager takes to itself
the control of the federate's state rollback, including
canceling received or sent messages. The federate will
continue calling the same methods of the 57,$PEDVVD�
GRU class to interact with the RTI and it will receive RTI
callbacks through the same)HGHUDWH$PEDVVDGRU class
methods. However, some time management method
calls will be intercepted and addressed to the rollback
manager. Only some time management methods, mostly
related to retraction operations, are intercepted; all the
other methods are passed directly to the 57,$PEDVVDGRU
and)HGHUDWH$PEDVVDGRU implementations.

The methods that should be reflected are those
related to time management operations in optimistic
federates, as IOXVK4XHXH5HTXHVW and WLPH$GYDQFH*UDQW.
Using this approach, the federate can adopt an optimis-
tic behavior without worrying about possible rollbacks.
For the rollback manager be able to control rollbacks
transparently, it should keep periodic snapshots of the
federate's internal state (state checkpoints), in order to
restore some previous state when a rollback occurs.
Thus, the rollback manager should have access to the
federate's state at any time. To provide that, each feder-
ate should implement two callback methods that give
controlled access to its internal state.

As the rollback manager only needs access to
the federate's state to save its current state and to restore
a previous state, it is enough to implement two methods
providing these operations1 : a JHW6WDWH(Sc, tc) method,
which returns the federate's current state in the [Sc, tc]
state vector, and the VHW6WDWH(Sc, tc), which restores the
federate's state to the state saved in the state vector [Sc,
tc]. The rollback manager uses the JHW6WDWH method to
maintain a list of previous states of the federate, and the
VHW6WDWH method to restore a previous state, when a
rollback occurs. Using this approach, the implementa-
tion of optimistic federates becomes easier; its sole
responsibility about rollbacks is the correct implemen-
tation of the methods JHW6WDWH�� and VHW6WDWH��.

Using the state saving methods, the rollback
manager can save the federate state at given times in
which all TSO events sent to the federate are guaran-

1 These operations were inspired from Isis System [7], for the replica´s
state management in groups of fault tolerant processes.

teed. An event is considered safe if it can be processed
without any cancellation risk in the future, unless its
retraction is explicitly requested. The calls to the IOXVK�
4XHXH5HTXHVW method are intercepted by the rollback
manager, which interacts with the RTI to obtain the
TSO messages. This is done in two phases: initially the
rollback manager uses a conservative approach to
receive the TSO messages from the RTI. Through the
method QH[W(YHQW5HTXHVW, it requests that RTI deliver
all the messages RO available inside its input queue and
all the messages TSO with time stamps smaller than the
federate current time. When there are no more TSO
messages that match this requirement, the RTI author-
izes the federate time to advance, through a callback to
the WLPH$GYDQFH*UDQW method. This callback passes a
future time value tf as a parameter, to indicate that the
federate’s logical time can be advanced to tf . At this
point, the manager had pessimistically received all the
safe messages, so the RTI can guarantee that all the
TSO messages with time stamps smaller than tf had been
delivered. This time tf can be considered as a checkpoint
time, indicating a point in the simulation time where the
state of the federate is safe, with no rollback risks. Thus,
the manager saves the federate’s state at tf as a check-
point, using the JHW6WDWH call defined above. After this
pessimist phase, the manager calls the IOXVK4XHXH5H�
TXHVW method on the RTI. At this point, the RTI will
deliver all other TSO messages sent to the federate,
without worrying about their timestamps. These mes-
sages are considered unsafe and can suffer rollback,
since the RTI doesn’t guarantee that messages with
smaller timestamps won’t be sent to that federate in the
future. If a rollback occurs, the rollback manager has
access to all the needed information to undo the proc-
essing improperly done, to cancel scheduled events, and
to restore the last safe state of the federate.

�����7KH�5ROOEDFN�3URFHGXUH

If the federate receives a message older than its current
logical time tc , the federate’s state should be rolled back
to a previous safe state, in order to guarantee the cau-
sality constraints. The rollback manager can detect the
need of a rollback operation, because it receives all the
messages addressed to the optimistic federate. In HLA,
there are four major event types that can change objects
and their attributes. These events should be managed
separately by the rollback manager, to allow it to main-
tain the whole control on all modifications performed in
the federate state. These events will be described in the
next items of this text; at this point we can consider all
the received events in a generic way. When receiving a
TSO message the manager will compare its timestamp
tm with the current logical time tc (the rollback manager
is at the same simulation time as the federate it man-

ages). If tm < tc a causality violation is detected, and the
manager should restore the federate state to a previous
safe state [Ss , ts] with ts < tm . The rollback manager
should also keep track of all messages sent by the
federate during ts < t < tc , i.e. after the [Ss , ts] check-
point, to be able to cancel them. Therefore, the manager
can invoke the 5HWUDFW method on the RTI to cancel
messages sent to other federates. For doing this, the
manager should keep track of all the message handles
((YHQW5HWUDFWLRQ+DQGOHV) for the messages sent during
the time interval [ts ; tc]. Also, the manager can receive
cancellation requests for messages improperly sent by
other federates. The RTI will forward to the receiver the
cancellation requests through the UHTXHVW5HWUDFWLRQ
callback. Normally it is up to the federate to implement
the needed procedures to deal with these cancellation
messages. In our proposal, the rollback manager will
perform this task.

�����7KH�5ROOEDFN�0DQDJHU�2SHUDWLRQ

In our schema, the messages received are passed to the
rollback manager and later forwarded to the optimistic
federate. The messages received with attributes (Attrib-
ute Handle Value Pair Set) or parameters (Parameter
Handle Value Pair Set) can be two: 5HIOHFW$WWULEXWH9DO�
XHV (RAV) and 5HFHLYH,QWHUDFWLRQ (RI). In this case,
before forwarding the messages to the federate, the
rollback manager should save the old attribute values
and the federate state to allow a possible rollback.

This mechanism can be presented through a
time diagram with all the interactions between the
entities (federate, manager and RTI), as shown in the
figure 3. This figure shows the interactions during the
normal execution of an optimistic federate. When the
manager detects a message older than the current time
(tm < tc), it interacts with the federate and the RTI to
execute the rollback. The RTI normally calls the UH�
TXHVW5HWUDFWLRQ method on the federate when a message
already delivered to it should be canceled. The event
handler (YHQW5HWUDFWLRQ+DQGOH for that message is
passed with the request, which is intercepted by the
manager. Using this handler, the rollback manager can
recover the old values for the attributes or parameters.
The old values were passed to the federate through the
methods 5HIOHFW$WWULEXWH9DOXHV and 5HFHLYH,QWHUDFWLRQ.

flushQueueRequest
nextEventRequest

RAV , RI

timeAdvanceGrant

flushQueueRequest

getState

RAV , RI

RAV , RIRAV , RI

timeAdvanceGranttimeAdvanceGrant

Federate
5ROOEDFN

0DQDJHU RTI

t

)LJXUH��. Time diagram for the interactions

Therefore, the federate doesn’t need to worry
about the cancellation of this event. If an improper
processing has resulted in sending some messages to
other federates, the manager will request their cancella-
tion through the RTI method Retract. The rollback
manager keeps track of all messages sent and their
handles.

���([SHULPHQWDO�5HVXOWV

To validate this proposal, a simple federation involving
several optimistic federates was developed. In this work
we are using RTI 1.3 version 6 for C++. A Java binding
package is also being used for the development of Java
federates. Our development platform is a Solaris 2.6
Sun workstation with the Java Development Kit 1.1.6.
The prototype federation is currently being tested, and
some measurements are done. In this simulation, the
federate state size was 200 bytes.

The inclusion of a rollback manager increased
the total execution time of this simulation. This over-
head is due to the reflection on method invocations.
These method invocations represent the message trans-
fers among federates and the RTI. The message time-
stamps are checked by the rollback manager, in order to
ensure the causality constraints. This procedure adds
some overhead to the overall simulation performance. In
order to measure this overhead we did some experi-
ments with the prototype simulation. The first experi-
ment was built changing the number of interactions in
the simulation execution. First, the original was exe-
cuted several times to obtain the average execution
time. The number of interactions ranged from 500 to
2000 to measure the simulation performance without the
rollback manager. The values, in m:ss format, obtained
are shown in table 1.

6LPXODWLRQ 1XPEHU�RI�,QWHUDFWLRQV
��� ���� ���� ����

1 2:21 4:25 6:42 8:30
2 2:42 4:24 6:44 8:16
3 2:29 4:35 6:12 8:18
4 2:33 4:31 6:37 8:22
5 2:41 4:22 6:23 8:27

Average 2:33 4:27 6:32 8:23

7DEOH��. Execution times without
the Rollback Manager

The same experiment was repeated adding the
rollback manager to perform the rollback procedure,
instead of leaving this task to the federate. The execu-
tion times obtained showed us the overhead caused by
the inclusion of the rollback manager. The values, in
m:ss format, are shown in table 2.

6LPXODWLRQ 1XPEHU�RI�,QWHUDFWLRQV
��� ���� ���� ����

1 3:34 6:21 9:16 12:13
2 3:36 6:14 9:34 12:16
3 3:44 6:22 9:22 12:23
4 3:22 6:31 9:45 12:12
5 3:52 6:33 9:39 12:17

Average 3:38 6:24 9:31 12:16

7DEOH��. Execution times with the Rollback Manager

In this simulation, two messages (XSGDWH$W�
WULEXWH9DOXHV and UHIOHFW$WWULEXWH9DOXHV) are ex-
changed among the federates through the RTI. These
messages must be intercepted and analyzed by the
rollback manager, so this procedure adds an extra
processing time to the execution. Therefore, when the
number of messages increases, the computational
overhead increases as well. The figure 4 shows the
execution times before and after adding the rollback
manager.

)LJXUH��. Difference among execution times
(in minutes)

One important point to be analyzed is the re-
lationship among the execution times. As suggested in
[8], this relationship defines the overhead factor by
computational reflection techniques.

The overhead factors are calculated dividing
the execution time with the rollback manager by the
original execution time. They are shown in table 3.

([HFXWLRQ�7LPHV
,QWHUDFWLRQV ��� ���� ���� ����
Without RM 2:33 4:27 6:32 8:22
With RM 3:38 6:24 9:31 12:16
Factor 1.45 1.46 1.47 1.48

7DEOH��. Overhead Factors

The results of these measurements show that
the simulation execution with rollback manager is
almost 1.5 times slower than the original simulation
execution. The evolution of this overhead factor is
presented on figure 5.

)LJXUH��. Overhead Factors Evolution

If the increased overhead factor of computa-
tional reflection techniques is under a 10 factor, the
advantage of those techniques is worthwhile [8]. The
results of these measurements show that the factor is
almost stable in 1.5, so the use of a reflexive rollback
manager can be considered worthwhile.

This overhead can be reduced by a proper ap-
plication design. The simulation prototype was design
just to show the proposed mechanism’s feasibility. The
source code could be optimized to reduce this overhead.

Another very important point in this proposed
mechanism is the fact that the rollback manager is
initialized only when the federate assumes a optimistic
behavior. Thus, if the federate never invokes the IOXVK�
4XHXH5HTXHVW method from the 57,$PEDVVDGRU class,
the simulation performance will not be affected.

The rollback manager was implemented as an
additional class that is instantiated only when the
federate invokes the IOXVK4XHXH5HTXHVW method, as
mentioned before. When this class is instantiated, there
is an increase of the total memory amount allocated by
the simulation execution. This memory utilization
increase was measured and the values are showed in
table 4.

6LPXODWLRQ $OORFDWHG�0HPRU\��0E�
7RWDO 5HVLGHQW

Without RM 15 10
With RM 16 13
Overhead 6,67% 30%

7DEOH��. Memory Allocation

The memory utilization was calculated using
standard Solaris operating system commands and tools.
Thus, these commands outputs are not exacts but can be
used to measure the memory allocation overhead.

The impact of the proposed mechanism on the
system performance remains acceptable, but more
extensive measurements should be done before giving
concrete results.

���&RQFOXVLRQ

The use of computational reflection techniques in the
presented work showed to be useful, to simplify build-
ing optimistic federates. All the aspects related to
rollback operations can be taken in charge by the
rollback manager in behalf of the federate. This ap-
proach helps hiding the complexity of the optimistic
approach from the simulation model programmer.

The manager is capable to identify the need for
a rollback, as well as to take all the proper actions to

([HFXWLRQ�7LPHV

0,00
1,50
3,00
4,50
6,00
7,50
9,00

10,50
12,00

500 1000 1500 2000

1XPEHU�RI�,QWHUDFWLRQV

7LPH

Original
Simulation

With the Rollback
Manager

 ([HFXWLRQ�7LPH�2YHUKHDG�

0,00

0,50

1,00

1,50

2,00

500 1000 1500 2000
1XPEHU�RI�,QWHUDFWLRQV

)DFWRU

factor
RM/original

ensure that the federate returns to a safe state before the
causality violation. It also takes for itself the responsi-
bility of canceling messages improperly sent to other
federates. The rollback manager will accomplish tasks
that are common to every optimistic federate, and does
not depend on a specific federate behavior. The federate
code becomes simpler, because the whole control and
management of the rollback are under the manager’s
responsibility.

The tests carried out with the rollback manager
presented in this paper were done by manually substi-
tuting the RTI method call, to the meta-object methods.
This procedure was used for the validation of the
proposed mechanism. With the use of a reflective
language, the method deviations can be done in a
transparent way. Such a language allows to define and
transparently manage reflective objects. All the method
invocations to the base objects are transparently devi-
ated to their respective meta-level objects. There are
several programming languages supporting meta-object
protocols [9]. One of them can be used to implement the
rollback manager proposed here. The most used lan-
guages are: CLOS, OpenC++ and OpenJava. As all the
RTI code is available in C++, the OpenC++ language
would be a good choice, as it uses the C++ syntax. In
the specific case of our proposal, a better choice would
be OpenJava [10]. In OpenJava, all the reflective objects
are defined through the OpenJava MOP (Meta-Object
Protocol). The OpenJava code is pre-processed to
generate standard Java code. However, OpenJava is not
yet mature (current version is 1.0) and does not support
some characteristics essential to the development of
distributed simulations using the HLA architecture. As
OpenJava, there are other proposals for Java reflective
implementations, like MetaXa [11], that could be
incorporated to this work.

5HIHUHQFHV

[1] Chandy, K. and Misra, J., “Distributed simulation:
a case study in design and verification of distrib-
uted programs”. ,(((�7UDQVDFWLRQV�RQ�6RIWZDUH
(QJLQHHULQJ, 5(5):440-452, September 1979.

[2] Jefferson, D., “Virtual time”. $&0�7UDQVDFWLRQV
RQ�3URJUDPPLQJ�/DQJXDJHV�DQG�6\VWHPV,
7(3):404-425, July 1985.

[3] Sowizral, H. and Jefferson, D., “Fast concurrent
simulation using the time warp mechanism”. In
Distributed Simulation, 6&6��6LPXODWLRQ�&RXQFLOV,
pages 63-69, La Jolla, California, 1985.

[4] Defense Modeling and Simulation Office (DMSO)
- US DoD, +/$�2YHUYLHZ, 1997.
http://www.dmso.mil/dmso/docslib/.

[5] Fujimoto, R., “Time management in the high level
architecture”. 6&6�6LPXODWLRQ�0DJD]LQH, Decem-
ber 1998.

[6] Maes, P., “Concepts and experiments in computa-
tional reflection”. In 3URFHHGLQJV�RI�WKH�$&0
&RQIHUHQFH�RQ�2EMHFW�2ULHQWHG�3URJUDPPLQJ
6\VWHPV��/DQJXDJHV�DQG�$SSOLFDWLRQV, pages 147-
156, October 1987.

[7] Birman, K., “The process group approach to
reliable distributed computing”. &RPPXQLFDWLRQV
RI�WKH�$&0, December 1993.

[8] Chiba, S. and Masuda, T., “Designing an Extensi-
ble Distributed Language with Meta-level Archi-
tecture”, 3URFHHGLQJV�RI�(&223C��, pags 482-
501, Germany, 1993

[9] Kiczales, G. ,Ashley, M., L. Rodriguez, Vahdat,
A., and Bobrow, D., “Metaobject protocols: Why
we want them and what else they can do. Object
Oriented Programming: The CLOS Perspective”,
MIT Press, 1993.

[10] Tatsubori, M., “2SHQ-DYD�7XWRULDO´. Tsukuba
University,
http://www.softlab.is.tsukuba.ac.jp/~mich/openjav
a, Japan, 1997

[11] Golm, M., “Metaxa and the future of reflection”.
In 2236/$
���:RUNVKRS�RQ�5HIOHFWLYH�3URJUDP�
PLQJ�LQ�&���DQG�-DYD, Vancouver, Canada, Octo-
ber 1998.

