MetaFT — A Refledive Approach to | mplement
Replication Tedniquesin CORBA

Lau Cheuk Lung, Joni Fraga
Laboratério de Controle eMicroinformética- LCMI-DAS-UFSC
Campus Universitério - Caixa Postal 476 —Trindade

CEP 88040900- Florianopolis— SC - Brazl
e-mail: {lau, fraga}@cm . ufsc. br

Carlos Alberto Mazero
Programa de Pos-Graduac@® em InforméticaAplicada - PRGIA
Pont. Univ. Catdlicado Parana - PRGIA
Curitiba— PR - Brazl
e-mai |l : mazi ero@pgi a. pucpr. br

Abstract

A modd was introdwed in [Fraga97q for
integrating replication techniques in heterogeneous
systems. The model adops a refledive structure based
on the meta-objed approach [10]. Also, this model is
founded in ORBs that suppat group commnunication in
heterogeneous environments. The OMG «till does nat
have spedfications for fault tolerance The MetaFT
model has a great flexibility allowing, for instance to
modify the aordination protocols according to the fault
tolerance levd desired, withou any implications for the
apgication code. The advantage is that it allows to use
different meta-objed protocol to assst different qudity
of service (QoS parameters to fault tolerance This
paper explicit our experiences in devdoping replication
techniques following the model using two dfferent
CORBA platforms and pesents ome performance
andyzes.

Keywords: distributed systems, fault-tolerance
CORBA, computational reflection.

1. Introduction

This paper presents our experiences, in the ambit of
the ASAP projed, about the integration of replication
techniques in heterogeneous distributed systems. The
projed adopts an open architedure, following the
distributed objeds gandard - CORBA/OMG [14]. At
present, there is no sanctioned COS spedfications for

fault-tolerant CORBA objeds through replication,
though this is expeded within the year. Our propositions
attempt not to change the OMG orientations.

In [6] we presented an integration model for
replication techniques in CORBA. This modd uses the
concepts of the reflexive wmputation [10], aiming to
minimize the implications of the replication techniques
over the application programming. The @mputational
refledion is used in this context to separate the
application algorithms of the replica coordination
protocols. This sparation introduces a great flexibility in
the system for alowing the dange of coordination
protocols without interfere in the application code, not
even to imply in changes at the exeaution support leve,
what would be hard if we @nsider heterogeneous
distributed systems. The ORBs, with spedfic faciliti es for
group communication, support the implementation of the
replication tedhniques acoording to the proposed
integration model. The integration model was used with
the Eledra[11] and Orbix+Isis[8] systems.

This paper concentrates on those implementation
experiences, describing aspeds related with the means
offered by those CORBA platforms to facilitate the
implementation of the replication tedniques. The
potentialiti es of those ORBs and the proposed moddl are
evaluated in this paper starting from the dforts that we
did, programming dfferent replication tedniques
structured acoording to that integration mode. With the
objedive of illustrating the use of the modd in the
considered environment and the implementation aspeds

involved in the two ORBs mentioned, we present in this
text our experiencefor implementing the leader/foll owers
repli cation technique [16].

In sedion 2 we present the description of the CORBA
platforms used. Sedion 3 describes the integration model
— MetaFT. In sedion 4 the integration model on ORBs.
In sedion 5, general considerations about our
implementation experiences using Eledra and Orbix+Isis
are presented. Finally, in sedion 6 the final conclusions
of thiswork.

2. The CORBA platformsused
2.1. CORBA architedure

The OMG spedfications are intended as a set of
standards and concepts for distributed oljeds in open
distributed environments. The heart of the CORBA
standards is the Objed Request Broker (ORB), which
adlows a remote objed’s methods can be invoked
transparently in heterogeneous distributed environments.
Thus, an ORB is a communication channe for
distributed objeds. Interoperability between objeds is
achieved by spedfying their interfaces with CORBA'’s
Interface Definition Language (IDL). Trandating DL
spedfications a host of programming languages
(including C, C++, Ada, COBOL, Java) generates the
necessry, language-spedfic interfaces and auxiliary
support for ojed implementations.

In the development of distributed applications, the
CORBA/OMG spedfications included a set of objed
services that simplify the application designer’s task. In
this way, the COSS (Comnon Objed Services
Sredfications) was introduced describing a set of
services (interfaces) that provide basic functions for using
and implementing appli cation objeds.

2.2. ELECTRA

Eledra[1]] is an ORB compatible with the CORBA
spedfications, presenting support for objeds group. For
the development of distributed applications, this model
combines the benefits of the CORBA standard with the
power of lower level tods, such as: Isis [2], Horus [17],
Transis [1], Consul [12], Chorus [4], and others. Eledra
isimplemented in C++ and the IDL for C++ mapping is
dealing with spedfied for OMG [13]. The Eledra
communications can be given in the reliable multicast or
point-to-point style. The dient makes use of a same
model of invocation of method, independent if the server
isan ohjed singleton or a group of ojeds. In Eledra, the
invocations can be synchronous, asynchronous or semi-

synchronous (deferred-synchronoudly), using static or
dynamics interface in the CORBA moddl. Two way of
group communication is available in Eledra:

e Transparent: the group is ®en as a simple and
highly avail able oljea where the requisitions are
submitted as in a conventional ORB that is, the
client only receves a single result of the group;

e No transparent: permits the access in an
invocation, to the results of each individua
member of the group of oljeds.

Eledra supports groups in the active replication
model, making use of the tods of lower level, like Isis or
Horus, in the suppy of services of reliable multicast and
group management (figure 1). The state transfer and
membership services, supported by those tods are
avail able as Eledra’s operations in BOA (Basic Objed
Adapter). In the BOA interface of the Eledra were added
medhanisms to activate groups and to seled the multi cast
protocol to be used. The CORBA environment classis
used for the sdedion of invocation style and mainly, to
passexceptions of the server to the dient.

Group of objects
Aplication (host A)

CORBA

request response object
G / J
. ’ (host B h

reference . CORBA

S oé/”2
\. J
7

Figure 1. Group Communication on Elecra

2.3. ORBIX+ISIS

The Orbix+lsis gstem [8] is a commercial product
developed by 1SIS Didtributed Systems Inc. and IONA
Tednologies, Ltd. As the previous ORB, it allows a
system to be built as a group of objeds interacting
acoording to CORBA/OMG standard. Orbix+lsis g/stem
smplifies the development and the integration of
distributed fault-tolerant appli cations. Each oljed has an
interface spedfied using the IDL/CORBA language. The
ISIS resources in the implementation of the group
abstractions, in this case, smplify the ORB. In the
Orbix+Isis model, servers may be formed by group of
objeds where the dient/server interactions are reliable.
Membership mechanisms, state transfer and reliable
multi cast using dfferent types of order, supdied by I1SIS,

are available at ORB interfaces to the applications in the
Orbix+lsis.

Groups of objeds can be defined over two exeaution
styles: group processng and event stream. In group
processng, each objed member shares the same interface
and semantics of equivalent implementation, what
asaures that each replica member in an identica way
processthe same service request. Exeautions in the group
processng style all ow three @mmunication ways:

o Multicast: arequest is diffused for all members of
a group and only one result is returned to the
client, maintaining the server transparency. The
multicast style @rresponds to the active
replication model [18]. On the other side, the
client can have access to the response from all
members of the group; for that, it is necessary to
build a smart proxy (a proxy objed supdies group
support in the dient side). The proxy would
inherit the behavior of a default proxy classand to
add the @pacity to send resultsto the dient.

¢ Client's Chaice in this gyle the dient request is
exeauted in just one of the group members. This
communication style has the aim to improve the
performance in client/server interactions. It is
created for read-only operations. The choosi er
function in the dient side determines the member
for receving the request.

e Coordinator/Cohart: in this model, a coordinator
exeautes the requested operation and then, sends
the results to the dient and, to the other replicas
(cohorts) for upceting their states (chedkpoint). A
choosi er function determines the @ordinator
for each request processng submitted by the
client. If the ®ordinator fails the choosi er
function is automatically invoked for the doice a
new coordinator.

In the group processng style, Orbix+lsis gill offers
membership services, state transfer and ordering of
messages. State transfer and membership are key services
for different models of group, because they allow new
objedsto join a group and to keame a normal replica of
the group.

In the event-stream processng style, the dients use
one-way asynchronous communications. They send
messages (events) to oljed members of a group, called
“event recevers’. This exeaution style follows the
publisher/subscriber model: clients snd asynchronous
messages to the “event stream” which are responsible for
sending to the subscribers. The “event stream” also
maintain copies of these esents. Event recevers can join
or leave the subscribers group any time. The subscriber

participation in the group can be programmed for the
recetion of a certain amount of events. Events-stream
model corresponds to a loosely coupled connedion
between client and servers.

The Orbix+lsis architedure is presented in figure 2. It
consists of C++ library and a run-time support, which
implement the functionality of group processng and
event stream. This gructure involve, together, a
conventional ORB (Orbix) and the Orbix+lsis group
support. The Orbix communication layer treats point-to-
point communications. The Orbix+Isis support handles
group communications using Isis facilities and then,
offering bases for distributed fault-tolerant appli cations.

ﬁ Implementation
' Replicated Repository
Interface APPinCation —
i Objects
Reposiiory
Smart Orbix Object Fault]
Proxies DIl Handler Filter
[IDL Stubs][Dl J[BOA]

Orbix+lIsis Runtime

Orbix+lIsis Orbix
Communication Layer Communication Layer

Operational System J

Figure 2 The Orbix+Isis architecture

The IDL interfaces in Orbix+lss generate in
compilation time the necessary structures for group
processng. Using these structures (stubs, proxy, €tc.), the
client conneds and communicates with an oljeds group
like a singleton ohjed. The Isis Repository (IsR) is a file
hierarchy of the Orbix+lsis, smilar to the
implementation repository in the Orbix. Each Orbix+lsis
server has a file in ISR, which defines the activation
procedures and the @nfiguration of the server group. The
performance aspeds and the exeaution style of the group
are spedfied in the Isis Repository (IsR). The available
information in these files all ow, for example, changes in
the application involving the group exeaition style,
without changing the appli cation code.

3. Integration model
3.1. Computational refledion
The esence of the mmputational refledion paradigm

is a system that exeautes processng on itself, modifying
their behaviors. The reflexive paradigm is introduced

into the objed-oriented programming following the
meta-ohjeds protocols [10] where the functional and no-
functional aspeds are separate using base-objed and
meta-ohjeds, respedively. A base-objed describes in
their methods the application functionality, while the
assciated meta-objed exeautes the wntrol policies that
determine the behavior of its corresponding base-ohjed.
The alls to the base-objed methods are trapped in the
sense of invoking meta-methods that all ow to modify the
behavior of the base-objed or to add functionaliti es to the
corresponding callsin base level.

3.2. MetaFT - Theintegration model

The reflexive paradigm all ows assgning to the base-
objeds the functionality of a replicated appli cation, while
meta-objeds exeaute the @ordination protocol to control
the replicas exeadtion. The mordination refleded all ows
the use of different replication techniques with the same
base-objed maintaining their characteristics. For
changing the replication tednique, changes are
concentrated in the meta-level.

The reflexive structure proposed for incorporating
replication tecdhniques in open systems is represented in
figure 3. Each replica is mapped to one base-objed
(replica_base), which is asociated a meta-objed (meta-
controller) that assumes coordination functions of the
replication tedhnique used. Crash fail ures were assumed
in the replication models in our experiments. As we
admitted a strong coupling between controller and
asociated replica, under a crash failure, bath, controller
and assciated replica will stop their procesing
activities.

- —_—
- meta-controller
e communication
. P . controllers
client | y, replica_base
reply 1

Hgure 3 Reflective gructurefor the repli cation modd.

Theintegration model of replication techniques in the
CORBA context is own in figure 4. In that figure, the
client is gructured in a base-client that represents the
behavior of the application, and a meta-client, that does
not posess active function in our implementation, but
that could be used in managing the repli cated client, or to

implement medcianisms of handling exceptions in the
client. The structure of each server replica is smilar to
that of the dient: a replica-base oljed, carrying out the
replicated services, a meta-controll er, responsible for the
coardination protocol of the replication technique; and
meta-ohjeds pedal, identified generically as meta-
communication, that it control so much on the dient side
asin the server side the accessto the support suppied by
a CORBA platform. These entities concentrate the set of
clients gubs, of server stubs (the stubs for communication
of the replicas) and the BOA with the support for group
management, generated starting from the mpilation
process of the IDL spedfication of the interface of the
objed server. The use of the term “abstract objed” given
to the meta-communication on the modd follows me
authors [7] and has the sense of a smple separation for
greater clarity. In redlity, these interfaces are generated
as a st of methods that will be mposed with
inheritances multiple in the dient and controller meta-
obeds.

ORB

m|| meta- | meta- | stubs @ meta-
el| cient || communi- | controller
t cation |manag ®

A
. 9ofe ®\T@
o v /
a

base- ; base
S| | client Client Server | repiica
€ (replicas)

Figure 4. Sructure of the modd on a CORBA support.

The numbered arrows in figure 4 indicate the normal
way of a client request: The request made by the dient
base (1) isthen broadcast using a stub appropriated in the
client meta-communication. In each replica, the meta-
communication, by means of a local stub, receves the
request and transfers it to the meta-controller (2), which
then activates the local replica (3). On receving the reply
(4), the meta-server exeautes the @ordination protocol,
by means of the meta-communication so as to interact
with other replicas. The processng and interactions on
the level of the meta-controllers are mnditioned at this
time by the replication model utili zed. Later, the reply is
then sent back to the dient (5 and 6).

This model can be used with several replication
tedhniques; the differences esentially will concentrate on
the replicated meta-controllers (servers). In some
techniques the meta-communication entities may gain

functionality besides that of concentrating methods of
access to the services of the CORBA support. For
instance in the use of active replicas with voter or
adjuster medhanisms, the implementation of the voting or
adjustment can be programmed in a more simplified way
on the dient side. The Transparency could be achieved in
this case, implementing these medchanisms in the dient
meta-communication entity, which, with the addition of
this functionality, takes on the daracteristics of a real
obed.

4. Usingintegration model in CORBA

4.1. Leader/Followers replication acocording to the
integration model

In the sense of illustrating one of the severa
examples of replication techniques developed by us with
the mentioned model, we described in this sdion our
experience with the leader/followers technique. In this
replication modd all the replicas are active and exeate
the same de, but the leader replica is the responsible to
handle the interactions with clients, and for the dedsions
that affed the determinism of replica [18]. When
recaeving a request the leader dissminates the same
among the foll owers. The processng of the method is the
same in all replicas, however only the leader sends the
resultsto the dient.

The figure 5 presents the meta-controller's code
regarding the leader/foll owers technique. To each base-
method has a meta-method associated in the @ntroller
(base_method_1 and meta method_1, figure 5). The
controller's actions are described brief in the mentioned
figure. A temporal diagram involving the interactions
among replicas in the procesing of a requisition of client
is own in figure 6.

class neta_controller_1 im{
/1 declaration of variables

nmet hod neta_net hod_1(par anmet ers) {
/] declared in IDL
base_net hod_1 (paraneters);
neta_control (paraneters)
}
/

) decl arati on of other neta-nethods

}s

class neta_controller_2_im{
nmet hod neta_control (paraneters){
concl uded : = fal se
semaphore : = fal se
ny_id := rank_system ()
| eader := O;
whi | e not concl uded do
| eader := |l eader + 1
if (my_id = leader) then
/1 | amthe | eader
group.reply_l eader (reply);
return;
/'l response cones back to
/1 the client
el se
wai t (semaphore or tinmeout);
if not concluded then
group.closing ();
end
end
end
i
met hod cl osi ng() {
/1 this nethod is declared in IDL
if (leader € nmenbership) then
concl uded : = true
end
i
nmet hod reply_l eader(reply) {
/1 this nethod is declared in IDL

if (my_reply # reply) then

ny_reply : = reply;
semaphore : = true

end

};

b

Figure 5. Code of Meta-controll er of the leader/foll owers
repli cation technique.

Client replica 1 (leader) replica 2 replica 3
x\
[=
request \
R: reply_leader
E: closing

s

t

Figure 6. Temporal diagram of the leader/foll owers replication technique.

The leader's indication is determined by the replica
with my_id equal to 1, the oldest of the group
(rank_system = 1, figure 5). The used support (Horus and

ISIS) adopt rank medhanisms, what suppies to the
implementations of the replication techniques that
depend on privil eged repli ca, the advantage of choasing a
leader without the nead of any change of message among
replicas. The use of the dosing method has as purpose
the detedion of failure of the privileged replica (Ieader)
what is smplified by the used patforms. The dosing
method is implemented using the membership lists
supdied by the CORBA platform. Those membership
lists are up-to-date for the BOA, to each arrives or leaves
of replicain the group.

Oi_eTinmicrs
(iaC8) Sne Rbi(R)
B . Irterd

| Jretacotrd ler_1im{ iN@d08 Grmyrictiastaven
. R artrdlas(ia
~—-=ap. GFBA : neta rethod 1..){| \

P base nethod 1 (..);

netacotrd (..); :

o CUBﬁ;:rma_.rmhod_Z(..){: ;Omma_mrdla_zjm{ |

ﬁ:&rﬁ—z(()) /g___?;ma_cmrd (. {

1 // coce regard ng the replication
i| // technique: conpetitive,
/1 cydic, prinary/ secondary

- /1 o leader/folloners
— bese nethod 1 (..) { <} . :
/1 inplenertation of n /1 invoke Mta @ntrd ler

/1 the nethod 1 neta contrd | er->
b reply leader(...); =S

bese nettod 2 (..) { f.J | retacontrdler->

// indeeidiond | | dosing(..); ot
/1 the rethod 2 15 :
b : QIBA:redly leader(...) {...};

}; }m:doarg() (.}

Roua7 Fana d tresgadiond sever axck

In figure 6, after the processng of the requested
method, the leader (replica 1) is $own sending the
results to the dient and their followers. The foll owers
once sdatisfied the wait condition (figure 5 and 7),
exeates the dosing method. The leader replica cannot
signal the end processng to the other members of the
group because when the results return to the dient, its
exeadtion is finished. The activation of the dosing
method fits the at least a follower replica that will
provoke the exeaution of the same in al the other
replicas. This method has the function of certifying if the
response was ent indeed by the leader (concluded
condition of the while loap). The verification of the
closing is smple: if after the diffusion of the dosing

method the leader is gill alive (to bdong to the
membership of the group) then the response was snt
indeed. Otherwise, a new leader is chosen and the
process is repeated. In the algorithm, the activation of
closing method is transmitted to all the replicas of the
group, in ordered totally way.

In our implementation, the base methods were
simulated with operations of an application of bank
service and were developed separated on behalf of the
replica coordination (meta-methods). The figure 7
emphasizes this sparation that is the base of the
reflexive paradigm. In our experiments different meta-
objeds, implementing dfferent replication tedniques,
were changed, changing the behavior in the mordination
of replica of the service without affeding the
functionality of the base level.

4.2. Implementing the model using the ELECTRA
system

Theinitial step for the implementation of a system on
any CORBA platform is the description in IDL of the
meta-controll er's interface The interface onsists of the
dedaration of each method offered by the replicated
server to the dient. Besides this, it is necessary to dedare
a seond interface, composed by the methods that handle
the management of the replication tednique, in the
interactions among the different replicas of the service
The @dein IDL of bath CORBA interfaces of replicated
server, in dealing with the spedfications described in the
previous <dion, is wown in figuwe 8. The
meta_controller_1 interface spedfies the access of client
to the replicated service while the meta controller_2
interface dedares the necessry methods to the intra-
replicainteractions.

/1 DL

interface neta_controller_1

{
/1 Descrition of the data types enpl oyed

/1 Descrition of the server methods
bool ean meta_met hod_1 (paraneters);

bool ean meta_met hod_n (paraneters);

¥
interface neta_controller_2

// Descrition of the meta_controller methods
bool ean replt_| eader (in reply);
bool ean closing ();

}s

Fgure8. IDL Interface of the replicated sarver.

The Eledra ORB version 1.0 does not support
preamptive threads, what limits the concurrency degree
to treatment the dient's requests, besides the interactions
among the meta-controll ers of the repli cated service This
restriction brings difficulties in the implementation of
replication techniques. To treat this limitation, we
adopted a solution that consists of separating the meta-
controller's functionality in two UNIX processs. The
first one is concen the dient/server interactions and
activation of method of the base-objed and, the second
one is involved with the interactions among replicas
(among the meta-controllers of the replicas). It fits to
stand out that bath interfaces are actually two faces of a
same server (or, in our case, of a same group of objeds).
Therefore, the two interfaces of the figure 8 were
compil ed separately, and in runtime the system woks like
two groups of objeds (group meta controller 1 and
meta_controller_2).

In the process of compilation of the interfaces of an
application, Eledra generates the whole support
automatically for the communication (stubs) among the
involved entities, also including the functionaliti es for
groups management of the BOA class The programmer
isresponsible for the description of the base-objed of the
application (meta_controller_1) and management of the
replication tedhnique (meta controller_2), filling the
bodies of the methods defined in the interfaces (figure 8).
With that implementation outline, which isill ustrated in
figure 9, them base-objed client and server stay out of
any activities that are not related to the appli cation itsalf.
All the aspeds related to the management of the
replication and the interactions in CORBA context are
concentrated at the meta-objeds level
(meta_controller_2).

4.3. Implementing the model using the Orbix+Isis

The Orbix+lsis, if compared to the Eledra, is a
commercial product, that presents more means for
processng and management of groups [sedion 2.3]. But,
the main advantage in relation to the Eledra is that it
provide multithreads support. In implementation of the
integration model using Orbix+lsis, each pair associated
base-ohjed/meta-objed shares a same UNIX process
doing with that the interactions between baoth are local,
without need of ORB. The mncurrency among base-
obeda and meta-objed inside a process are satisfied
through the use of a threads library provided by the Isis
tod. The initial step of the implementation is aso the
compilation IDL of the two interfaces of the figure 8. In
this case, the mpilation creates an only group of
processes in runtime. The figure 9 explicates the process

of generation of the dient and server codes garting from
IDL.

digt [i 1)
Peficdr | jrfefae ——> |]| f _} o
neacorirdle 1 diet
— | ok dus inderetaion
Foure9 Adicdionbuildngproces

4.4. Performanceanalyze

In this item we present performance measurements
carried out in our laboratory, to chedk our experiences
using Eledra and Orbix+lsis to implement the MetaFT.
These measurements were taken from request method
invocation. MetaFT performance was raised considering
different replications degrees. The eavironment
considered in these performance tests, was composed of a
local network (10 Mbps Ethernet) heterogeneous using
two machines Sun Ultra 1 with Solaris 2.5, one Axil 240
also with Solaris 2.5, one Pentium 100 and one Pentium
233MMX, bath running Linux and finally, one Pentium
233MM X with Windows 95.

3

70
—~ 60
12
E 5]
()
E“O’ —e— Hectra
S0 —a— QrbixHsis
S
[=%
%]
[}
4

B8

o

Replication Degree

Figure 10. MetaFT Performance using Electra and Orbix+lsis.

The tests carried out consisted of a hundred request
operation calls. In figure 10, the response time (axis Y)

related to the replication degree (axis X) had been
determined considering the average of these one hundred
invocations. The request operation curve represents an
increase in the response time whenever the MetaFT
degreeof replication grows. Using Eledra or Orbix+Isis
to implement the MetaFT the growth factor of the
response time rate per replica added was around 10
milliseonds. But, Orbix+lsis presents a better
performance - around less5 milli ssconds.

5. General considerations

The multithreads mecdhanism that Eledra operates is
called TPP(Thread Per Proces9, this modd imposes that
the server exeaites one request in each time, the
beginning to the end, multi ple servers obhjeds that sharea
same process cannot recave several invocations in the
same time. In some @ses this mode can reach a
deadlock, for instance supposes that a server A, when
being invoked by the dient, make a request to the server
B and that during the procesing of this request, B
activate A, this would provoke a deadlock in the system,
because A can only processone request per time (figure
11).

Client Server A Server B
m
t J
deadlock

Figure 11. deadlock caused by the B replica.

The separation in two processes, meta-controllers 1
and 2 in Eledra, emphasizes the difficulties of
implementation of the integration model when uses the
TPP approach. The mmunication among the two
processss is made through ORB. This causes an low
performance once the activation through ORB should be
considered the total time in the all of a method in this
context (to locate the remote ohjed, to prepare the objed
implementation to receve the request, to transport the
data and to return to the dient the resultsin a transparent
way).

The multithread medanism that we nealed to
implement the proposed integration mode is called TPR

(Thread Per Request). With this medianism, a new
thread is created for each invocation that arrives to the
server and it avoids deadlock problems that can happen
in TPPapproach. Orbix+lsis uses a multithreads support
in TPR, therefore the meta-controll ers compose just one
process guaranted@ng an gain of performance (figure 10),
once the cmmunications among meta_controller_1 and
meta_controller_2 (figure 7) are made internally without
to use the ORB. Both CORBA platforms used in this
work presents means that would alow the
implementation of medianisms of detedion of less
restrictive faults (such as temporal, value, etc.).

In relation to the aashes that eventually happens in
the evolution of the system, the integration model
concentrates at meta level operations to rewmvery the
repli cation degree independent of the type of replication
technique used. If the number of active replicas in the
group to drop below a preset limit, the oldest replica
takes the initiative of throwing new replicas,
reestablishing the ideal population. The de regarding
these remvery procedures is equivalent for two ORBs
considered and is based on a membership test
(view.number < quorum_min), inserted in the bady of the
view_change method. Our approach of state transfer
(chedkpoint) of the replicas differs of that proposal in [5],
which the state updating are given through meta-methods
making updites in public attributes of their associated
replicas, with the exclusive use of coordination protocols.
In our approach we used more primitive of support and
less protocols at coordination in Meta level, simplifying
the meta-controllers codes. The state recvery, in our
system, is based on the join primitive, that it should be
offered by the BOA interface of the CORBA support, and
invoked through the view_change method.

Due to the fact of the used language (C++) do not
provide spedfic support to the omputational refledion,
for instance, the automatic trap of invocation of a method
in base level to the respedive meta leve, in our
implementations the refledion is implemented
artificially, through the dired activation to the meta-
method, starting from the dient code (figure 7). The use
of a language supporting refledion, like Open C++ [3],
could to eliminate this problem, but in this case the
CORBA/IDL compiler would have to support the
mapping for that language. Inside of OMG there is a
group working in the standardizaion of the use of meta-
objeds protocols in CORBA, more information about
that can be obtained in [15].

The omputational refledion all ows the independence
of codes of the replicas in relation to the @ordination
protocols, driving to a great flexibility in the system: to
change of technique or to alter it to reach to degrees of

fault tolerance wanted can result in smply to change the
coardination protocols in meta-level, without to imply in
any alteration to the application algorithms, or still in
changes at level of exeaution support, what would be
difficult in heterogeneous gstems. The use of the
refledion to implement fault tolerance techniques is not
new [5], [6], and even the separation between the
coardination and the replicas has aready been
recommended in [16].

The presented mode integrates refledion concepts
and group processng in heterogeneous environments.
The accompli shed implementation makes intensive use of
the functionaliti es of CORBA platforms, what implied in
a smplification of the maordination needs in the
repli cation tedhniques implemented. Moreover, the use of
a CORBA platform allowed the implementation of our
application on a heterogeneous exeaition environment
(group of machines with operational system Solaris 2.5
and Linux 20, in a loca network), facilitating the
interoperability aspeds.

The structure of integration proposed was sown
guite flexible, could to support several replication
tedhniques easily. Until the moment we implemented the
technical primary/secondary [2], leader/followers [9],
competitive [16] and cyclic redundancy [16], using the
same integration model. The necessary changes to the
substitution of the repli cation tedhnique in the integration
modd are limited to the interface the IDL meta-
controllers and to their codes, which implement the
protocols of corresponding coordination. Then, we @n to
build dfferent replication tedniques to asdst the
different quality of service (QoS) parameters of a fault-
tolerant application. The QoS parameters could be, for
instance revery time, response time, types of fault to
tolerate, etc.

6. Conclusion

The implementations presented in this paper verified
the viability to implement medanisms of fault tolerance
on level of the application over CORBA platform using a
refledive approach. The implementations were made
acoomplishing the separations recommended for the
computational refledion. These same implementations
makes extensive use of the primitive of the Eledra and
Orbix+lsis support, what does not also imply in the loss
of portability of the ades of the application. In other
word, changes in the support are refleded in the meta-
level; the ades that reflead the functionalities of the
application are not affeded. The obtained results,
although the limitations of Eledra, were nsidered
satisfactory. The objedive of this paper was discussng

the MetaFT model in the implementation aspeds,
considering our recent experiencewith Orbix+Isis.

References

[1] Amir, Y., Ddev, D., Kramer, S. and Malki, D.,
“Transis. Comunication Subsystem goes High
Availability.” In 22nd International Symposium on
Fault-Tolerant Computing, |IEEE, July 1992

[2] K. P. Birman, “The Process Group Approach to
Reliable Distributed Computing”, Technical Report TR
91-1216 Cornell University Computer Science
Department, Ithaca, N.Y., July 1991

[3] S. Chiba, “Open C++ Programmer’s Guide”, Technical
Report 93-3, Department of Information Science,
University of Tokio, 1993

[4] Chorus Systemes, “Chorus Simulator v4 rl -
Programmer's Guide”, http:\\www.chorus.com, 1992

[5] J. Fabre, V. Nicomette, T. Pérennou, R. J. Stroud and
Z. Wu, “Implementing Fault Tolerant Applications
using Reflective Object-Oriented Programming”,
Proceadings of the 25th IEEE International Symposium
on Fault-Tolerant Computing, Pasadena (CA), June
1995

[6] J. Fraga, C. Maziero, Lau L. and O. Loques
“Implementing Replicated Services in Open Systems
Using Reflective Approach”, Procealings of the 3th
IEEE International Symposium on Autonomous
Decentrali zed Systems - ISADS 97, Berlin - Germany,
April 1997

[7] O. Hagsand, H. Herzog, K. P. Birman and R. Coqper,
“Object-Oriented Reliable Distributed Programming”,
IEEE 2nd International Workshop on Object-
Orientation in Operational Systems, I-'WOO00S/1992

[8] Isis Distributed Systems Inc., IONA Technologes, Ltd.
“Orbix+lsis Proggammer's Guide”, 1995 Document
D070-00.

[9] M. C. Little, “Object Replication in Distributed
System”, PhD. Thesis, University of Newcastle upon
Tyne Computing Laboratory, September 1991

[10] P. Mass, “Concepts and Experiments in Computational
Reflection”, OOPS.A 87 Procealings, pp. 147-156
October 1987.

[11] S Maffeis, “Adding Group Communication and Fault-
Tolerance to CORBA®, In Procealings of the 1995
USENIX Conference on Object-Oriented Technologes,
Monterey - CA, June 1995

[12] Mishra, S., Peterson, L. L., and Schlichting, R. D.
“Consul: Communication Substrate goes Fault-Tolerant
Distributed Programs.” Distributed Systems
Engineeiing Journal 1,2 Ten. 1993

[13] Object Management Group, “IDL C++ Language
Mapping Specification”, OMG Document 94-9-14,
1994

[14 Object Management Group, “The Common Object
Request Broker 2.0/IlOP Specification, Revision 20,
OMG Document 96-08-04, 1996

[15]
(16]
(17]

(18]

Object Management Group, “Meta-Object Facility”,
RFP5, OMG Document 96-05-02, 1996

D. Powell, “Delta-4 Architecture Guide”, Esprit Il
P2252 Delta-4 Phase 3, August 1991

Robbert V. Renese and Kenneth P. Birman, “Protocol
Composition in Horus’ Dept. of Computer Science of
the Cornell University, Seal1995

F. B. Schneider, “Implementing Fault-Tolerant Service
Using the State Machine Approach: Tutoria”, ACM
Computing Survey, 22(4):299-319, December 1990

