
MetaFT – A Reflective Approach to Implement
Replication Techniques in CORBA

Lau Cheuk Lung, Joni Fraga
Laboratório de Controle e Microinformática - LCMI-DAS-UFSC

Campus Universitário - Caixa Postal 476 – Trindade
CEP 88040-900 - Florianópolis – SC - Brazil

e-mail: {lau, fraga}@lcmi.ufsc.br

Carlos Alberto Maziero
Programa de Pós-Graduação em Informática Aplicada - PPGIA

Pont. Univ. Católica do Paraná - PPGIA
 Curitiba – PR - Brazil

e-mail: maziero@ppgia.pucpr.br

Abstract

A model was introduced in [Fraga97] for
integrating repli cation techniques in heterogeneous
systems. The model adopts a reflective structure based
on the meta-object approach [10] . Also, this model is
founded in ORBs that support group communication in
heterogeneous environments. The OMG still does not
have specifi cations for fault tolerance. The MetaFT
model has a great flexibilit y allowing, for instance, to
modify the coordination protocols according to the fault
tolerance level desired, without any implications for the
application code. The advantage is that it allows to use
different meta-object protocol to assist different qualit y
of service (QoS) parameters to fault tolerance. This
paper explicit our experiences in developing repli cation
techniques following the model using two different
CORBA platforms and presents some performance
analyzes.

Keywords: distr ibuted systems, fault-tolerance,
CORBA, computational reflection.

1. Introduction

This paper presents our experiences, in the ambit of
the ASAP project, about the integration of repli cation
techniques in heterogeneous distributed systems. The
project adopts an open architecture, following the
distributed objects standard - CORBA/OMG [14]. At
present, there is no sanctioned COS specifications for

fault-tolerant CORBA objects through repli cation,
though this is expected within the year. Our propositions
attempt not to change the OMG orientations.

In [6] we presented an integration model for
repli cation techniques in CORBA. This model uses the
concepts of the reflexive computation [10], aiming to
minimize the implications of the repli cation techniques
over the application programming. The computational
reflection is used in this context to separate the
application algorithms of the repli ca coordination
protocols. This separation introduces a great flexibilit y in
the system for allowing the change of coordination
protocols without interfere in the application code, not
even to imply in changes at the execution support level,
what would be hard if we consider heterogeneous
distributed systems. The ORBs, with specific faciliti es for
group communication, support the implementation of the
replication techniques according to the proposed
integration model. The integration model was used with
the Electra [11] and Orbix+Isis [8] systems.

This paper concentrates on those implementation
experiences, describing aspects related with the means
offered by those CORBA platforms to facilit ate the
implementation of the repli cation techniques. The
potentialiti es of those ORBs and the proposed model are
evaluated in this paper starting from the efforts that we
did, programming different repli cation techniques
structured according to that integration model. With the
objective of ill ustrating the use of the model in the
considered environment and the implementation aspects

involved in the two ORBs mentioned, we present in this
text our experience for implementing the leader/followers
replication technique [16].

In section 2 we present the description of the CORBA
platforms used. Section 3 describes the integration model
– MetaFT. In section 4 the integration model on ORBs.
In section 5, general considerations about our
implementation experiences using Electra and Orbix+Isis
are presented. Finall y, in section 6 the final conclusions
of this work.

2. The CORBA platforms used

2.1. CORBA architecture

The OMG specifications are intended as a set of
standards and concepts for distributed objects in open
distributed environments. The heart of the CORBA
standards is the Object Request Broker (ORB), which
allows a remote object’s methods can be invoked
transparently in heterogeneous distributed environments.
Thus, an ORB is a communication channel for
distributed objects. Interoperabilit y between objects is
achieved by specifying their interfaces with CORBA’s
Interface Definition Language (IDL). Translating IDL
specifications a host of programming languages
(including C, C++, Ada, COBOL, Java) generates the
necessary, language-specific interfaces and auxili ary
support for object implementations.

In the development of distributed applications, the
CORBA/OMG specifications included a set of object
services that simpli fy the application designer’s task. In
this way, the COSS (Common Object Services
Specifi cations) was introduced describing a set of
services (interfaces) that provide basic functions for using
and implementing application objects.

2.2. ELECTRA

Electra [11] is an ORB compatible with the CORBA
specifications, presenting support for objects group. For
the development of distributed applications, this model
combines the benefits of the CORBA standard with the
power of lower level tools, such as: Isis [2], Horus [17],
Transis [1], Consul [12], Chorus [4], and others. Electra
is implemented in C++ and the IDL for C++ mapping is
dealing with specified for OMG [13]. The Electra
communications can be given in the reliable multi cast or
point-to-point style. The client makes use of a same
model of invocation of method, independent if the server
is an object singleton or a group of objects. In Electra, the
invocations can be synchronous, asynchronous or semi-

synchronous (deferred-synchronously), using static or
dynamics interface in the CORBA model. Two way of
group communication is available in Electra:

� Transparent: the group is seen as a simple and
highly available object where the requisitions are
submitted as in a conventional ORB that is, the
client only receives a single result of the group;

� No transparent: permits the access, in an
invocation, to the results of each individual
member of the group of objects.

Electra supports groups in the active repli cation
model, making use of the tools of lower level, li ke Isis or
Horus, in the supply of services of reliable multi cast and
group management (figure 1). The state transfer and
membership services, supported by those tools are
available as Electra’s operations in BOA (Basic Object
Adapter). In the BOA interface of the Electra were added
mechanisms to activate groups and to select the multi cast
protocol to be used. The CORBA environment class is
used for the selection of invocation style and mainly, to
pass exceptions of the server to the client.

Group of objects

Isis,
Horus,

etc.

Figure 1. Group Communication on Electra

CORBA
object

host A

CORBA
object

reference CORBA
object

host B

Aplication
cliente

request response

.....

2.3. ORBIX+ISIS

The Orbix+Isis system [8] is a commercial product
developed by ISIS Distributed Systems Inc. and IONA
Technologies, Ltd. As the previous ORB, it allows a
system to be built as a group of objects interacting
according to CORBA/OMG standard. Orbix+Isis system
simpli fies the development and the integration of
distributed fault-tolerant applications. Each object has an
interface specified using the IDL/CORBA language. The
ISIS resources in the implementation of the group
abstractions, in this case, simpli fy the ORB. In the
Orbix+Isis model, servers may be formed by group of
objects where the client/server interactions are reliable.
Membership mechanisms, state transfer and reliable
multi cast using different types of order, supplied by ISIS,

are available at ORB interfaces to the applications in the
Orbix+Isis.

Groups of objects can be defined over two execution
styles: group processing and event stream. In group
processing, each object member shares the same interface
and semantics of equivalent implementation, what
assures that each repli ca member in an identical way
process the same service request. Executions in the group
processing style allow three communication ways:

� Multi cast: a request is diffused for all members of
a group and only one result is returned to the
client, maintaining the server transparency. The
multi cast style corresponds to the active
replication model [18]. On the other side, the
client can have access to the response from all
members of the group; for that, it is necessary to
build a smart proxy (a proxy object supplies group
support in the client side). The proxy would
inherit the behavior of a default proxy class and to
add the capacity to send results to the client.

� Client's Choice: in this style the client request is
executed in just one of the group members. This
communication style has the aim to improve the
performance in client/server interactions. It is
created for read-only operations. The choosier
function in the client side determines the member
for receiving the request.

� Coordinator/Cohort: in this model, a coordinator
executes the requested operation and then, sends
the results to the client and, to the other repli cas
(cohorts) for updating their states (checkpoint). A
choosier function determines the coordinator
for each request processing submitted by the
client. If the coordinator fail s the choosier
function is automaticall y invoked for the choice a
new coordinator.

In the group processing style, Orbix+Isis still offers
membership services, state transfer and ordering of
messages. State transfer and membership are key services
for different models of group, because they allow new
objects to join a group and to become a normal repli ca of
the group.

In the event-stream processing style, the clients use
one-way asynchronous communications. They send
messages (events) to object members of a group, called
“event receivers” . This execution style follows the
publisher/subscriber model: clients send asynchronous
messages to the “event stream” which are responsible for
sending to the subscribers. The “event stream” also
maintain copies of these events. Event receivers can join
or leave the subscribers group any time. The subscriber

participation in the group can be programmed for the
reception of a certain amount of events. Events-stream
model corresponds to a loosely coupled connection
between client and servers.

The Orbix+Isis architecture is presented in figure 2. It
consists of C++ library and a run-time support, which
implement the functionalit y of group processing and
event stream. This structure involve, together, a
conventional ORB (Orbix) and the Orbix+Isis group
support. The Orbix communication layer treats point-to-
point communications. The Orbix+Isis support handles
group communications using Isis faciliti es and then,
offering bases for distributed fault-tolerant applications.

O rb ix
C o m m u n ic a t io n L a y e r

In te r fa c e
R e p o s i to ry

O b je c t F a u l t
H a n d le r

D II

O rb ix
D II

B O A

Figure 2 T he O rbix + I sis ar chite ctu re

O p e ra t io n a l S y s te m

O r b ix + Is is
C o m m u n ic a t io n L a y e r

O rb ix + Is is R u n t im e

F ilt e r
S m a r t

P ro x ie s

ID L S tu b s

R e p li c a t e d
A p p l ic a t io n

O b je c ts Is is
R e p o s i to ry

Im p le m e n ta t io n
R e p o s i to ry

The IDL interfaces in Orbix+Isis generate in
compilation time the necessary structures for group
processing. Using these structures (stubs, proxy, etc.), the
client connects and communicates with an objects group
like a singleton object. The Isis Repository (IsR) is a file
hierarchy of the Orbix+Isis, similar to the
implementation repository in the Orbix. Each Orbix+Isis
server has a file in IsR, which defines the activation
procedures and the configuration of the server group. The
performance aspects and the execution style of the group
are specified in the Isis Repository (IsR). The available
information in these files allow, for example, changes in
the application involving the group execution style,
without changing the application code.

3. Integration model

3.1. Computational reflection

The essence of the computational reflection paradigm
is a system that executes processing on itself, modifying
their behaviors. The reflexive paradigm is introduced

into the object-oriented programming following the
meta-objects protocols [10] where the functional and no-
functional aspects are separate using base-object and
meta-objects, respectively. A base-object describes in
their methods the application functionalit y, while the
associated meta-object executes the control poli cies that
determine the behavior of its corresponding base-object.
The call s to the base-object methods are trapped in the
sense of invoking meta-methods that allow to modify the
behavior of the base-object or to add functionaliti es to the
corresponding call s in base level.

3.2. MetaFT - The integration model

The reflexive paradigm allows assigning to the base-
objects the functionalit y of a repli cated application, while
meta-objects execute the coordination protocol to control
the repli cas execution. The coordination reflected allows
the use of different repli cation techniques with the same
base-object maintaining their characteristics. For
changing the repli cation technique, changes are
concentrated in the meta-level.

The reflexive structure proposed for incorporating
replication techniques in open systems is represented in
figure 3. Each repli ca is mapped to one base-object
(repli ca_base), which is associated a meta-object (meta-
controller) that assumes coordination functions of the
replication technique used. Crash failures were assumed
in the repli cation models in our experiments. As we
admitted a strong coupling between controller and
associated repli ca, under a crash failure, both, controller
and associated repli ca will stop their processing
activities.

request

reply

trap
communication

among

controllers

request reply

client

meta-controller

replica_base

Figure 3 Reflective structure for the replication model.

The integration model of repli cation techniques in the
CORBA context is shown in figure 4. In that figure, the
client is structured in a base-client that represents the
behavior of the application, and a meta-client, that does
not possess active function in our implementation, but
that could be used in managing the repli cated client, or to

implement mechanisms of handling exceptions in the
client. The structure of each server repli ca is similar to
that of the client: a repli ca-base object, carrying out the
replicated services; a meta-controller, responsible for the
coordination protocol of the repli cation technique; and
meta-objects special, identified genericall y as meta-
communication, that it control so much on the client side
as in the server side the access to the support supplied by
a CORBA platform. These entities concentrate the set of
clients stubs, of server stubs (the stubs for communication
of the repli cas) and the BOA with the support for group
management, generated starting from the compilation
process of the IDL specification of the interface of the
object server. The use of the term “abstract object” given
to the meta-communication on the model follows some
authors [7] and has the sense of a simple separation for
greater clarity. In realit y, these interfaces are generated
as a set of methods that will be composed with
inheritances multiple in the client and controller meta-
objects.

ORB

base-
client

meta-
client

meta-
communi-
cation

meta-
controller

base
replica

meta-
communi-
cation

m

e

t

a

b

a

s

e
 Client Server

(replicas)

�
�

��

�

�

stubs

manag

.

stubs

manag

..

Figure 4. Structure of the model on a CORBA support.

The numbered arrows in figure 4 indicate the normal
way of a client request: The request made by the client
base (1) is then broadcast using a stub appropriated in the
client meta-communication. In each repli ca, the meta-
communication, by means of a local stub, receives the
request and transfers it to the meta-controller (2), which
then activates the local repli ca (3). On receiving the reply
(4), the meta-server executes the coordination protocol,
by means of the meta-communication so as to interact
with other repli cas. The processing and interactions on
the level of the meta-controllers are conditioned at this
time by the repli cation model utili zed. Later, the reply is
then sent back to the client (5 and 6).

This model can be used with several repli cation
techniques; the differences essentiall y will concentrate on
the repli cated meta-controllers (servers). In some
techniques the meta-communication entities may gain

functionalit y besides that of concentrating methods of
access to the services of the CORBA support. For
instance, in the use of active repli cas with voter or
adjuster mechanisms, the implementation of the voting or
adjustment can be programmed in a more simpli fied way
on the client side. The Transparency could be achieved in
this case, implementing these mechanisms in the client
meta-communication entity, which, with the addition of
this functionalit y, takes on the characteristics of a real
object.

4. Using integration model in CORBA

4.1. Leader/Followers replication according to the
integration model

In the sense of ill ustrating one of the several
examples of repli cation techniques developed by us with
the mentioned model, we described in this section our
experience with the leader/followers technique. In this
repli cation model all the repli cas are active and execute
the same code, but the leader repli ca is the responsible to
handle the interactions with clients, and for the decisions
that affect the determinism of repli ca [18]. When
receiving a request the leader disseminates the same
among the followers. The processing of the method is the
same in all repli cas, however only the leader sends the
results to the client.

The figure 5 presents the meta-controller's code
regarding the leader/followers technique. To each base-
method has a meta-method associated in the controller
(base_method_1 and meta_method_1, figure 5). The
controller's actions are described brief in the mentioned
figure. A temporal diagram involving the interactions
among repli cas in the processing of a requisition of client
is shown in figure 6.

class meta_controller_1_im {
// declaration of variables

 method meta_method_1(parameters){
 // declared in IDL
 base_method_1 (parameters);
 meta_control (parameters);
 };
 // declaration of other meta-methods

:
};

class meta_controller_2_im {
 method meta_control(parameters){
 concluded := false;
 semaphore := false;
 my_id := rank_system ();
 leader := 0;
 while not concluded do
 leader := leader + 1;
 if (my_id = leader) then
 // I am the leader
 group.reply_leader(reply);
 return;
 // response comes back to
 // the client
 else
 wait(semaphore or timeout);
 if not concluded then
 group.closing ();
 end;
 end;
 end;
 };
 method closing(){
 // this method is declared in IDL
 if (leader � membership) then
 concluded := true;
 end;
 };
 method reply_leader(reply) {
 // this method is declared in IDL
 if (my_reply � reply) then
 my_reply : = reply;
 semaphore := true;
 end;
 };
};

Figure 5. Code of Meta-controller of the leader/followers
repli cation technique.

replica 1 (leader) replica 2 replica 3Client

request

R

E

Figure 6. Temporal diagram of the leader/followers replication technique.

t

reply

R: reply_leader
E: closing

The leader's indication is determined by the repli ca
with my_id equal to 1, the oldest of the group
(rank_system = 1, figure 5). The used support (Horus and

ISIS) adopt rank mechanisms, what supplies to the
implementations of the repli cation techniques that
depend on privileged repli ca, the advantage of choosing a
leader without the need of any change of message among
replicas. The use of the closing method has as purpose
the detection of failure of the privileged repli ca (leader)
what is simpli fied by the used platforms. The closing
method is implemented using the membership li sts
supplied by the CORBA platform. Those membership
li sts are up-to-date for the BOA, to each arrives or leaves
of repli ca in the group.

RSi

Classe
meta_controller_1_im {

 :
 CORBA::meta_method_1(..){
 base_method_1 (..);
 meta_control (..);
 };

:
 CORBA::meta_method_2(..){
 base_method_2 (..);
 meta_control (..);
 };

:

Classe meta_controller_2_im {
:

 meta_control (...) {
 // code regarding the replication
 // technique: competitive,
 // cyclic, primary/secondary
 // or leader/followers

:
 // invoke Meta_Controller
 meta_controller->
 reply_leader(...);

:
 meta_controller->
 closing(..);

:
 };
 CORBA::reply_leader(...) {...};
 CORBA::closing() {...};
};

 base_method_1 (..) {
 // implementation of
 // the method 1
 };
 :
 base_method_2 (..) {
 // implementation of
 // the method 2
 };
 :
};

Internal
invocations

Server Replica (SRi)

Communications between
controllers (via ORB)

Client invocations
 (via ORB)

Figura 7. Format of the separation of server code.

In figure 6, after the processing of the requested
method, the leader (repli ca 1) is shown sending the
results to the client and their followers. The followers
once satisfied the wait condition (figure 5 and 7),
executes the closing method. The leader repli ca cannot
signal the end processing to the other members of the
group because when the results return to the client, its
execution is finished. The activation of the closing
method fits the at least a follower repli ca that will
provoke the execution of the same in all the other
repli cas. This method has the function of certifying if the
response was sent indeed by the leader (concluded
condition of the while loop). The verification of the
closing is simple: if after the diffusion of the closing

method the leader is still ali ve (to belong to the
membership of the group) then the response was sent
indeed. Otherwise, a new leader is chosen and the
process is repeated. In the algorithm, the activation of
closing method is transmitted to all the repli cas of the
group, in ordered totall y way.

In our implementation, the base methods were
simulated with operations of an application of bank
service and were developed separated on behalf of the
replica coordination (meta-methods). The figure 7
emphasizes this separation that is the base of the
reflexive paradigm. In our experiments different meta-
objects, implementing different repli cation techniques,
were changed, changing the behavior in the coordination
of repli ca of the service, without affecting the
functionalit y of the base level.

4.2. Implementing the model using the ELECTRA
system

The initial step for the implementation of a system on
any CORBA platform is the description in IDL of the
meta-controller's interface. The interface consists of the
declaration of each method offered by the repli cated
server to the client. Besides this, it is necessary to declare
a second interface, composed by the methods that handle
the management of the repli cation technique, in the
interactions among the different repli cas of the service.
The code in IDL of both CORBA interfaces of repli cated
server, in dealing with the specifications described in the
previous section, is shown in figure 8. The
meta_controller_1 interface specifies the access of client
to the repli cated service, while the meta_controller_2
interface declares the necessary methods to the intra-
repli ca interactions.

// IDL

interface meta_controller_1
{
 // Descrition of the data types employed

 // Descrition of the server methods
 boolean meta_method_1 (parameters);
 ...
 boolean meta_method_n (parameters);
};

interface meta_controller_2
{
 // Descrition of the meta_controller methods
 boolean replt_leader (in reply);
 boolean closing ();
};

Figure 8. IDL Interface of the replicated server.

 The Electra ORB version 1.0 does not support
preemptive threads, what limits the concurrency degree
to treatment the client's requests, besides the interactions
among the meta-controllers of the repli cated service. This
restriction brings diff iculties in the implementation of
repli cation techniques. To treat this limitation, we
adopted a solution that consists of separating the meta-
controller's functionalit y in two UNIX processes. The
first one is concern the client/server interactions and
activation of method of the base-object and, the second
one is involved with the interactions among repli cas
(among the meta-controllers of the repli cas). It fits to
stand out that both interfaces are actuall y two faces of a
same server (or, in our case, of a same group of objects).
Therefore, the two interfaces of the figure 8 were
compiled separately, and in runtime the system woks li ke
two groups of objects (group meta_controller_1 and
meta_controller_2).

In the process of compilation of the interfaces of an
application, Electra generates the whole support
automaticall y for the communication (stubs) among the
involved entities, also including the functionaliti es for
groups management of the BOA class. The programmer
is responsible for the description of the base-object of the
application (meta_controller_1) and management of the
replication technique (meta_controller_2), filli ng the
bodies of the methods defined in the interfaces (figure 8).
With that implementation outline, which is ill ustrated in
figure 9, them base-object client and server stay out of
any activities that are not related to the application itself.
All the aspects related to the management of the
replication and the interactions in CORBA context are
concentrated at the meta-objects level
(meta_controller_2).

4.3. Implementing the model using the Orbix+Isis

The Orbix+Isis, if compared to the Electra, is a
commercial product, that presents more means for
processing and management of groups [section 2.3]. But,
the main advantage in relation to the Electra is that it
provide multithreads support. In implementation of the
integration model using Orbix+Isis, each pair associated
base-object/meta-object shares a same UNIX process,
doing with that the interactions between both are local,
without need of ORB. The concurrency among base-
object and meta-object inside a process are satisfied
through the use of a threads library provided by the Isis
tool. The initial step of the implementation is also the
compilation IDL of the two interfaces of the figure 8. In
this case, the compilation creates an only group of
processes in runtime. The figure 9 explicates the process

of generation of the client and server codes starting from
IDL.

IDL
compiler compiler

server
implementation

011
10110000
11011100
01101011
01111001

client
implementation

replica
coordination

compiler

code stubs

meta-controller_2

code stubs

client

code stubs

meta-controller_1

IDL interface
meta-controller_1

IDL interface
meta-controller_2

client
specification

server
specification

011
10110000
11011100
01101011
01111001

Figure 9. Application building process

4.4. Performance analyze

In this item we present performance measurements
carried out in our laboratory, to check our experiences
using Electra and Orbix+Isis to implement the MetaFT.
These measurements were taken from request method
invocation. MetaFT performance was raised considering
different repli cations degrees. The environment
considered in these performance tests, was composed of a
local network (10 Mbps Ethernet) heterogeneous using
two machines Sun Ultra 1 with Solaris 2.5, one Axil 240
also with Solaris 2.5, one Pentium 100 and one Pentium
233 MMX, both running Linux and finall y, one Pentium
233 MMX with Windows 95.

0

10

20

30

40

50

60

70

1 2 3 4 5 6

Replication Degree

R
es

p
o

n
se

 T
im

e
(m

s)

Electra

Orbix+Isis

Figure 10. MetaFT Performance using Electra and Orbix+Isis.

The tests carried out consisted of a hundred request
operation call s. In figure 10, the response time (axis Y)

related to the repli cation degree (axis X) had been
determined considering the average of these one hundred
invocations. The request operation curve represents an
increase in the response time whenever the MetaFT
degree of repli cation grows. Using Electra or Orbix+Isis
to implement the MetaFT the growth factor of the
response time rate per repli ca added was around 10
milli seconds. But, Orbix+Isis presents a better
performance - around less 5 milli seconds.

5. General considerations

The multithreads mechanism that Electra operates is
called TPP (Thread Per Process), this model imposes that
the server executes one request in each time, the
beginning to the end, multiple servers objects that share a
same process cannot receive several invocations in the
same time. In some cases this model can reach a
deadlock, for instance: supposes that a server A, when
being invoked by the client, make a request to the server
B and that during the processing of this request, B
activate A, this would provoke a deadlock in the system,
because A can only process one request per time (figure
11).

S erv er BS erv er AC lie nt

re qu est

Figure 11. deadlock caused by the B repli ca.

t

deadl ock

The separation in two processes, meta-controllers 1
and 2 in Electra, emphasizes the diff iculties of
implementation of the integration model when uses the
TPP approach. The communication among the two
processes is made through ORB. This causes an low
performance once the activation through ORB should be
considered the total time in the call of a method in this
context (to locate the remote object, to prepare the object
implementation to receive the request, to transport the
data and to return to the client the results in a transparent
way).

The multithread mechanism that we needed to
implement the proposed integration model is called TPR

(Thread Per Request). With this mechanism, a new
thread is created for each invocation that arrives to the
server and it avoids deadlock problems that can happen
in TPP approach. Orbix+Isis uses a multithreads support
in TPR, therefore the meta-controllers compose just one
process, guaranteeing an gain of performance (figure 10),
once the communications among meta_controller_1 and
meta_controller_2 (figure 7) are made internall y without
to use the ORB. Both CORBA platforms used in this
work presents means that would allow the
implementation of mechanisms of detection of less
restrictive faults (such as temporal, value, etc.).

In relation to the crashes that eventually happens in
the evolution of the system, the integration model
concentrates at meta level operations to recovery the
replication degree, independent of the type of repli cation
technique used. If the number of active repli cas in the
group to drop below a preset limit , the oldest repli ca
takes the initiative of throwing new repli cas,
reestabli shing the ideal population. The code regarding
these recovery procedures is equivalent for two ORBs
considered and is based on a membership test
(view.number < quorum_min), inserted in the body of the
view_change method. Our approach of state transfer
(checkpoint) of the repli cas differs of that proposal in [5],
which the state updating are given through meta-methods
making updates in public attributes of their associated
replicas, with the exclusive use of coordination protocols.
In our approach we used more primiti ve of support and
less protocols at coordination in Meta level, simpli fying
the meta-controllers codes. The state recovery, in our
system, is based on the join primiti ve, that it should be
offered by the BOA interface of the CORBA support, and
invoked through the view_change method.

Due to the fact of the used language (C++) do not
provide specific support to the computational reflection,
for instance, the automatic trap of invocation of a method
in base level to the respective meta level, in our
implementations the reflection is implemented
artificiall y, through the direct activation to the meta-
method, starting from the client code (figure 7). The use
of a language supporting reflection, li ke Open C++ [3],
could to eliminate this problem, but in this case the
CORBA/IDL compiler would have to support the
mapping for that language. Inside of OMG there is a
group working in the standardization of the use of meta-
objects protocols in CORBA, more information about
that can be obtained in [15].

The computational reflection allows the independence
of codes of the repli cas in relation to the coordination
protocols, driving to a great flexibilit y in the system: to
change of technique or to alter it to reach to degrees of

fault tolerance wanted can result in simply to change the
coordination protocols in meta-level, without to imply in
any alteration to the application algorithms, or still i n
changes at level of execution support, what would be
diff icult in heterogeneous systems. The use of the
reflection to implement fault tolerance techniques is not
new [5], [6], and even the separation between the
coordination and the repli cas has already been
recommended in [16].

The presented model integrates reflection concepts
and group processing in heterogeneous environments.
The accomplished implementation makes intensive use of
the functionaliti es of CORBA platforms, what implied in
a simpli fication of the coordination needs in the
replication techniques implemented. Moreover, the use of
a CORBA platform allowed the implementation of our
application on a heterogeneous execution environment
(group of machines with operational system Solaris 2.5
and Linux 2.0, in a local network), facilit ating the
interoperabilit y aspects.

The structure of integration proposed was shown
quite flexible, could to support several repli cation
techniques easil y. Until the moment we implemented the
technical primary/secondary [2], leader/followers [9],
competiti ve [16] and cycli c redundancy [16], using the
same integration model. The necessary changes to the
substitution of the repli cation technique in the integration
model are limited to the interface the IDL meta-
controllers and to their codes, which implement the
protocols of corresponding coordination. Then, we can to
build different repli cation techniques to assist the
different qualit y of service (QoS) parameters of a fault-
tolerant application. The QoS parameters could be, for
instance: recovery time, response time, types of fault to
tolerate, etc.

6. Conclusion

The implementations presented in this paper verified
the viabilit y to implement mechanisms of fault tolerance
on level of the application over CORBA platform using a
reflective approach. The implementations were made
accomplishing the separations recommended for the
computational reflection. These same implementations
makes extensive use of the primiti ve of the Electra and
Orbix+Isis support, what does not also imply in the loss
of portabilit y of the codes of the application. In other
word, changes in the support are reflected in the meta-
level; the codes that reflect the functionaliti es of the
application are not affected. The obtained results,
although the limitations of Electra, were considered
satisfactory. The objective of this paper was discussing

the MetaFT model in the implementation aspects,
considering our recent experience with Orbix+Isis.

References

[1] Amir, Y., Dolev, D., Kramer, S. and Malki, D.,
“Transis: Comunication Subsystem goes High
Availabilit y.” In 22nd International Symposium on
Fault-Tolerant Computing, IEEE, July 1992.

[2] K. P. Birman, “The Process Group Approach to
Reliable Distributed Computing” , Technical Report TR
91-1216, Cornell University Computer Science
Department, Ithaca, N.Y., July 1991.

[3] S. Chiba, “Open C++ Programmer´s Guide”, Technical
Report 93-3, Department of Information Science,
University of Tokio, 1993.

[4] Chorus Systemes, “Chorus Simulator v4 r1 -
Programmer's Guide”, http:\\www.chorus.com, 1992.

[5] J. Fabre, V. Nicomette, T. Pérennou, R. J. Stroud and
Z. Wu, “ Implementing Fault Tolerant Appli cations
using Reflective Object-Oriented Programming” ,
Proceedings of the 25th IEEE International Symposium
on Fault-Tolerant Computing, Pasadena (CA), June
1995.

[6] J. Fraga, C. Maziero, Lau L. and O. Loques
“ Implementing Repli cated Services in Open Systems
Using Reflective Approach” , Proceedings of the 3th
IEEE International Symposium on Autonomous
Decentrali zed Systems - ISADS 97, Berlin - Germany,
April 1997.

[7] O. Hagsand, H. Herzog, K. P. Birman and R. Cooper,
“Object-Oriented Reliable Distributed Programming” ,
IEEE, 2nd International Workshop on Object-
Orientation in Operational Systems, I-WOOOS/1992.

[8] Isis Distributed Systems Inc., IONA Technologies, Ltd.
“Orbix+Isis Programmer's Guide”, 1995. Document
D070-00.

[9] M. C. Littl e, “Object Repli cation in Distributed
System”, PhD. Thesis, University of Newcastle upon
Tyne Computing Laboratory, September 1991.

[10] P. Maes, “Concepts and Experiments in Computational
Reflection” , OOPSLA 87 Proceedings, pp. 147-156,
October 1987.

[11] S. Maffeis, “Adding Group Communication and Fault-
Tolerance to CORBA“, In Proceedings of the 1995
USENIX Conference on Object-Oriented Technologies,
Monterey - CA, June 1995.

[12] Mishra, S., Peterson, L. L., and Schli chting, R. D.
“Consul: Communication Substrate goes Fault-Tolerant
Distributed Programs.” Distributed Systems
Engineering Journal 1,2 Ten. 1993.

[13] Object Management Group, “ IDL C++ Language
Mapping Specification” , OMG Document 94-9-14,
1994.

[14] Object Management Group, “The Common Object
Request Broker 2.0/IIOP Specification“ , Revision 2.0,
OMG Document 96-08-04, 1996.

[15] Object Management Group, “Meta-Object Facilit y” ,
RFP 5, OMG Document 96-05-02, 1996.

[16] D. Powell , “Delta-4 Architecture Guide”, Esprit II
P2252, Delta-4 Phase 3, August 1991.

[17] Robbert V. Renesse and Kenneth P. Birman, “Protocol
Composition in Horus” Dept. of Computer Science of
the Cornell University, Sea 1995.

[18] F. B. Schneider, “ Implementing Fault-Tolerant Service
Using the State Machine Approach: Tutorial” , ACM
Computing Survey, 22(4):299-319, December 1990.

