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ABSTRACT 

     The recent studies in the distributed simulation area are 
focused in the High Level Architecture, defined by the DoD/
USA, which proposes a standard environment to develop and 
run  distributed  simulations.  The  HLA  components  are 
designed  to  ensure  a  high  level  of  interoperability  among 
simulations  and,  also,  to  allow  maximum  component 
reusability.  This paper proposes a new mechanism to help 
optimist federates perform rollback procedures when needed. 
This mechanism uses computational reflection techniques to 
create a rollback manager metaobject that extends the low-
level services provided by HLA. 

1 INTRODUCTION 

     In the last years, several distributed simulation systems 
have been built, allowing the simulation of complex systems 
like war scenarios, traffic systems, and others. The research 
activities in distributed simulation can be classed in two main 
areas. The first one, called PADS (Parallel and Distributed 
Simulation),  has  its  emphasis  on  how  to  achieve  high 
performance in distributed simulations while insuring all the 
causality relations between events. The second area,  called 
DIS  (Distributed  Interactive  Simulation),  looks  for  the 
development of highly interactive simulation environments, 
allowing remote users to interact in realtime. Both research 
activities succeeded to achieve important goals in their areas. 
However,  several  problems remained to be solved,  mainly 
related to the performance aspects, efficient network usage, 
reusability  of  the  simulation  code,  and  interoperability  in 
heterogeneous computing environments. The US DoD High 
Level Architecture initiative (DMSO 1997) intends to define 
and  develop  a  standard  software  environment  in  which 
heterogeneous simulation entities can interact using standard 
interfaces  (see  section  3).  However,  as  shown  hereafter, 
some HLA services are very lowlevel and hard to use when 
building  simulation  models  that  use  peculiar  time 
synchronization schemes. 

2 PARALLEL/DISTRIBUTED SIMULATION 

     The simulation model considered in PADS is roughly 
composed by an event set, generated in the execution of the 
processes modeling the system behavior, and variables that 
represent its  state (Ferscha and Tripathi 1994).  The events 

are scheduled to occur at a given time in the simulation time, 
and  are  put  in  an  event  list  ordered  by  their  timestamps 
(lower  timestamps  first).  The  time  reference  used  in  the 
simulation is generally not related to the real physical time, 
but serves only as a common virtual time reference for all 
processes that model the system being simulated. 
     The simulation execution is controlled by a scheduler 
mechanism, which continuously takes the first event in the 
event  list,  advances  the  simulation  time  to  the  event's 
timestamp and executes  it.  The sequential  structure  of  the 
scheduler  mechanism insures  that  the  causality  constraints 
between  events  are  respected,  because  all  events  are 
processed in their chronological order. The main problem in 
PADS is how to build efficient scheduling algorithms to be 
run in a distributed environment, allowing event processing 
to  be  done  in  parallel,  and  insuring  all  their  causality 
constraints.  Two main approaches  were  proposed to  solve 
this problem: the pessimistic (conservative) approach and the 
optimistic approach. 
     The basis  of  the  pessimistic  synchronization strategy 
(Chandy  and  Misra  1979)  is  to  respect  the  causality 
constraints local to each process. Considering that processes 
exchange events through timestamped messages, one should 
ensure that all local events older than events received from 
other processes will be processed before them. This implies 
on blocking the processing of local events until the causal 
conditions  between  them  and  events  received  from  other 
processes can be verified (Misra 1986). 
     In the optimistic strategy, local and received events can be 
processed without worrying about local causality constraints. 
By this, process blocking is avoided, as all available events 
can  be  processed.  If  a  message  containing  an  old  event 
arrives  at  a  process,  it  will  be  needed  to  undo  the  local 
simulation back to the timestamp of the old event, and then 
redo the local simulation considering it. Using this strategy, 
the events that do not violate causality are confirmed, and the 
others  should  be  canceled  using  a  rollback  mechanism 
(Jefferson 1985) (Jefferson and Sowizral 1985).

3 HIGH LEVEL ARCHITECTURE

     In 1995, the US Department of Defense started to define 
and  build  a  standard  architecture  for  the  modeling  and 
simulation  of  complex  systems.  It  is  a  highlevel,  object-
oriented  software  architecture,  designed  to  ease  the 
interoperability  among  different  models  and  to  allow 
component  reuse.  This  architecture,  known as HLA   High 
Level  Architecture,  constitutes  a  common  technical 
framework  for  modeling  and  execution  of  distributed 
simulations.  Its  main  components  are  the  Object  Model 
Templates  ,  the  HLA Compliance Rules,  and the Runtime 
Infrastructure (DMSO 1997). 



     Each HLA simulation is defined by a federation, in which 
a group of federates interact exchanging data and events. The 
definition of exchanged data  and events is  done using the 
Object  Model  Templates  -  OMT,  which allows describing 
the objects that constitute the federation, their attributes and 
relationships.  Each  federation  should  define  a  Federation 
Object Model  -  FOM. This  object  model describes  all  the 
shared  information  (objects,  attributes,  associations,  and 
interactions) used in the federation. Beyond FOM, there is 
also another object model, called Simulation Object Model - 
SOM, which describes objects, attributes, and interactions in 
a given simulation that can be used externally in a federation. 
     The compliance rules define ten basic rules that should be 
respected by a simulation to it be considered as according the 
HLA specifications. These rules define the responsibility and 
relationships  among  the  federation  components,  including 
the federation itself, its federates, and the RTI. 
     The federates interact using the RunTime Infrastructure - 
RTI,  which can be seen as  a distributed generic  operating 
system that provides communication and coordination to the 
federates. All the communication in the federation should be 
done through the RTI; using this, the federates can be located 
in any computer connected to the network. The interaction 
between a federate and the RTI uses methods calls from two 
different classes:  RTIAmbassador and FederateAmbassador. 
The  RTIAmbassador class contains all  methods offered by 
the RTI to the federates. Its implementation is done by the 
RTI and is not accessible to the simulation programmer. On 
the other hand, the FederateAmbassador class is an abstract 
class,  implemented  by  the  simulation  programmer,  that 
identifies all methods that each federate should provide to the 
RTI for callback operations on the federates. 
     The services provided by the HLA to federates are classed 
in six categories (DMSO 1997). The focus of this paper is on 
time management serices. The services that are provided by 
this category aims to coordinate the logical time advance and 
its relationships with the physical time. 

4 TIME MANAGEMENT IN HLA

     Each can use a  different time policy,  i.e.  can have a 
specific behavior with respect to the federation logical time. 
A federate is using a timeregulating policy if it can interfere 
in  the  time  evolution  of  other  federates.  These  federates 
control the time advance of federates using a timeconstrained 
policy, by sending them messages associated to dates in the 
federation  time.  Thus,  a  federate  can  be  regulating, 
constrained, regulating and constrained, or not regulating nor 
constrained. Initially all federates are neither regulating nor 
constrained; the shift for other time policy should be done by 
calling RTI methods. In a given federation, it is possible to 
have federates  using  any  of  these  time policies.  The  time 
management inside HLA is made up by two components that 
should be  presented  in  more  detail:  message ordering  and 
logical time advance. 
     Much of the time management is done by the correct 
ordering of messages coming from the federates and stored 
in the RTI. The messages are queued according the existence 
of timestamps (TSO   Timestamp Ordered messages) or not 
(RO   Receive  Ordered messages),  and according  the time 
policies used by the sender and the receiver. Received RO 
messages  are  simply  put  in  the  FIFO input  queue  of  the 

receiving  federate,  and  are  immediately  available  to  the 
federate.  On  the  other  hand,  received  TSO  messages  are 
timestamped  with  their  sending  times,  and  are  put  in  the 
timeordered queue of the receiving federate, and delivered to 
the  federate  in  a  nondecreasing  timestamp  order.  A  TSO 
message is delivered to the federate only when the RTI can 
insure  that  no more messages having a  smaller  timestamp 
will be received by that federate. 
     The  logical  time  advance  in  the  federates  is  done 
explicitly, that is, the federate requests the RTI to advance its 
logical  time  and  then  waits  for  the  confirmation  of  that 
request. This procedure is needed to insure that the federate 
will not receive any TSO message with a timestamp smaller 
than its local logical time. This condition can be guaranteed 
by the TSO message delivering mechanism of the RTI. Thus, 
the federate logical time only can advance when authorized 
by the RTI. 
     Due to the large diversity of simulations, the requirements 
in time management can vary largely from a simulation to 
another.  The  three  most  common  approaches  for  time 
management  in  HLA  are  time  stepped,  event  driven 
(pessimistic) and optimistic (Fujimoto 1998). In the case of 
the  pessimistic  approach,  the  events  should  be  processed 
according to the order of their timestamps, thus the logical 
time  advance  is  bound  to  the  events  timestamps.  This 
approach corresponds to the eventdriven mechanism in HLA. 
In the optimistic approach, the events can be processed out of 
timestamp  order.  The  RTI  offers  services  for  message 
delivering without considering timestamps of TSO messages, 
and  basic  rollback  mechanisms.  However,  the  rollback 
mechanisms provided by the RTI cover only the RTI state 
recovery (message queues, etc). All the management for state 
saving  and  recovery  in  the  federate  itself  should  be 
implemented by the simulation programmer. 
     Our work, presented in this paper, consists in the use of 
computational  reflection  techniques  to  build  a  rollback 
manager.  This  metaobject  is  charged  to  detect  causality 
violations  and  to  provide  all  state  saving  and  rollback 
mechanisms needed by the federate, in a transparent way. 

5 THE ROLLBACK ACTIONS

     In the optimistic approach, the messages carrying events 
are  given  to  the  federates  without  considering  their 
timestamp  order.  The  flushQueueRequest method  asks  the 
RTI to give all the queued messages to the federate. After 
this,  the  RTI  invokes  the  callback  method 
timeAdvanceGrant, authorizing the federate's logical time to 
progress.  If  the  federate  receives  an  outoforder  (older) 
message, some procedures should be executed to rollback the 
simulation,  canceling this message and the other messages 
consumed  after  it.  This  recovery  procedure  includes 
unrolling  the  simulation  to  a  execution  point  before  the 
wrong message's timestamp, reprocessing events, canceling 
scheduled events, and canceling messages erroneously sent 
to other federates.  The message cancellation is done using 
the RTI method Retract,  used with the  flushQueueRequest 
service (figure 1). 



Figure 1. Optimistic federate retraction

      If the message to be canceled was already delivered to 
another  federate,  its  execution  should also be  rolled back. 
The RTI calls its requestRetraction method, and the federate 
should then undo any processing done for  events received 
improperly. All these actions should be implemented by the 
simulation programmer.

6 COMPUTACIONAL REFLECTION  

     Computational reflection is a development technique that 
allows  a  system  to  interact  with  itself,  through  a  self-
representation.  Using  this,  the  system can  control  its  own 
behavior,  allowing  a  clear  separation  between  the 
functionality  provided by the system to end users  and the 
functions provided to configure and manage the system. This 
is  done  through a  set  of  structures  used by  the system to 
represent its own aspects, both structural and computational 
(Maes  1987).  According  (Maes  1987),  a  reflexive 
architecture  computational  system  is  constituted  by  two 
levels:  a  base  level  and  a  meta  level.  The  base  level  is 
responsible  for  solving  problems belonging  to  an  external 
domain, normally related to the system's functionality. The 
meta level is in charge of the control and management of the 
base level.  This  allows a  better  modularity,  separating the 
application  code  (base  level)  from  the  management  code 
(meta level). 
     
7   A REFLECTIVE ROLLBACK MANAGER 

     The mechanism proposed here provides an automatic and 
generic  way  to  deal  with  the  requestRetraction callbacks, 
freeing the optimistic federates (and the programmer) of this 
complex  task.  Our  proposal  uses  some  computational 
reflection  techniques  (Maes  1987)  to  create  a  time 
management metalevel between the RTI and each federate. 
The  time  management  method  calls  between  them  are 
intercepted  (reflected)  by  the  rollback  manager,  which 
implements  the  rollback  management  in  behalf  of  the 
federate. The figure 2 illustrates the general structure of the 
proposed mechanism: 

Figure 2. The rollback manager

     Using this approach, the rollback manager takes to itself 
the  control  of  the  federate's  state  rollback,  including 
canceling  received  or  sent  messages.  The  federate  will 
continue  calling the same methods of  the  RTIAmbassador 
class  to  interact  with  the  RTI  and  it  will  receive  RTI 
callbacks  through  the  same  FederateAmbassador class 
methods.  However,  some  time  management  method  calls 
will  be intercepted and addressed to the rollback manager. 
Only  some  time  management  methods,  mostly  related  to 
retraction operations, are intercepted; all the other methods 
are  passed  directly  to  the  RTIAmbassador and 
FederateAmbassador implementations.  The  methods  that 
should  be  reflected  are  those  related  to  time  management 
operations in optimistic federates, as flushQueueRequest and 
timeAdvanceGrant.  Using  this  approach,  the  federate  can 
adopt  and  optimistic  behavior  without  worrying  about 
possible  rollbacks.  To  the  rollback  manager  be  able  to 
control  rollbacks  transparently,  it  should  keep  periodic 
snapshots of the federate's internal state (state checkpoints), 
in  order  to  restore  some  previous  state  when  a  rollback 
occurs.  For  doing  this,  the  rollback  manager  should  have 
access to the federate's state at any time. However, generally 
the  manager has no direct  access  to  the  federate's  internal 
state. To overcome this, each federate should implement two 
callback methods that give controlled access to its internal 
state.  As  the  rollback  manager  only  needs  access  to  the 
federate's  state  to  save  its  current  state  and  to  restore  a 
previous  state,  it  is  enough  to  implement  two  methods 
providing these operations1 : a getState(Sc, tc ) method, which 
returns the federate's current state in the [Sc, tc] state vector, 
and the setState(Sc, tc ), which restores the federate's state to 
the  state  saved  in  the  state  vector  [Sc,  tc].  The  rollback 
manager  uses  the  getState method  to  maintain  a  list  of 
previous states of the federate,  and the  setState method to 
restore a previous state, when a rollback occurs. Using this 
approach,  the  implementation  of  optimistic  federates 
becomes easier; its sole responsibility about rollbacks is the 
correct implementation of the methods getState and setState 
     Using the state saving methods, the rollback manager can 
save  the  federate's  state  at  given  times  in  which  all  TSO 
events  sent  to  the  federate  are  guaranteed.  An  event  is 
considered  guaranteed  if  it  can  be  processed  without  any 
cancellation  risk  in  the  future,  unless  its  retraction  is 
explicitly  requested.  The  calls  to  the  flushQueueRequest 
method  are  intercepted  by  the  rollback  manager,  which 
interacts whit the RTI to obtain the TSO messages. This is 
done  in  two phases:  initially  the  rollback  manager  uses  a 
pessimistic approach to receive the TSO messages from the 
RTI. Through the method nextEventRequest, it requests that 
RTI deliver all the messages RO available inside its queue 
FIFO and all  the messages TSO with time stamps smaller 
than  the federate's  current  time.  When there  are  not  more 
TSO  messages  that  match  this  requirement,  the  RTI 
authorizes the federate's time advance, through a callback to 
the timeAdvanceGrant method. This callback passes a future 
time value tf as a parameter,  to indicate that  the federate's 
logical time can be advanced to tf  
     At  this  point,  the  manager  had  received  all  the  safe 
messages as stated in the pessimistic approach (section 2), so 

1 These operations were inspired from Isis System (Birman 1993), 
for  the  replica´s  state  management  in  groups  of  fault  tolerant 
processes.
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RTI  can  guarantee  that  all  the  TSO  messages  with  time 
stamps smaller than tf had been delivered. This time tf can be 
considered as  a  checkpoint  time,  indicating a  point  in  the 
simulation time where the state of the federate is safe, with 
no rollback risks. Thus, the manager saves the federate's state 
at tf as a checkpoint, using the  getState call defined above. 
After  this  pessimist  phase,  the  manager  calls  the 
flushQueueRequest method on the RTI. At this point, the 2 
The retraction of events is used inside of some discrete event 
simulations  to  model  behaviors  of  interruptions  and 
preemption, and that owe therefore to be directly requested 
by the federate. 
    RTI  will  deliver  all  other  TSO messages  sent  to  the 
federate,  without  worrying  about  their  timestamps.  These 
messages  are  considered  unsafe  and  can  suffer  rollback, 
since the RTI doesn't guarantee that messages with smaller 
timestamps won't be sent to that federate in the future. If a 
rollback occurs, the rollback manager has access to all the 
needed information to undo the processing improperly done, 
to cancel scheduled events and to restore the last safe state of 
the federate. 

7.1 The Rollback Procedure 

    If the federate receives a message older than its current 
logical time tc , the federate's state should be rolled back to a 
previous  safe  state,  in  order  to  guarantee  the  causality 
constraints. The rollback manager can detect the need of a 
rollback  operation,  because  it  receives  all  the  messages 
addressed to the optimistic federate. In HLA, there are four 
major event types that can change objects and their attributes. 
These events should be managed separately by the rollback 
manager,  to  allow it  to  maintain  the  whole  control  on  all 
modifications performed in the federate. These events will be 
described in the next items of this text; at this point we can 
consider  all  the  received  events  in  a  generic  way.  When 
receiving  a  TSO  message  the  manager  will  compare  its 
timestamp t  m with the current logical time tc (the rollback 
manager  is  at  the  same simulation  time  as  the  federate  it 
manages). If t m < t c a causality violation is detected, and the 
manager should restore the federate's state to a previous safe 
state [Ss , ts] with ts < tm . The rollback manager should also 
keep track of all messages sent by the federate during ts < t < 
tc , i.e. after the [Ss , ts] checkpoint, to be able to cancel them. 
Therefore, the manager can invoke the Retract method on the 
RTI to  cancel  messages sent  to other  federates.  For  doing 
this,  the  manager  should  keep  track  of  all  the  message 
handles  (EventRetractionHandles)  for  the  messages  sent 
during  the  time  interval  [ts ;  tc ].  In  the  same  way,  the 
manager  can  receive  cancellation  requests  for  messages 
improperly sent by other federates. The RTI will forward to 
the  receiver  the  cancellation  requests  through  the 
requestRetraction callback. Normally it is up to the federate 
to  implement  the  needed  procedures  to  deal  with  these 
cancellation messages. In our proposal, the rollback manager 
will take in charge this task. 

7.2 The rollback Manager Operation 

     In our schema, the messages received are passed to the 
rollback  manager  and  later  forwarded  to  the  optimistic 
federate.  The  messages  received  with  attributes  (Attribute 

Handle  Value  Pair  Set)  or  parameters  (Parameter  Handle 
Value Pair  Set)  can be two:  ReflectAttributeValues (RAV) 
and  ReceiveInteraction (RI). In this case, before forwarding 
the messages to  the  federate,  the  rollback manager  should 
save the old attribute values and the federate state to allow a 
possible rollback. 
     This mechanism can be presented through a time diagram 
with  all  the  interactions  between  the  entities  (federate, 
manager  and  RTI),  as  shown  in  the  figure  3.  This  figure 
shows  the  interactions  during  the  normal  execution  of  an 
optimistic  federate.  When  the  manager  detects  a  message 
older  than the current time (tm <  tc ),  it  interacts  with the 
federate  and  the  RTI  to  execute  the  rollback.  The  RTI 
normally calls the requestRetraction method on the federate 
when a message already delivered to it should be canceled. 
The event handler EventRetractionHandle for that message is 
passed with the request, which is intercepted by the manager. 
Using this handler, the rollback manager can recover the old 
values for the attributes or parameters. The old values were 
passed  to  the  federate  through  the  methods 
ReflectAttributeValues and ReceiveInteraction.

Figure 3. Time diagram for the interactions

     Therefore, the federate doesn't need to worry about the 
cancellation  of  this  event.  If  an  improper  processing  has 
resulted  in  sending  some messages  to  other  federates,  the 
manager  will  request  their  cancellation  through  the  RTI 
method  Retract.  The  rollback  manager  keeps  track  of  all 
messages sent and their handles. 

8 CONCLUSION

     The use of computational reflection techniques in the 
presented  work  showed to  be  useful,  to  simplify  building 
optimistic  federates.  All  the  aspects  related  to  rollback 
operations can be taken in charge by the rollback manager in 
behalf  of  the  federate.  This  approach  helps  hiding  the 
complexity  of the  optimistic  approach from the simulation 
model programmer. 
    The manager is capable to identify the need for a rollback, 
as well  as to take all the proper actions to ensure that  the 

flushQueueRequest
nextEventRequest

RAV , RI

timeAdvanceGrant

flushQueueRequest

getState

RAV , RI

RAV , RI
RAV , RI

timeAdvanceGrant
timeAdvanceGrant

Federado
Rollback
Manager

RTI

t t t



federate returns to a safe state before the causality violation. 
It  also  takes  for  itself  the  responsibility  of  canceling 
messages  improperly  sent  to  other  federates.  The  rollback 
manager  will  accomplish  tasks  that  are  common to  every 
optimistic  federate,  and  does  not  depend  on  a  specific 
federate  behavior.  The  federate  code  becomes  simpler, 
because the whole control and management of the rollback 
are under the manager's responsibility. 
     All  the optimistic  federate  should have is the  correct 
implementation of the getState and setState operations.  
     To  validate  this  proposal,  a  simple  federation  was 
developed,  involving  several  optimistic  federates.  In  this 
work we are using RTI version 1.3 for C++. A Java binding 
package  is  also  being  used  for  the  development  of  Java 
federates.  Our  development  platform is  a  Solaris  2.6  Sun 
workstation  with  the  Java  Development  Kit  1.1.6.  The 
prototype  federation  is  currently  being  tested,  and  some 
preliminary  measurements  are  done.  They  show  that  the 
impact  of  the  proposed  mechanism  on  the  system 
performance  remains  acceptable,  but  more  extensive 
measurements should be done before giving concrete results. 
The tests carried out with the rollback manager presented in 
this  paper  were  done  by  manually  substituting  the  RTI 
method calls, to the metaobject methods. This procedure was 
used for the validation of the proposed mechanism. With the 
use of a reflective language, the method deviations can be 
done in a transparent way. Such a language allows to define 
and transparently manage reflective objects. All the method 
invocations to the base objects are transparently deviated to 
their  respective  metalevel  objects.  There  are  several 
programming  languages  supporting  metaobject  protocols 
(Kiczales et al. 1993). One of them can be used to implement 
the  rollback  manager  proposed  here.  The  most  used 
languages are:  CLOS, OpenC++ and OpenJava.  As all  the 
RTI code is available in C++, the OpenC++ language would 
be a good choice, as it uses the C++ syntax. In the specific 
case  of  our  proposal,  a  better  choice  would  be  OpenJava 
(Tatsubori 1997). In OpenJava, all the reflective objects are 
defined through the OpenJava MOP (MetaObject Protocol). 
The OpenJava code is preprocessed to generate standard Java 
code. However, OpenJava is not yet mature (current version 
is 1.0) and does not support some characteristics essential to 
the development  of  distributed simulations using the HLA 
architecture. As OpenJava, there are other proposals for Java 
reflective implementations,  like MetaXa (Golm 1998),  that 
could be incorporated to this work. 
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