
REFLECTIVE MANAGEMENT OF OPTIMISTIC FEDERATES IN HLA

Fernando Vardânega, Carlos Maziero
Programa de PósGraduação em Informática Aplicada

Pontificia Universidade Católica do Paraná
80.215901 Curitiba Brazil

Email: {vardanega,maziero}@ppgia.pucpr.br

KEYWORDS
Distributed Simulation, HLA, Time Management,
Computational Reflection

ABSTRACT

 The recent studies in the distributed simulation area are
focused in the High Level Architecture, defined by the DoD/
USA, which proposes a standard environment to develop and
run distributed simulations. The HLA components are
designed to ensure a high level of interoperability among
simulations and, also, to allow maximum component
reusability. This paper proposes a new mechanism to help
optimist federates perform rollback procedures when needed.
This mechanism uses computational reflection techniques to
create a rollback manager metaobject that extends the low-
level services provided by HLA.

1 INTRODUCTION

 In the last years, several distributed simulation systems
have been built, allowing the simulation of complex systems
like war scenarios, traffic systems, and others. The research
activities in distributed simulation can be classed in two main
areas. The first one, called PADS (Parallel and Distributed
Simulation), has its emphasis on how to achieve high
performance in distributed simulations while insuring all the
causality relations between events. The second area, called
DIS (Distributed Interactive Simulation), looks for the
development of highly interactive simulation environments,
allowing remote users to interact in realtime. Both research
activities succeeded to achieve important goals in their areas.
However, several problems remained to be solved, mainly
related to the performance aspects, efficient network usage,
reusability of the simulation code, and interoperability in
heterogeneous computing environments. The US DoD High
Level Architecture initiative (DMSO 1997) intends to define
and develop a standard software environment in which
heterogeneous simulation entities can interact using standard
interfaces (see section 3). However, as shown hereafter,
some HLA services are very lowlevel and hard to use when
building simulation models that use peculiar time
synchronization schemes.

2 PARALLEL/DISTRIBUTED SIMULATION

 The simulation model considered in PADS is roughly
composed by an event set, generated in the execution of the
processes modeling the system behavior, and variables that
represent its state (Ferscha and Tripathi 1994). The events

are scheduled to occur at a given time in the simulation time,
and are put in an event list ordered by their timestamps
(lower timestamps first). The time reference used in the
simulation is generally not related to the real physical time,
but serves only as a common virtual time reference for all
processes that model the system being simulated.
 The simulation execution is controlled by a scheduler
mechanism, which continuously takes the first event in the
event list, advances the simulation time to the event's
timestamp and executes it. The sequential structure of the
scheduler mechanism insures that the causality constraints
between events are respected, because all events are
processed in their chronological order. The main problem in
PADS is how to build efficient scheduling algorithms to be
run in a distributed environment, allowing event processing
to be done in parallel, and insuring all their causality
constraints. Two main approaches were proposed to solve
this problem: the pessimistic (conservative) approach and the
optimistic approach.
 The basis of the pessimistic synchronization strategy
(Chandy and Misra 1979) is to respect the causality
constraints local to each process. Considering that processes
exchange events through timestamped messages, one should
ensure that all local events older than events received from
other processes will be processed before them. This implies
on blocking the processing of local events until the causal
conditions between them and events received from other
processes can be verified (Misra 1986).
 In the optimistic strategy, local and received events can be
processed without worrying about local causality constraints.
By this, process blocking is avoided, as all available events
can be processed. If a message containing an old event
arrives at a process, it will be needed to undo the local
simulation back to the timestamp of the old event, and then
redo the local simulation considering it. Using this strategy,
the events that do not violate causality are confirmed, and the
others should be canceled using a rollback mechanism
(Jefferson 1985) (Jefferson and Sowizral 1985).

3 HIGH LEVEL ARCHITECTURE

 In 1995, the US Department of Defense started to define
and build a standard architecture for the modeling and
simulation of complex systems. It is a highlevel, object-
oriented software architecture, designed to ease the
interoperability among different models and to allow
component reuse. This architecture, known as HLA High
Level Architecture, constitutes a common technical
framework for modeling and execution of distributed
simulations. Its main components are the Object Model
Templates , the HLA Compliance Rules, and the Runtime
Infrastructure (DMSO 1997).

 Each HLA simulation is defined by a federation, in which
a group of federates interact exchanging data and events. The
definition of exchanged data and events is done using the
Object Model Templates - OMT, which allows describing
the objects that constitute the federation, their attributes and
relationships. Each federation should define a Federation
Object Model - FOM. This object model describes all the
shared information (objects, attributes, associations, and
interactions) used in the federation. Beyond FOM, there is
also another object model, called Simulation Object Model -
SOM, which describes objects, attributes, and interactions in
a given simulation that can be used externally in a federation.
 The compliance rules define ten basic rules that should be
respected by a simulation to it be considered as according the
HLA specifications. These rules define the responsibility and
relationships among the federation components, including
the federation itself, its federates, and the RTI.
 The federates interact using the RunTime Infrastructure -
RTI, which can be seen as a distributed generic operating
system that provides communication and coordination to the
federates. All the communication in the federation should be
done through the RTI; using this, the federates can be located
in any computer connected to the network. The interaction
between a federate and the RTI uses methods calls from two
different classes: RTIAmbassador and FederateAmbassador.
The RTIAmbassador class contains all methods offered by
the RTI to the federates. Its implementation is done by the
RTI and is not accessible to the simulation programmer. On
the other hand, the FederateAmbassador class is an abstract
class, implemented by the simulation programmer, that
identifies all methods that each federate should provide to the
RTI for callback operations on the federates.
 The services provided by the HLA to federates are classed
in six categories (DMSO 1997). The focus of this paper is on
time management serices. The services that are provided by
this category aims to coordinate the logical time advance and
its relationships with the physical time.

4 TIME MANAGEMENT IN HLA

 Each can use a different time policy, i.e. can have a
specific behavior with respect to the federation logical time.
A federate is using a timeregulating policy if it can interfere
in the time evolution of other federates. These federates
control the time advance of federates using a timeconstrained
policy, by sending them messages associated to dates in the
federation time. Thus, a federate can be regulating,
constrained, regulating and constrained, or not regulating nor
constrained. Initially all federates are neither regulating nor
constrained; the shift for other time policy should be done by
calling RTI methods. In a given federation, it is possible to
have federates using any of these time policies. The time
management inside HLA is made up by two components that
should be presented in more detail: message ordering and
logical time advance.
 Much of the time management is done by the correct
ordering of messages coming from the federates and stored
in the RTI. The messages are queued according the existence
of timestamps (TSO Timestamp Ordered messages) or not
(RO Receive Ordered messages), and according the time
policies used by the sender and the receiver. Received RO
messages are simply put in the FIFO input queue of the

receiving federate, and are immediately available to the
federate. On the other hand, received TSO messages are
timestamped with their sending times, and are put in the
timeordered queue of the receiving federate, and delivered to
the federate in a nondecreasing timestamp order. A TSO
message is delivered to the federate only when the RTI can
insure that no more messages having a smaller timestamp
will be received by that federate.
 The logical time advance in the federates is done
explicitly, that is, the federate requests the RTI to advance its
logical time and then waits for the confirmation of that
request. This procedure is needed to insure that the federate
will not receive any TSO message with a timestamp smaller
than its local logical time. This condition can be guaranteed
by the TSO message delivering mechanism of the RTI. Thus,
the federate logical time only can advance when authorized
by the RTI.
 Due to the large diversity of simulations, the requirements
in time management can vary largely from a simulation to
another. The three most common approaches for time
management in HLA are time stepped, event driven
(pessimistic) and optimistic (Fujimoto 1998). In the case of
the pessimistic approach, the events should be processed
according to the order of their timestamps, thus the logical
time advance is bound to the events timestamps. This
approach corresponds to the eventdriven mechanism in HLA.
In the optimistic approach, the events can be processed out of
timestamp order. The RTI offers services for message
delivering without considering timestamps of TSO messages,
and basic rollback mechanisms. However, the rollback
mechanisms provided by the RTI cover only the RTI state
recovery (message queues, etc). All the management for state
saving and recovery in the federate itself should be
implemented by the simulation programmer.
 Our work, presented in this paper, consists in the use of
computational reflection techniques to build a rollback
manager. This metaobject is charged to detect causality
violations and to provide all state saving and rollback
mechanisms needed by the federate, in a transparent way.

5 THE ROLLBACK ACTIONS

 In the optimistic approach, the messages carrying events
are given to the federates without considering their
timestamp order. The flushQueueRequest method asks the
RTI to give all the queued messages to the federate. After
this, the RTI invokes the callback method
timeAdvanceGrant, authorizing the federate's logical time to
progress. If the federate receives an outoforder (older)
message, some procedures should be executed to rollback the
simulation, canceling this message and the other messages
consumed after it. This recovery procedure includes
unrolling the simulation to a execution point before the
wrong message's timestamp, reprocessing events, canceling
scheduled events, and canceling messages erroneously sent
to other federates. The message cancellation is done using
the RTI method Retract, used with the flushQueueRequest
service (figure 1).

Figure 1. Optimistic federate retraction

 If the message to be canceled was already delivered to
another federate, its execution should also be rolled back.
The RTI calls its requestRetraction method, and the federate
should then undo any processing done for events received
improperly. All these actions should be implemented by the
simulation programmer.

6 COMPUTACIONAL REFLECTION

 Computational reflection is a development technique that
allows a system to interact with itself, through a self-
representation. Using this, the system can control its own
behavior, allowing a clear separation between the
functionality provided by the system to end users and the
functions provided to configure and manage the system. This
is done through a set of structures used by the system to
represent its own aspects, both structural and computational
(Maes 1987). According (Maes 1987), a reflexive
architecture computational system is constituted by two
levels: a base level and a meta level. The base level is
responsible for solving problems belonging to an external
domain, normally related to the system's functionality. The
meta level is in charge of the control and management of the
base level. This allows a better modularity, separating the
application code (base level) from the management code
(meta level).

7 A REFLECTIVE ROLLBACK MANAGER

 The mechanism proposed here provides an automatic and
generic way to deal with the requestRetraction callbacks,
freeing the optimistic federates (and the programmer) of this
complex task. Our proposal uses some computational
reflection techniques (Maes 1987) to create a time
management metalevel between the RTI and each federate.
The time management method calls between them are
intercepted (reflected) by the rollback manager, which
implements the rollback management in behalf of the
federate. The figure 2 illustrates the general structure of the
proposed mechanism:

Figure 2. The rollback manager

 Using this approach, the rollback manager takes to itself
the control of the federate's state rollback, including
canceling received or sent messages. The federate will
continue calling the same methods of the RTIAmbassador
class to interact with the RTI and it will receive RTI
callbacks through the same FederateAmbassador class
methods. However, some time management method calls
will be intercepted and addressed to the rollback manager.
Only some time management methods, mostly related to
retraction operations, are intercepted; all the other methods
are passed directly to the RTIAmbassador and
FederateAmbassador implementations. The methods that
should be reflected are those related to time management
operations in optimistic federates, as flushQueueRequest and
timeAdvanceGrant. Using this approach, the federate can
adopt and optimistic behavior without worrying about
possible rollbacks. To the rollback manager be able to
control rollbacks transparently, it should keep periodic
snapshots of the federate's internal state (state checkpoints),
in order to restore some previous state when a rollback
occurs. For doing this, the rollback manager should have
access to the federate's state at any time. However, generally
the manager has no direct access to the federate's internal
state. To overcome this, each federate should implement two
callback methods that give controlled access to its internal
state. As the rollback manager only needs access to the
federate's state to save its current state and to restore a
previous state, it is enough to implement two methods
providing these operations1 : a getState(Sc, tc) method, which
returns the federate's current state in the [Sc, tc] state vector,
and the setState(Sc, tc), which restores the federate's state to
the state saved in the state vector [Sc, tc]. The rollback
manager uses the getState method to maintain a list of
previous states of the federate, and the setState method to
restore a previous state, when a rollback occurs. Using this
approach, the implementation of optimistic federates
becomes easier; its sole responsibility about rollbacks is the
correct implementation of the methods getState and setState
 Using the state saving methods, the rollback manager can
save the federate's state at given times in which all TSO
events sent to the federate are guaranteed. An event is
considered guaranteed if it can be processed without any
cancellation risk in the future, unless its retraction is
explicitly requested. The calls to the flushQueueRequest
method are intercepted by the rollback manager, which
interacts whit the RTI to obtain the TSO messages. This is
done in two phases: initially the rollback manager uses a
pessimistic approach to receive the TSO messages from the
RTI. Through the method nextEventRequest, it requests that
RTI deliver all the messages RO available inside its queue
FIFO and all the messages TSO with time stamps smaller
than the federate's current time. When there are not more
TSO messages that match this requirement, the RTI
authorizes the federate's time advance, through a callback to
the timeAdvanceGrant method. This callback passes a future
time value tf as a parameter, to indicate that the federate's
logical time can be advanced to tf
 At this point, the manager had received all the safe
messages as stated in the pessimistic approach (section 2), so

1 These operations were inspired from Isis System (Birman 1993),
for the replica´s state management in groups of fault tolerant
processes.

Federate RTI

flushQueueRequest

timeAdvanceGrant

Retract

F
E
D
E
R
A
T
E

R
T
I

RTIAmbassador

Rollback Manager

FedAmbassador

RTI can guarantee that all the TSO messages with time
stamps smaller than tf had been delivered. This time tf can be
considered as a checkpoint time, indicating a point in the
simulation time where the state of the federate is safe, with
no rollback risks. Thus, the manager saves the federate's state
at tf as a checkpoint, using the getState call defined above.
After this pessimist phase, the manager calls the
flushQueueRequest method on the RTI. At this point, the 2
The retraction of events is used inside of some discrete event
simulations to model behaviors of interruptions and
preemption, and that owe therefore to be directly requested
by the federate.
 RTI will deliver all other TSO messages sent to the
federate, without worrying about their timestamps. These
messages are considered unsafe and can suffer rollback,
since the RTI doesn't guarantee that messages with smaller
timestamps won't be sent to that federate in the future. If a
rollback occurs, the rollback manager has access to all the
needed information to undo the processing improperly done,
to cancel scheduled events and to restore the last safe state of
the federate.

7.1 The Rollback Procedure

 If the federate receives a message older than its current
logical time tc , the federate's state should be rolled back to a
previous safe state, in order to guarantee the causality
constraints. The rollback manager can detect the need of a
rollback operation, because it receives all the messages
addressed to the optimistic federate. In HLA, there are four
major event types that can change objects and their attributes.
These events should be managed separately by the rollback
manager, to allow it to maintain the whole control on all
modifications performed in the federate. These events will be
described in the next items of this text; at this point we can
consider all the received events in a generic way. When
receiving a TSO message the manager will compare its
timestamp t m with the current logical time tc (the rollback
manager is at the same simulation time as the federate it
manages). If t m < t c a causality violation is detected, and the
manager should restore the federate's state to a previous safe
state [Ss , ts] with ts < tm . The rollback manager should also
keep track of all messages sent by the federate during ts < t <
tc , i.e. after the [Ss , ts] checkpoint, to be able to cancel them.
Therefore, the manager can invoke the Retract method on the
RTI to cancel messages sent to other federates. For doing
this, the manager should keep track of all the message
handles (EventRetractionHandles) for the messages sent
during the time interval [ts ; tc]. In the same way, the
manager can receive cancellation requests for messages
improperly sent by other federates. The RTI will forward to
the receiver the cancellation requests through the
requestRetraction callback. Normally it is up to the federate
to implement the needed procedures to deal with these
cancellation messages. In our proposal, the rollback manager
will take in charge this task.

7.2 The rollback Manager Operation

 In our schema, the messages received are passed to the
rollback manager and later forwarded to the optimistic
federate. The messages received with attributes (Attribute

Handle Value Pair Set) or parameters (Parameter Handle
Value Pair Set) can be two: ReflectAttributeValues (RAV)
and ReceiveInteraction (RI). In this case, before forwarding
the messages to the federate, the rollback manager should
save the old attribute values and the federate state to allow a
possible rollback.
 This mechanism can be presented through a time diagram
with all the interactions between the entities (federate,
manager and RTI), as shown in the figure 3. This figure
shows the interactions during the normal execution of an
optimistic federate. When the manager detects a message
older than the current time (tm < tc), it interacts with the
federate and the RTI to execute the rollback. The RTI
normally calls the requestRetraction method on the federate
when a message already delivered to it should be canceled.
The event handler EventRetractionHandle for that message is
passed with the request, which is intercepted by the manager.
Using this handler, the rollback manager can recover the old
values for the attributes or parameters. The old values were
passed to the federate through the methods
ReflectAttributeValues and ReceiveInteraction.

Figure 3. Time diagram for the interactions

 Therefore, the federate doesn't need to worry about the
cancellation of this event. If an improper processing has
resulted in sending some messages to other federates, the
manager will request their cancellation through the RTI
method Retract. The rollback manager keeps track of all
messages sent and their handles.

8 CONCLUSION

 The use of computational reflection techniques in the
presented work showed to be useful, to simplify building
optimistic federates. All the aspects related to rollback
operations can be taken in charge by the rollback manager in
behalf of the federate. This approach helps hiding the
complexity of the optimistic approach from the simulation
model programmer.
 The manager is capable to identify the need for a rollback,
as well as to take all the proper actions to ensure that the

flushQueueRequest
nextEventRequest

RAV , RI

timeAdvanceGrant

flushQueueRequest

getState

RAV , RI

RAV , RI
RAV , RI

timeAdvanceGrant
timeAdvanceGrant

Federado
Rollback
Manager

RTI

t t t

federate returns to a safe state before the causality violation.
It also takes for itself the responsibility of canceling
messages improperly sent to other federates. The rollback
manager will accomplish tasks that are common to every
optimistic federate, and does not depend on a specific
federate behavior. The federate code becomes simpler,
because the whole control and management of the rollback
are under the manager's responsibility.
 All the optimistic federate should have is the correct
implementation of the getState and setState operations.
 To validate this proposal, a simple federation was
developed, involving several optimistic federates. In this
work we are using RTI version 1.3 for C++. A Java binding
package is also being used for the development of Java
federates. Our development platform is a Solaris 2.6 Sun
workstation with the Java Development Kit 1.1.6. The
prototype federation is currently being tested, and some
preliminary measurements are done. They show that the
impact of the proposed mechanism on the system
performance remains acceptable, but more extensive
measurements should be done before giving concrete results.
The tests carried out with the rollback manager presented in
this paper were done by manually substituting the RTI
method calls, to the metaobject methods. This procedure was
used for the validation of the proposed mechanism. With the
use of a reflective language, the method deviations can be
done in a transparent way. Such a language allows to define
and transparently manage reflective objects. All the method
invocations to the base objects are transparently deviated to
their respective metalevel objects. There are several
programming languages supporting metaobject protocols
(Kiczales et al. 1993). One of them can be used to implement
the rollback manager proposed here. The most used
languages are: CLOS, OpenC++ and OpenJava. As all the
RTI code is available in C++, the OpenC++ language would
be a good choice, as it uses the C++ syntax. In the specific
case of our proposal, a better choice would be OpenJava
(Tatsubori 1997). In OpenJava, all the reflective objects are
defined through the OpenJava MOP (MetaObject Protocol).
The OpenJava code is preprocessed to generate standard Java
code. However, OpenJava is not yet mature (current version
is 1.0) and does not support some characteristics essential to
the development of distributed simulations using the HLA
architecture. As OpenJava, there are other proposals for Java
reflective implementations, like MetaXa (Golm 1998), that
could be incorporated to this work.

REFERENCES
Defense Modeling and Simulation Office (DMSO) US DoD,
HLA Overview, 1997. http://www.dmso.mil/dmso/docslib/.

Ferscha, A. and Tripathi, S.K., “Parallel and distributed
simulation of discrete event systems”. Technical report,
University of Maryland, August 1994.

Chandy, K. and Misra, J., “Distributed simulation: a case
study in design and verification of distributed programs”.
IEEE Transactions on Software Engineering, 5(5):440-452,
September 1979.

Misra, J., “Distributed discreteevent simulation”. ACM
Computing Surveys, 18(4):39-65, March 1986.

Jefferson, D., “Virtual time”. ACM Transactions on
Programming Languages and Systems, 7(3):404-425, July
1985.

Sowizral, H. and Jefferson, D., “Fast concurrent simulation
using the time warp mechanism”. In Distributed Simulation,
SCS, Simulation Councils, pages 63-69, La Jolla, California,
1985.

Fujimoto, R., “Time management in the high level
architecture”. SCS Simulation Magazine, December 1998.

Maes, P., “Concepts and experiments in computational
reflection”. In Proceedings of the ACM Conference on
ObjectOriented Programming Systems, Languages and
Applications, pages 147-156, October 1987.

Birman, K., “The process group approach to reliable
distributed computing”. Communications of the ACM,
December 1993.

Kiczales, G. ,Ashley, M., L. Rodriguez, Vahdat, A., and
Bobrow, D., “Metaobject protocols: Why we want them and
what else they can do. Object Oriented Programming: The
CLOS Perspective”, MIT Press, 1993.

Tatsubori, M., “OpenJava Tutorial”. Tsukuba
University,http://www.softlab.is.tsukuba.ac.jp/~mich/openja
va, Japan, 1997

Golm, M., “Metaxa and the future of reflection”. In
OOPSLA'98 Workshop on Reflective Programming in C++
and Java, Vancouver, Canada, October 1998.

