
SUPPORTINGDISTRIBUTED OBJECT-ORIENTED

SIMULATIONS IN AN OPEN PLATFORM

Carlos A. Maziero
Computer Science Dept.

Catholic University of Paraná
80.215-901 – Curitiba – Brazil
maziero@ppgia.pucpr.br

Richard D. Ribeiro
Computer Science Dept.

CEFET-PR
80.230-901 – Curitiba – Brazil

richard@dainf.cefetpr.br

Keywords

Discrete simulation, object-oriented models, distributed
simulation.

Abstract

This work aims to define the structure of a distributed
discrete-event simulation runtime support. To simplify
the construction of simulation models, we chose to use
object-oriented languages, thus allowing hierarchical con-
struction of the models, and code reuse. Instead of cre-
ating a model description language specific to this simu-
lation support, we used well-known object-oriented simu-
lation libraries, giving us a more generic and portable en-
vironment. The problems arising from the use of object-
oriented programming models over a heterogeneous dis-
tributed computing environment are solved by the use of
an open platform for object communication, according to
the CORBA standards.

1 Introduction

The use of computer simulation techniques can be
particularly interesting in the case of complex sys-
tems or systems having a large number of entities.
Within that sort of systems the use of an analyti-
cal approach has shown to be difficult (Chandy and
Misra, 1981; Righter and Walrand, 1989). How-
ever, the simulation of complex systems can repre-
sent a difficult task, in terms of computational effort
(Misra, 1986).

In general, the use of parallel processing can sig-
nificantly reduce the execution time of large simula-
tions, because the models involved normally present
a fair amount of potential parallelism,i.e. actions
that can be done in an almost independent man-
ner. The main problem in building a parallel simula-
tion is to provide efficient solutions that respect the
causality relations present in the simulation model,

thus ensuring the validity of the simulation results.
Some synchronization mechanisms should be imple-
mented to ensure that causality will not be violated
(Misra, 1986; Righter and Walrand, 1989; Fujimoto,
1990).

The construction of simulation models of complex
systems represents another problem to be solved.
The object-oriented programming approach can be
very useful in the construction of such models, as
it allows a more intuitive translation from the sys-
tem entities and their relationships into a computa-
tional model. The object orientation paradigm has its
own origins in the simulation area, by means of the
simulation languageSimula, which first introduced
the concepts of class, object, attribute, and method
(Birtwistle et al., 1973).

This work aims to define the structure of a dis-
tributed discrete-event simulation runtime support.
To simplify the construction of simulation mod-
els, we chose to use object-oriented languages, thus
allowing hierarchical construction of the models,
and code reuse. Instead of creating a model de-
scription language specific to this simulation sup-
port, we used well-known object-oriented simula-
tion libraries, giving us a more generic and portable
environment. The problems arising from the use
of object-oriented programming model over a het-
erogeneous distributed computing environment are
solved using an open platform for object communi-
cation, according to the CORBA standards (OMG,
1995).

This article is organized as follows: section 2
presents the main concepts and techniques used in
sequential discrete-event simulation, the problems
involved in running such simulations in a distributed
execution environment, and their solutions; section 3
introduces the use of object orientation to build sim-
ulation models and shortly presents the CORBA ar-
chitecture; finally, section 4 presents the definition
of an open platform to run distributed discrete-event
simulations of object-oriented models.



2 Discrete-event simulation

In a simulation, the time values considered in the
model can evolve at a different rate from the real
(physical) time. This abstract notion of time is usu-
ally calledsimulation time, or virtual time. Its in-
dependence from the real time allows to execute the
simulation at rates compatible with the analysis to be
done on the model being simulated.

The mechanisms that coordinate the simulation
time evolution should ensure two basic principles:
causality, by which the future of a system cannot
change its past, anddeterminism, by which the fu-
ture states of a system can be determined from its
present an past states.

In discrete-event simulations, the order in which
events are processed should respect existing causal-
ity constraints, to ensure that each event will happen
only after the events it depends on. To allow this,
sequential simulation mechanisms use a scheduler,
that can be viewed as a queue in which events are or-
dered by increasing execution time. The first event in
the scheduler is the next one to be processed, and its
execution time corresponds to the present in the sim-
ulation time. The processing of this event can gener-
ate new events in the future, that are inserted in the
scheduler queue (maintaining the time order). It can
also cancel events already present in the scheduler
queue. This means that the events in the scheduler
queue are potential events, as they can be modified
or canceled by the execution of the first event.

2.1 Distributed simulation

The distributed execution of a discrete-event sim-
ulation over a set of processors can increase the
overall speed of the simulation, but the simulation
mechanisms should be capable of efficiently explore
the potential parallelism present in the simulation
model.

The main problem in the distributed execution of
a simulation is the compromise between the maxi-
mal use of the parallelism present in the model and
the respect to the causal constraints. Several works
have been done to propose solutions to this problem
(Chandy and Misra, 1979; Chandy and Misra, 1981;
Misra, 1986; Righter and Walrand, 1989; Fujimoto,
1990).

To present the synchronization methods used in
distributed simulations, we can consider a simula-
tion model based on the process/message paradigm.
The models are then composed of a static set of pro-
cesses that communicate by messages sent over re-
liable FIFO channels (figure 1). With this model
structure, each process can be considered as an al-
most independent sequential simulator, responsible

for the simulation of an entity in the model, and us-
ing messages to interact with the other processes,
sending and receiving events.p2 p4p5p3p1

[md, 3]

[mc, 4] [mb, 7]

[ma, 1]

Figure 1: Simulation Model

To assure the simulation correctness, all processes
in the model should consider the same logical time
reference (i.e. a unique global simulation clock).
However, the use of a global clock leads to a com-
pletely synchronous simulation, ignoring the po-
tential parallelism present in the model. To effi-
ciently use this parallelism, an asynchronous ap-
proach should be employed to drive the simulation
execution.

To allow an asynchronous evolution of the simu-
lation, each processpi should manage a local copy
of the global simulation clock, which is calledlo-
cal clockor local time(tli). As processes can have
different local clocks, some synchronization mech-
anisms should be defined to assure the simulation
correctness, i.e. the causality principle (Righter and
Walrand, 1989).

Chandy and Misra (Chandy and Misra, 1981)
showed that, if each process locally respects the
causality principle and the channels are FIFO, then
causality will be respected by the whole simulation.
To preserve local causality, each process should treat
its local events (internal events and events received
from another processes) respecting their increasing
execution dates. To allow this control, every process
should timestamp all messages it sends, using its lo-
cal simulation time.

Using this schema, each process should consider
the messages it receives in their timestamp order.
But normally a process has no means to know the
timestamps of the messages it will receive in the fu-
ture, and then constructing such an order for the fu-
ture local events can be impossible.

Two classes of solutions were proposed to solve
this problem (Fujimoto, 1990):� Pessimistic (or conservative) approach: We

should assure that all local events will be treated
in the correct order, thus respecting the causal-
ity principle all the time. If a process can-
not decide about the next event to execute, it



is suspended until this decision becomes possi-
ble. As processes can be suspended to wait for
events from other processes, additional mecha-
nisms should be used to avoid the occurrence of
deadlocks, or to solve them.� Optimistic approach: The process take the (op-
timistic) assumption that it will receive no more
events from other processes, and then it is able
to decide about the next local event to execute.
If the process receives a message later, with a
timestamp smaller than its local clock, a local
causality violation is detected. The local sim-
ulation should then be backtracked to the date
of the received event and be re-executed con-
sidering the new event. Some mechanisms are
needed to save and restore past states and to
cancel messages sent incorrectly.

The pessimistic approach needs mechanisms to
deal with deadlocks. A classical solution to avoid
deadlocks was proposed in (Chandy and Misra,
1979). It consists in usingnull messages to avoid
deadlock situations. Thenull messages have no
meaning to the simulation model itself and carry
only their own timestamps. A process uses null mes-
sages to inform to other processes “forecasts” about
the next events it can send to them. Thus, a pro-
cesspi at a logical timetli uses a null messagefnull; tli+�g to inform other processes that the next
events it can send will be dated at leasttli + �. This
schema works based on the assumption that channels
are FIFO and processes act as sequential simulators.
The value of the forecast�, also calledlookahead, is
normally defined by the process using its local data,
as the logical time needed to treat an incoming event,
the next event date in its scheduler, etc.

Each time a process receives a null message, it can
verify if some local event can be treated, i.e. if the
next local event can be defined. Also, the process
can re-evaluate its own lookahead and inform other
processes if it has changed.

3 Object-Oriented Simulations

The use of object-oriented programming in the con-
struction of discrete-event simulations can be con-
sidered simple and intuitive. Using this approach,
real entities are modeled as objects created from
classes that define their characteristics and behavior.
Interactions between these entities can be modeled
as methods invocations between the corresponding
objects.

As in real world situations there are active enti-
ties (like robots, processors, persons, etc) and pas-
sive ones (like buffers, network packets, etc), a sim-

ulation model can include active and passive objects.
The possibility to have more than one active object
in a simulation leads to the need of concurrency sup-
port in the simulation environment, using mecha-
nisms like threads, semaphores and so on. The active
objects in a sequential object-oriented simulation are
under the control of a scheduler, to ensure all the
causality constraints.

3.1 Distributed object-oriented simula-
tion

Besides the basic mechanisms needed to manage
discrete-event simulations, the construction of an
object-oriented simulation environment over a het-
erogeneous distributed context implies:� to implicitly map simulation models expressed

as objects and methods to execution models
more appropriate to be executed in a distributed
environment, such as a model based on pro-
cesses and messages;� to distribute objects on the machines in which
the simulation will be run, to balance the work-
load among them and to minimize the commu-
nication needs;� to provide communication support between ob-
jects located in different memory spaces, pre-
serving the method invocation semantics, and,
if possible, hiding the physical separation be-
tween the objects and the differences between
the hardware, operating systems, and languages
involved in the communication.� to synchronize the active objects execution, to
make logical time advance, without violating
the causality constraints.

There are proposals of object-oriented environ-
ments for distributed simulation, some of them based
on proprietary languages, likeMOOSE (Waldorf
and Bagrodia, 1994),SIM++ (Lomow and Baezner,
1991), and others based on libraries on a known lan-
guage, likeCOMPOSE(Martin and Bagrodia, 1995)
andPROSIT(Mallet and Mussi, 1994). These envi-
ronments do not consider the heterogeneity aspects
of the computing platform, or take them into account
using proprietary solutions.

The work presented in this paper aims to de-
fine an object-oriented discrete-event simulation en-
vironment on top of an open distributed platform.
To achieve this, we adopted a distributed objects
CORBA infrastructure as the basis layer of our sim-
ulation environment.



3.2 The CORBA Architecture

TheCommon Object Request Broker Architectureis
an infrastructure for distributed object programming
proposed by theObject Management GroupCon-
sortium (OMG, 1995). It provides interoperability
between object-oriented applications independent of
machine hardware, communication protocols, oper-
ating systems and even object languages. The archi-
tecture is built on top of a nucleus called ORB –Ob-
ject Request Broker, which is responsible for all the
interactions between objects. The other services pro-
vided by the CORBA framework are implemented as
CORBA objects, which interact and can be accessed
using the ORB. The figure 2 presents a simplified
view of this architecture.

To be able to communicate, objects should have
their interfaces (public methods and attributes) de-
fined and published using an interface definition lan-
guage (the CORBA IDL). The compilation of an
IDL interface definition file generates the communi-
cation stubs needed to access objects that implement
such an interface.

The IDL interface definitions can also be con-
verted to a binary inter-operable format, and stored
in an interface repository, where they can be ac-
cessed at any time. Using the DII -Dynamic Invo-
cation Interface, objects that have no access to the
static communication stubs of a given interface can
get access to its binary description, discover its struc-
ture, and dynamically build method invocations on
objects which implement that interface.

On the reception of a method invocation request
for a given object, the ORB locates the corre-
sponding implementation code and transfers the call
parameters to it, using the BOA –Basic Object
Adapter. When the requested method execution is
finished, the return values and any exceptions are
returned to the caller object. For both objects the
method call is accomplished transparently; the ORB
is in charge of locating the target object, coding the
parameters in an architecture-neutral format, mar-
shaling them, and doing the inverse work on the tar-
get side.

4 The proposed simulation envi-
ronment

In this section we describe the architecture of
the system we proposed for supporting distributed
object-oriented discrete-event simulations. For the
execution support, we are considering a set of com-
puting nodes connected by a local network. The net-
work provides the only communication support be-
tween the computers, as there is no shared memory

space. All the components of this system are as-
sumed to be reliable, thus we do not consider fault
tolerance aspects in this work. On top of this basic
structure, a CORBA platform gives the communi-
cation facilities needed to distributed object interac-
tions.

4.1 System Architecture

We have a simulation model, composed by a set of
simulation objects, to be executed on a group of
computing nodes. Each node should then receive
and execute a subset of the simulation model ob-
jects. To optimize the simulation time management,
all the objects situated at the same node will be un-
der the control of the scheduler. Thus, each comput-
ing node will contain a sub-simulator, responsible
for the execution of the local set of objects. Sub-
simulators will interact to exchange synchronization
information and to transfer method invocations be-
tween the model objects. Interactions between sub-
simulators will be done using the services offered
by the CORBA platform. The figure 3 presents this
structure.

Each sub-simulator executes a sequential simu-
lation, considering its own objects and the events
(method calls) coming from other sub-simulators.
These external events should be considered correctly
to avoid causality problems. As we will show later
in this text, respecting some conditions each sub-
simulator can implement its local sequential simu-
lation using any simulation library or language.

Normally each sub-simulator is implemented as
a unique process. This approach aims to minimize
context switches and to allow a better integration
with the sequential simulation libraries used. As
there is only one simulation clock for all the objects
in a sub-simulator, these objects can interact not only
using method calls but also using shared objects,
with no risk to the causality constraints. Interactions
between remote objects remain, however, restricted
to method invocations, due to the asynchronous exe-
cution of the sub-simulators.

Each sub-simulator has under its control the lo-
cal model objects and some additional objects for
the management of both the distributed synchroniza-
tion and events exchanges. These management ob-
jects should be considered (scheduled) in the same
way the simulation objects are, to simplify the sub-
simulator internal structure and to maintain its porta-
bility. However, this assumption should not sacrifice
the simulation performance.

An object-oriented sequential simulation library
serves as the basis for the construction of each sub-
simulator, offering the basic mechanisms needed for
the management of the local simulation. The man-



Dynamic
Invocation
Interface

ORB
interfacestubs

IDL
static

skeleton
dynamic
skeleton

Basic Object Adapter

implementation
Server objectClient object

ORB - Object Request Broker

Same interface for all ORB implementations
Server object specific interfaces
Object adapter interface

Figure 2: The CORBA architecture

. . .

platform

. . .

local network

hardware

model objects

ORB

machine 1 machine 2 machine N

simulator 2simulator 1 simulator Nsub-simulators

CORBA

Figure 3: System architecture

agement objects are dealt with the model objects;
therefore they should use only common services of-
fered by the simulation sacrifice, as inserting or re-
moving events from the scheduler, reading the local
clock, etc. This allows the library to be easily sub-
stituted if needed. In our prototype we are currently
using the C++ simulation libraryC++SIM (Little,
1994).

The sub-simulators interact using the CORBA
platform services. We use relatively few services of
this platform, mainly to provide transparent commu-
nication between remote management objects. Inter-
actions between local objects inside a sub-simulator
can be done without using the ORB, helping to im-
prove the system performance. Therefore, a sub-
simulator should only define its IDL interface con-
cerning the management and event exchange ser-
vices.

In the next sections we present the internal struc-

ture of the sub-simulators and the interactions be-
tween them.

4.2 Sub-simulator architecture

Each sub-simulator is composed of:� Sequential simulation mechanisms, basically
the scheduler and its associated services. These
functionalities are provided by the sequential
simulation library employed.� Local simulation objects, that represent the sub-
set of the model allocated to that machine.� Synchronizer object, which should collect in-
formation about the local simulation (local
clock, scheduled events, lookaheads, etc) and
cooperate with the synchronizer objects situ-
ated on the other sub-simulators in order to im-
plement a global synchronization strategy. This



object should also control the evolution of the
local clock, according to the global synchro-
nization strategy.� Event dispatcher object, which main work is to
send and receive events (method invocations) to
and from remote sub-simulators. It timestamps
all the events sent, notifies the local synchro-
nizer object about sent and received events and
locally schedule the received events to be acti-
vated in their timestamp dates.

Figure 4 shows the internal structure of a sub-
simulator, including the elements described here and
their main interactions.

The sub-simulation kernel comprehends the
scheduler mechanisms provided by the sequential
simulation library. All the local objects, including
the synchronizer and the event dispatcher objects,
have their execution managed by the scheduler. The
sub-simulator IDL interface, that should be defined
to allow it to be accessible using CORBA, is defined
by the external services provided by the synchro-
nizer and event dispatcher objects. We will see in
the following sections these objects and their inter-
faces in greater detail.

4.3 Event dispatcher

Using this framework, we can have two distinct situ-
ations for method invocations. If the communicating
objects are on the same sub-simulator, they are under
the control of the same scheduler, hence they have
the same simulation time reference. In this case the
method call can be done directly, with no external
management.

In the case where the objects are situated in
different sub-simulators, the method invocation re-
quest should be time-stamped and sent to the sub-
simulator where the remote object is located. Upon
the receipt of the method call, the remote sub-
simulator schedules it locally for execution in the
timestamp date, to respect causality constraints.

The activities related to the method invocation
requests transfers between sub-simulators are man-
aged by theevent dispatcherobject. Its main func-
tions are:� send and receive, through the ORB, method in-

vocation requests. These requests can be con-
sidered as tuplesftime, source, target, method,
parametersg;� timestamp all sent requests with the current lo-
cal simulation time;� schedule the received requests in the local
simulation scheduler, considering the request
timestamp;

� notify the synchronizer object about all requests
sent and received, with their respective dates,
origins, and destinations.

Some remarks about the implementation of these
operations should be given. The event dispatcher ob-
ject is in charge of scheduling the received events
in the local scheduler. However, normally the sim-
ulation libraries only allows an object to schedule
its own execution, and not other objects’ executions.
This leads us to the following implementation for the
the event reception service:

method dispatcher.event_receive
(date,source,target,method,params)

begin
// notify the local synchronizer object
synchronizer.notify_reception (date,source);
// schedule itself to tl = date
hold (tl = date);
// execute the method invocation request
call target.method (params);

end

In the code above we observe that the dispatcher
object suspends itself in the scheduler until the event
received can be executed (tl � date). During
this period in which the dispatcher is scheduled to
execute a received event, new method invocation re-
quests can arrive from outside, containing possibly
different (and even smaller) execution dates. These
new events should also be scheduled as soon as
they’re received, to be considered in the local sim-
ulation.

This leads to the necessity of creating an indepen-
dent thread for each received event, to allow the dis-
patcher to receive and schedule several events simul-
taneously. Thus, the operating system, the CORBA
platform and the simulation library used should all
support multi-thread programming. If this condition
is not respected, all incoming events will be treated
one at a time, serially, leading to poor performance
and deadlock risks1.

To simplify the implementation, we are only con-
sidering asynchronous object requests between re-
mote objects, using the CORBAone-way method
invocation semantics. Local method invocations can
use synchronous or asynchronous method invoca-
tions.

4.4 Sub-simulators synchronization

To allow the evolution of the whole simulation, sub-
simulators should interact with each other to main-
tain consistency between their local clocks and to en-
sure causality constraints between events. This can

1In a conservative synchronizer, the incoming events times-
tamps are used to update the local time and the lookaheads, to
allow the execution of the event currently scheduled by the dis-
patcher. If incoming events are not taken into account, the local
sub-simulator can remain blocked forever.



scheduling
events
received

synchronization actions sending reception

synchronizer
sendings and receptions

notifications

local clock

ORB

model objects

remote event
dispatcher

activations
method
remote

local scheduler

evolution control

Figure 4: Sub-simulator internal structure

be achieved by using a synchronization strategy like
those presented on section 2.1.

The objects responsible to manage global syn-
chronization tasks are thesynchronizer objectssit-
uated in each sub-simulator. These objects should
collect local information and interact with each other
to implement a pessimistic or optimistic synchro-
nization strategy, acting on the local schedulers as
needed to ensure the correct evolution of each local
simulation.

Although the functions realized are equivalent,
pessimistic and optimistic synchronizer object im-
plementations are based on very distinct concepts.
We will present each approach separately in the fol-
lowing.

4.4.1 A pessimistic synchronizer

We will present the structure and behavior of a
pessimistic synchronizer implementing the null-
messages deadlock avoidance technique (Chandy
and Misra, 1979; Fujimoto, 1990). Such a pes-
simistic synchronizer should:� Manage channel clocks: each input and output

channel of the sub-simulator has a clock associ-
ated to it. This clock should contain the times-
tamp of the last message sent or received on that
channel. The minimum of all input channels’
clocks is called theinput clock(ti), and indi-
cates the minimum timestamp of the next event
to be received from other sub-simulators.� collect information on the local model objects
to update local lookaheads;� send and receive null-messages, to propagate
local lookaheads and to update channel clocks;� coordinate the local simulation evolution, con-
trolling the scheduler execution in order to

avoid causality violations. Mainly, the local
simulation clock should never be greater than
the local input clock, due to the risk of “jump-
ing over” possible external events without con-
sidering them.

The management of the channel clocks (and con-
sequently of the input clockti) can be implemented
using the information about the sending and recep-
tion of event requests given by the dispatcher object
(section 4.3). As sending and reception notifications
have respectively the forms[date, target]
and[date, source], channel clocks manage-
ment can be done easily.

The lookahead values needed to implement this
synchronization technique can be given by the model
objects to the synchronizer using an appropriate
method call; they should use this method to peri-
odically update their lookaheads. Automatic meth-
ods for lookahead calculation are not in the context
of this work, being presented in (Fujimoto, 1988;
Mehl, 1991). Null -messages sending is done by
comparing the output channel clocks and the local
lookaheads of the next event to be sent on each out-
put channel. All the null-messages received are used
just to update their respective input channel clocks,
being dropped after it.

To coordinate the local scheduler evolution with
the input clock evolution, we make use of a sim-
ple but efficient approach. As the synchronizer is
an active object which execution is controlled by
the scheduler, the synchronizer object asks contin-
uously to be scheduled at the date corresponding to
the current input clock value. Therefore, this object
will “monopolize” the scheduler, only releasing it to
other events when their scheduled dates are older or
equal than the current value of the input clock. This
schema will only allow the execution of events that
presents no risk for the global causality constraints.



Based on these descriptions, we can show the ba-
sic structure of a pessimistic synchronizer object and
its methods:

object synchronizer
begin // main loop

repeat
// synchronize with others
send_null_messages ();
// update input clock ti
ti:= mini(input[i].clock);
// reschedules for next execution
hold (tl = ti);

until end of simulation ;
end

// notify event reception to synchronizer
method notify_reception (date,source)
begin

if input[source].clock > date then
error: causality violation !

else
input[source].clock := date ;

endif
end

// notify event sending to synchronizer
method notify_sending (date,target)
begin

if output[target].clock > date then
error: causality violation !

else
output[target].clock := date;

endif
end

// send null messages
method send_null_messages ()
begin

lookahead := tl + lookahead;
for each target T do

if output[T].clock < lookahead then
output[T].clock := lookahead ;
send fnull,lookaheadg to T;

endif
end

end

// update local lookaheads
method update lookaheads ()
begin

...
end

This strategy makes the coupling between the syn-
chronizer object and the local scheduler completely
transparent, hence the scheduler code does not need
to be modified. Furthermore, this strategy adjusts
itself automatically to the workload present in each
sub-simulator. Thus, if the local scheduler has many
local events to process, the synchronizer scheduling
will be done less frequently, to make local simula-
tion progress faster. On the other hand, if few local
events are scheduled, the synchronizer object will
be activated more often, so any updates in the input
clock (by the arrival of null messages) will be taken
into account quickly.

4.4.2 An optimistic synchronizer

The simulation architecture presented can accept dif-
ferent synchronization strategies, but some technical

difficulties can be found when implementing opti-
mistic strategies, mainly caused by the backtrack-
ing mechanisms. In an optimistic approach (sec-
tion 2.1), when a causality error is detected, the syn-
chronizer should be able to interact with the local
scheduler and model objects to restore their state to
a previous date, and to cancel events incorrectly dis-
patched to other sub-simulators. Let’s examine how
each of these tasks can be accomplished:� Save and restore object states: this task can be

easily done by using state transfer services that
should be implemented by each model object.
A similar approach was used in the Isis system
(Birman and A., 1985) to update states between
process replicas. Following this, each object
should implement two methods:GetStateand
SetState. Both methods can be called by the
synchronizer, the first one to get the current
state of the process and the second one to set
its state to a previous saved state. The synchro-
nizer should then manage a list of past states for
each local model object.� Cancel events sent incorrectly: the synchro-
nizer is notified by the dispatcher object of each
event sent to another sub-simulator. Thus it is
able to manage a list of events sent, to be used
for possible event cancellations. All the local
interactions are canceled restoring the local ob-
jects to their past states.� GVT calculation: theGlobal Virtual Timevalue
represents the minimum time value of all pend-
ing events in the whole simulation. This value
is used for the management of backtracking
information. States and messages older than
the GVT value can be safely discarded to free
memory, because they are no more useful. This
value can be seen as a global stable property,
and can be easily calculated with classical dis-
tributed algorithms (Raynal, 1992).� Backtrack the local scheduler: this task can
present some difficulty, mainly because some
modifications on the scheduler code certainly
will be needed. Depending on the complexity
and code availability of the simulation library,
the construction of such an optimistic synchro-
nizer can become unfeasible.

Thus we can conclude that the implementation of
an optimistic synchronizer can be significantly more
complex than its pessimistic counterpart, and then
can limit the choice of sequential simulation library
used to provide the basic simulation mechanisms
needed locally.



5 Conclusion

This work presented the architecture of a distributed
environment to support object-oriented discrete-
event simulations over heterogeneous platforms.
This structure aims to cover some aspects of sim-
ulation environments, like the support of object-
oriented models, and the execution over a distributed
heterogeneous middleware.

As shown, our proposal allows the integration of
different sequential simulation libraries, notably if
a pessimistic synchronizer is used. In fact, the in-
teraction schema between the synchronizer and the
local scheduler is simple but powerful, as the syn-
chronizer presents itself just as another object to be
scheduled. Allied to the ORB, this feature allows
to integrate different object-oriented simulation li-
braries, languages and platforms.

We presented the implementation of a pessimistic
synchronizer based on the null-messages deadlock
avoidance technique. Nevertheless the structure has
enough flexibility to easily allow other kinds of pes-
simistic synchronizers. It is also possible to define
synchronizer classes specialized in each strategy, as
it is done inMOOSE(Waldorf and Bagrodia, 1994)
andPROSIT(Mallet and Mussi, 1994).

Recently the american Department of Defense
proposed a system architecture to build and integrate
parallel and distributed simulations, called HLA –
High-Level Architecture(DMSO/DoD, 1997). This
architecture defines three aspects of a distributed
simulation: Federation rules, Object Model Tem-
plates, and Run-Time Infrastructure. As it looks
to define relationship between model objects, model
structures and system services interfaces, it consti-
tutes a major change in the way simulations are
built. This year the OMG delivered aRequest
for Informationconcerning the integration between
HLA and CORBA (OMG, 1998). Our proposal dif-
fers from HLA/CORBA in the way that it allows
the integration of existing simulations and libraries.
The HLA/CORBA proposal defines a completely
new environment, paradigm and system interfaces to
build and integrate simulations.

We are currently working on a prototype of
the architecture, using the C++ simulation libraries
C++Sim and andJavaSim (Little, 1994). The
CORBA functionalities are being provided by the
Chorus/COOLenvironment (Chorus, 1996). This
framework will allow us to seamlessly integrate sim-
ulations developed in C++ and Java.

References
Birman, K. P. and A., J. T. (1985). Replication and fault-tolerance

in the Isis system. InACM SIGOPS, volume 10, pages 79–
86.

Birtwistle, G. M., Dahl, O. J., Myhrhaug, B., and Nygaard, K.
(1973).Simula Begin. Chartwell-Bralt Ltd.

Chandy, K. M. and Misra, J. (1979). Distributed simulation:
a case study in design and verification of distributed pro-
grams. IEEE Transactions on Software Engineering, SE-
5(5):440–452.

Chandy, K. M. and Misra, J. (1981). Asynchronous distributed
simulation via a sequence of parallel computations.Com-
munications of the ACM, 24(11):198–206.

Chorus (1996).CHORUS/COOL-ORB r3 - Product Description.
Chorus Systems. CS/TR-95-157.3.

DMSO/DoD (1997). The High Level Architecture.
http://hla.dmso.mil.

Fujimoto, R. M. (1988). Lookahead in parallel discrete event sim-
ulation. InProceedings of the 1988 International Confer-
ence on Parallel Processing, Pennsylvania, pages 34–41.

Fujimoto, R. M. (1990). Parallel discrete event simulation. Com-
munications of the ACM, 33(10):31–53.

Little, M. C. (1994).C++SIM User’s Guide. University of New-
castle Upon Tyne, UK. Public release 1.5, draft version 1.0.

Lomow, G. and Baezner, D. (1991). A tutorial introduction to
object-oriented simulation and Sim++. In Proceedings of
the 1991 Winter Simulation Conference, pages 157–163.

Mallet, L. and Mussi, P. (1994). Object oriented parallel discrete
event simulation: The PROSIT approach. Research report
2232, INRIA. Projet Mistral.

Martin, J. M. and Bagrodia, R. L. (1995). COMPOSE: An
object-oriented environment for parallel discrete-eventsim-
ulations. InProceedings of the 1995 Winter Simulation
Conference.

Mehl, H. (1991). Speed-up of conservative distributed discret
event simulation methods by speculative computing. In
IEEE/ACM/SCS Workshop on parallel and distributed sim-
ulation, Anaheim - California.

Misra, J. (1986). Distributed discrete-event simulation.Comput-
ing Surveys, 18(1):39–65.

OMG (1995).The Common Object Request Broker: Architecture
and Specification. Object Management Group. Revision
2.0.

OMG (1998).OMG Request for Information on Distributed Sim-
ulation. http://www.omg.org.

Raynal, M. (1992). Syncronisation et état global dans les
systèmes répartis. Eyrolles. Collection EDF.

Righter, R. and Walrand, J. C. (1989). Distributed simulation of
discrete event systems.Proceedings of the IEEE, 77(1):99–
113.

Waldorf, J. and Bagrodia, R. L. (1994). A concurrent object ori-
ented language for simulation. InInternational Journal of
Computer Simulation, volume 4(2), pages 235–257.

C. A. Maziero held a PhD. in Distributed Computing from
the IRISA/INRIA - France, in 1994, and a MSc. in In-
dustrial Automation from UFSC - Brazil, in 1990. Cur-
rently he works as associate professor and researcher in
the Pos-Graduation Program on Applied Informatics of
the Catholic University of Paraná State, in Brazil. His
main interest areas are distributed systems, discrete-event
simulations, and object systems.


