SUPPORTINGDISTRIBUTED OBJECTFORIENTED
SIMULATIONS IN AN OPENPLATFORM

Carlos A. Maziero Richard D. Ribeiro
Computer Science Dept. Computer Science Dept.
Catholic University of Parana CEFET-PR
80.215-901 — Curitiba — Brazil 80.230-901 — Curitiba — Brazil

mazi er o@pgi a. pucpr. br ri chard@lai nf. cef etpr. br

Keywor ds thus ensuring the validity of the simulation results.
Some synchronization mechanisms should be imple-

Discrete simulation, object-oriented models, distridutemented to ensure that causality will not be violated

simulation. (Misra, 1986; Righter and Walrand, 1989; Fujimoto,
1990).

The construction of simulation models of complex
systems represents another problem to be solved.
. : . .. The object-oriented programming approach can be
Thls work aims _to deflne the.structure of a dlst.rlbut_e\(;ery useful in the construction of such models, as
discrete-event simulation runtime support. To Slmp|lf}{ allows a more intuitive translation from the sys-
the construction of simulation models, we chose to u%‘m entities and their relationships into a computa-

object-oriented languages, thus allowing hierarchicat Cotional model. The object orientation paradigm has its

Strucuon of the mOd.8|§’ and code reuse. .InStea(_j Of. Bin origins in the simulation area, by means of the
ating a model description language specific to this simdc 1 Ulation languag&imula which first introduced

lation support, we used well-known object-oriented Simlfﬁe concepts of class, object, attribute, and method

lation libraries, giving us a more generic and portable eg\%irtwistle etal., 1973).

vironment. The problems arising from the use of object- _ . . .
oriented programming models over a heterogeneous dis-ThIS work aims to define the structure of a dis-

tributed computing environment are solved by the use g}‘bUted discrete-event simulation runtime support.

an open platform for object communication, according ,['50 simplify the constrqctlon _Of simulation mod-
the CORBA standards. els, we chose to use object-oriented languages, thus

allowing hierarchical construction of the models,

and code reuse. Instead of creating a model de-
1 Introduction scription language specific to this simulation sup-

port, we used well-known object-oriented simula-
The use of computer simulation techniques can Ben libraries, giving us a more generic and portable
particularly interesting in the case of complex sygnvironment. The problems arising from the use
tems or systems having a large number of entitidf. object-oriented programming model over a het-
Within that sort of systems the use of an analyt®rogeneous distributed computing environment are
cal approach has shown to be difficult (Chandy as@!ved using an open platform for object communi-
Misra, 1981; Righter and Walrand, 1989). Howcation, according to the CORBA standards (OMG,
ever, the simulation of complex systems can repr&995).
sent a difficult task, in terms of computational effort This article is organized as follows: section 2
(Misra, 1986). presents the main concepts and techniques used in

In general, the use of parallel processing can sigequential discrete-event simulation, the problems

nificantly reduce the execution time of large simulanvolved in running such simulations in a distributed
tions, because the models involved normally presaemtecution environment, and their solutions; section 3
a fair amount of potential parallelisng. actions introduces the use of object orientation to build sim-
that can be done in an almost independent maration models and shortly presents the CORBA ar-
ner. The main problem in building a parallel simulachitecture; finally, section 4 presents the definition
tion is to provide efficient solutions that respect thef an open platform to run distributed discrete-event
causality relations present in the simulation modealimulations of object-oriented models.

Abstract

2 Discrete-event ssmulation for the simulation of an entity in the model, and us-
ing messages to interact with the other processes,

In a simulation, the time values considered in treending and receiving events.
model can evolve at a different rate from the real
(physical) time. This abstract notion of time is usu-
ally called simulation time or virtual time Its in-
dependence from the real time allows to execute the,
simulation at rates compatible with the analysisto b @
done on the model being simulated.

The mechanisms that coordinate the simulation
time evolution should ensure two basic principles:
causality by which the future of a system cannot
change its past, andeterminism by which the fu-
ture states of a system can be determined from its Figure 1: Simulation Model
present an past states.

In discrete-event simulations, the order in which
events are processed should respect existing causal0 assure the simulation correctness, all processes
ity constraints, to ensure that each event will happBhthe model should consider the same logical time
only after the events it depends on. To allow thi§éference (i.e. a unique global simulation clock).
sequential simulation mechanisms use a schedutd@wever, the use of a global clock leads to a com-
that can be viewed as a queue in which events are Bietely synchronous simulation, ignoring the po-
dered by increasing execution time. The first eventiintial parallelism present in the model. To effi-
the scheduler is the next one to be processed, andightly use this parallelism, an asynchronous ap-
execution time corresponds to the present in the siRfoach should be employed to drive the simulation
ulation time. The processing of this event can gen&xecution.
ate new events in the future, that are inserted in theT© allow an asynchronous evolution of the simu-
scheduler queue (maintaining the time order). It c&#fion, each process; should manage a local copy
also cancel events already present in the schedifiéthe global simulation clock, which is calldd-
gueue. This means that the events in the schedfig} clockor local time(il;). As processes can have

queue are potential events, as they can be modifféiierent local clocks, some synchronization mech-
or canceled by the execution of the first event. ~ a@nisms should be defined to assure the simulation

correctness, i.e. the causality principle (Righter and
o)] Walrand, 1989).
2.1 Distributed simulation Chandy and Misra (Chandy and Misra, 1981)

The distributed execution of a discrete-event sirﬁh owed that, if each process locally respects the

: ! %ausality principle and the channels are FIFO, then
ulation over a set of processors can increase the

overall speed of the simulation, but the simulat causality will be respected by the whole simulation.

mechanisms should be capable of efficiently explorg - oo v o local causality, each process shouid treat
. : P : Y EXDIOIE Jocal events (internal events and events received
the potential parallelism present in the simulati

model %om another processes) respecting their increasing
o . . . xecution dates. To allow this control, every process
The main problem in the distributed execution

. o r) hould timestamp all messages it sends, using its lo-
a simulation is the compromise between the maXla | simulation time
mal use of the parallelism present in the model ang :

th t10 th | fraints. S | Using this schema, each process should consider
€ respect 1o the causal constraints. Severa Wofﬁg messages it receives in their timestamp order.

have been done to propose solutions to this probl@i-"ﬂ.I

[md! 3]

i . t Il h to k th
(Chandy and Misra, 1979; Chandy and Misra, 198 norma’ly a process has no means fo Xnow tne

. S o estamps of the messages it will receive in the fu-
Misra, 1986; Righter and Walrand, 1989; Fuumotqwe, and then constructing such an order for the fu-

1990). L ture local events can be impossible.
To present the synchronization methods used ing, ., jasses of solutions were proposed to solve
distributed simulations, we can consider a simul?ﬁiS problem (Fujimoto, 1990):

tion model based on the process/message paradigm.

The models are then composed of a static set of pro-e Pessimistic (or conservative) approachVe
cesses that communicate by messages sent over re- should assure that all local events will be treated
liable FIFO channels (figure 1). With this model in the correct order, thus respecting the causal-
structure, each process can be considered as an al- ity principle all the time. If a process can-
most independent sequential simulator, responsible not decide about the next event to execute, it

is suspended until this decision becomes posalation model can include active and passive objects.
ble. As processes can be suspended to wait fidre possibility to have more than one active object
events from other processes, additional mechia-a simulation leads to the need of concurrency sup-
nisms should be used to avoid the occurrencepdrt in the simulation environment, using mecha-
deadlocks, or to solve them. nisms like threads, semaphores and so on. The active
objects in a sequential object-oriented simulation are

* Optimistic approachThe process take the (0Pynder the control of a scheduler, to ensure all the
timistic) assumption that it will receive no moreasajity constraints.

events from other processes, and then it is able
to decide about the next local event to execute.
If the process receives a message later, with3al Distributed object-oriented ssimula-
timestamp smaller than its local clock, a local tion
causality violation is detected. The local sim-
ulation should then be backtracked to the daesides the basic mechanisms needed to manage
of the received event and be re-executed cagiiscrete-event simulations, the construction of an
sidering the new event. Some mechanisms #tgject-oriented simulation environment over a het-
needed to save and restore past states ancf@geneous distributed context implies:
cancel messages sent incorrectly.
e to implicitly map simulation models expressed
The pessimistic approach needs mechanisms to as objects and methods to execution models
deal with deadlocks. A classical solution to avoid more appropriate to be executed in a distributed
deadlocks was proposed in (Chandy and Misra, environment, such as a model based on pro-
1979). It consists in usingull messages to avoid cesses and messages;
deadlock situations. Thaull messages have no
meaning to the simulation model itself and carry e to distribute objects on the machines in which
only their own timestamps. A process uses null mes- the simulation will be run, to balance the work-
sages to inform to other processes “forecasts” about load among them and to minimize the commu-
the next events it can send to them. Thus, a pro- nhication needs;
cessp; at a logical timetl/; uses a null message
{null, tl; + 6} to inform other processes that the next ® to provide communication support between ob-
events it can send will be dated at letist+ §. This jects located in different memory spaces, pre-
schema works based on the assumption that channels Serving the method invocation semantics, and,
are FIFO and processes act as sequential simulators. if possible, hiding the physical separation be-
The value of the forecast also calledookaheadis tween the objects and the differences between
normally defined by the process using its local data, the hardware, operating systems, and languages
as the logical time needed to treat an incoming event, involved in the communication.
the next event date in its scheduler, etc.
Each time a process receives a null message, it cat
verify if some local event can be treated, i.e. if the
next local event can be defined. Also, the process

can re-evaluate its own lookahead and inform other _ _ .
processes if it has changed. There are proposals of object-oriented environ-

ments for distributed simulation, some of them based

on proprietary languages, likMIOOSE (Waldorf
3 Obj ect-Oriented Simulations and Bagrodia, 19945IM++ (Lomow and Baezner,

1991), and others based on libraries on a known lan-
The use of object-oriented programming in the coguage, likekCOMPOSHMartin and Bagrodia, 1995)
struction of discrete-event simulations can be coandPROSIT(Mallet and Mussi, 1994). These envi-
sidered simple and intuitive. Using this approachgnments do not consider the heterogeneity aspects
real entities are modeled as objects created frafithe computing platform, or take them into account
classes that define their characteristics and behaviming proprietary solutions.
Interactions between these entities can be modeled’he work presented in this paper aims to de-
as methods invocations between the correspondfirge an object-oriented discrete-event simulation en-
objects. vironment on top of an open distributed platform.

As in real world situations there are active entifo achieve this, we adopted a distributed objects

ties (like robots, processors, persons, etc) and p€ORBA infrastructure as the basis layer of our sim-
sive ones (like buffers, network packets, etc), a simfation environment.

to synchronize the active objects execution, to
make logical time advance, without violating
the causality constraints.

3.2 The CORBA Architecture space. All the components of this system are as-

) __ sumed to be reliable, thus we do not consider fault
The Common Object Request Broker Architectisre (erance aspects in this work. On top of this basic

an infrastructure for distributed object programming.,cture. a CORBA platform gives the communi-
proposed by théDbject Management GroufSon- 410 facilities needed to distributed object interac-
sortium (OMG, 1995). It provides interoperability;g g

between object-oriented applications independent of
machine hardware, communication protocols, oper- _
ating systems and even object languages. The ar¢hil. System Architecture

tecture is built on top of a nucleus called ORBb- We h imulati del db t of
ject Request Brokewhich is responsible for all the Ve have a simuiation model, composed by a Set o

interactions between objects. The other services p%rpulatlon objects, to be executed on a group of

vided by the CORBA framework are implemented acsomputing nodes. Each node should then receive

CORBA objects, which interact and can be access%'ad execute_ a subset .Of the_ S|m_ulat|on model ob-
cts. To optimize the simulation time management,

using the ORB. The figure 2 presents a simplifié) . .
view of this architecture. ;QI the objects situated at the same node will be un-

To be able to communicate, objects should ha\ggr the control of the scheduler. Thus, each comput-

L . . Ing node will contain a sub-simulator, responsible
their interfaces (public methods and attributes) d%—? the execution of the local set of objectz Sub-
fined and published using an interface definition lan: - L

uage (the CORBA IDL). The compilation of ansmulators will interact to exchange synchronization
9 information and to transfer method invocations be-

IDL interface definition file generates the communt- en the model objects. Interactions between sub-

cation stubs needed to access objects that imIOIemséllvrrﬁuIators will be done using the services offered
such an interface. 9

The IDL interface definitions can also be cont-’y the CORBA platform. The figure 3 presents this

. ; structure.
verted to a binary inter-operable format, and storeJ

. . . Each sub-simulator executes a sequential simu-
in an interface repository where they can be ac-_.. o .

: . . lation, considering its own objects and the events
cessed at any time. Using the DIDynamic Invo-

. . method calls) coming from other sub-simulators.
cation Interface objects that have no access to t :
hese external events should be considered correctly

static communication stubs of a given interface ca[m avoid causality problems. As we will show later

getaccess to its binary description, discover its strug-2 : .
. ; . . IN this text, respecting some conditions each sub-
ture, and dynamically build method invocations on

. 7 . simulator can implement its local sequential simu-
objects which implement that interface. : .) o
; . . Ia[tlon using any simulation library or language.
On the reception of a method invocation reques Normally each sub-simulator is implemented as
for a given object, the ORB locates the corre- y P

sponding implementation code and transfers the g finiaue process. This approach aims to minimize

parameters to it, using the BOA Basic Object context switches and to allow a better integration

Adapter When the requested method execution \g’é'th t_he sequent@l 5|mL_1|at|on libraries used._ As
- : ere is only one simulation clock for all the objects
finished, the return values and any exceptions are . . .
; . In"a sub-simulator, these objects can interact not only
returned to the caller object. For both objects the . ; ;
) .) ing method calls but also using shared objects,
method call is accomplished transparently; the O ; . ; A
o . . . with no risk to the causality constraints. Interactions
is in charge of locating the target object, coding trbe . . .
) . etween remote objects remain, however, restricted
parameters in an architecture-neutral format, mar- . .
) ; . 0 method invocations, due to the asynchronous exe-
shaling them, and doing the inverse work on the tar- . :
ot side. cution of the sub-simulators.
g Each sub-simulator has under its control the lo-
cal model objects and some additional objects for
: : . the management of both the distributed synchroniza-
4 The propowd simulation envi tion and events exchanges. These management ob-
ronment jects should be considered (scheduled) in the same
way the simulation objects are, to simplify the sub-
In this section we describe the architecture efmulator internal structure and to maintain its porta-
the system we proposed for supporting distributdaility. However, this assumption should not sacrifice
object-oriented discrete-event simulations. For tilee simulation performance.
execution support, we are considering a set of com-An object-oriented sequential simulation library
puting nodes connected by a local network. The neerves as the basis for the construction of each sub-
work provides the only communication support besimulator, offering the basic mechanisms needed for

tween the computers, as there is no shared memtrg management of the local simulation. The man-

(Client object

)

e

(

_Server object
implementation

Ly

T [T
: static dynamic
Ir?\yggaq}g:n DL | | ORfB skeleton| |skeleton
Interface | |Stubg [Interface Basic Object Adapter
ORB - Object Request Broker

DNNNN\NY Same interface for all ORB implementations
[IITTTT] Server object specific interfaces
I Object adapter interface

Figure 2: The CORBA architecture

model objects—|
— Y v v | M e & 1 == s 1
| | | | | |
sub-simulators— : simulator 1 : : simulator 2 : : simulator N :
L1 A | A \ A
comen | A | 1 Y |
| I | | | |
platform | | | ORB | \
T A \ A \ A
— | Y I | Y I | Y I
| | | | | |
I machine 1 | | I machine 2 | | I machine N |
hardware 1 | 1 1 | 1 1 | 1
| L 777777 J L 777777 J local network L 777777 J

Figure 3: System architecture

agement objects are dealt with the model objectare of the sub-simulators and the interactions be-
therefore they should use only common services afveen them.

fered by the simulation sacrifice, as inserting or re-

moving events from the scheduler, reading the locgly Sub-simulator architecture

clock, etc. This allows the library to be easily sub-

stituted if needed. In our prototype we are currentfyach sub-simulator is composed of:

using the C++ simulation librar€++SIM (Little,
1994).

The sub-simulators interact using the CORBA
platform services. We use relatively few services of
this platform, mainly to provide transparent commu-
nication between remote management objects. Inter#
actions between local objects inside a sub-simulator
can be done without using the ORB, helping to im-
prove the system performance. Therefore, a sub-
simulator should only define its IDL interface con-
cerning the management and event exchange ser-

vices.

In the next sections we present the internal struc-

e Sequential simulation mechanismisasically

the scheduler and its associated services. These
functionalities are provided by the sequential
simulation library employed.

Local simulation objectghat represent the sub-
set of the model allocated to that machine.

e Synchronizer objectwhich should collect in-

formation about the local simulation (local

clock, scheduled events, lookaheads, etc) and
cooperate with the synchronizer objects situ-
ated on the other sub-simulators in order to im-
plement a global synchronization strategy. This

object should also control the evolution of the e notify the synchronizer object about all requests
local clock, according to the global synchro- sent and received, with their respective dates,
nization strategy. origins, and destinations.

e Event dispatcher objecivhich main work isto ~ Some remarks about the implementation of these
send and receive events (method invocations)aperations should be given. The event dispatcher ob-
and from remote sub-simulators. It timestampgect is in charge of scheduling the received events
all the events sent, notifies the local synchrin the local scheduler. However, normally the sim-
nizer object about sent and received events anldtion libraries only allows an object to schedule
locally schedule the received events to be actis own execution, and not other objects’ executions.
vated in their timestamp dates. This leads us to the following implementation for the

. . the event reception service:
Figure 4 shows the internal structure of a sub- P

simulator, including the elements described here angk; hod di spat cher . event _recei ve

their main interactions.) (dat e, source, t arget, net hod, par ans)

The sub-simulation kernel comprehends the™ %] 1o ity the 1ocal synchroni zer obj ect

scheduler mechanisms provided by the sequential synchronizer.notify_reception (date, source);
. /'l schedule itself to tl = date

simulation library. All the local objects, including hold (tl = date);

the synchronizer and the event dispatcher objecgts, // execute the method invocation request
have their execution managed by the scheduler. T r@d“" | target.method (params);

sub-simulator IDL interface, that should be defined

to allow it to be accessible using CORBA, is defined In the code above we observe that the dispatcher
by the external services provided by the synchrobject suspends itself in the scheduler until the event
nizer and event dispatcher objects. We will see imaceived can be executetl(> dat e). During

the following sections these objects and their intethis period in which the dispatcher is scheduled to

faces in greater detail. execute a received event, new method invocation re-
guests can arrive from outside, containing possibly
4.3 Event dispatcher different (and even smaller) execution dates. These

new events should also be scheduled as soon as

Using this framework, we can have two distinct situhey're received, to be considered in the local sim-
ations for method invocations. If the communicatinglation.
objects are on the same sub-simulator, they are undeThis leads to the necessity of creating an indepen-
the control of the same scheduler, hence they hatent thread for each received event, to allow the dis-
the same simulation time reference. In this case thgtcher to receive and schedule several events simul-
method call can be done directly, with no externgneously. Thus, the operating system, the CORBA
management. platform and the simulation library used should all

In the case where the objects are situated dapport multi-thread programming. If this condition
different sub-simulators, the method invocation rgs not respected, all incoming events will be treated
quest should be time-stamped and sent to the sabre at a time, serially, leading to poor performance
simulator where the remote object is located. Upeihd deadlock risks
the receipt of the method call, the remote sub- To simplify the implementation, we are only con-
simulator schedules it locally for execution in theijdering asynchronous object requests between re-
timestamp date, to respect causality constraints. mote objects, using the CORB#ne- way method

The activities related to the method invocatioimvocation semantics. Local method invocations can

requests transfers between sub-simulators are mage synchronous or asynchronous method invoca-
aged by theevent dispatcheobject. Its main func- tions.
tions are:

e send and receive, through the ORB, method i&-4 Sub-simulators synchronization

vocation requests. These requests can be can- . : :
sidered as tupleitime, source, target, method,% allow the evolution of the whole simulation, sub-

) Simulators should interact with each other to main-
parameter$; . : .
tain consistency between their local clocks and to en-
¢ timestamp all sent requests with the current Isure causality constraints between events. This can
cal simulation time;

lIn a conservative synchronizer, the incoming events times-

o schedule the received requests in the lo nps are used to update the local time and the lookaheads, to
allow the execution of the event currently scheduled by tke d

SlimUIation scheduler, considering the requesicher. If incoming events are not taken into account, dball
timestamp; sub-simulator can remain blocked forever.

O O model objects O O O
777777777777777 local scheduler]]
local clock received remote
events method
@ scheduling activations
‘/:volution control
synchronizer | - remote event
4 "~ sendings and receptions dispatcher
A notifications
synchronization actions sending reception
ORB

Figure 4: Sub-simulator internal structure

be achieved by using a synchronization strategy like avoid causality violations. Mainly, the local

those presented on section 2.1. simulation clock should never be greater than
The objects responsible to manage global syn- the local input clock, due to the risk of “jump-
chronization tasks are th&ynchronizer objectsit- ing over” possible external events without con-

uated in each sub-simulator. These objects should sidering them.

collectlocal information and interact with each other

to implement a pessimistic or optimistic synchro- The management of the channel clocks (and con-

nization strategy, acting on the local schedulers gsquently of the input clock)) can be implemented

needed to ensure the correct evolution of each logaling the information about the sending and recep-

simulation. tion of event requests given by the dispatcher object
Although the functions realized are equivalentsection 4.3). As sending and reception notifications

pessimistic and optimistic synchronizer object inhave respectively the formpdate, target]

plementations are based on very distinct concepigid [dat e, sour ce], channel clocks manage-

We will present each approach separately in the fehent can be done easily.

lowing. The lookahead values needed to implement this
synchronization technique can be given by the model
441 A pessmistic synchronizer objects to the synchronizer using an appropriate

. . ethod call; they should use this method to peri-
We will present the structure and behavior of gdically update their lookaheads. Automatic meth-

rpneessssir;wisétisc digﬁgéoknz\zi digggngﬁi:ig utehe(C?gRS)? for lookahead calculation are not in the context
g d this work, being presented in (Fujimoto, 1988;

2{:252?5;61;1Ct?g:i;zgrugrzg?}%’_ 1990). Such a pe%lehl, 1991). Null -messages sending is done by
y ' comparing the output channel clocks and the local

° Manage channel clocks: each input and Outp@pkaheads of the next event to be sent on each out-
channel of the sub-simulator has a clock asso@&ut channel. All the null-messages received are used
ated to it. This clock should contain the timegUst to update their respective input channel clocks,
tamp of the last message sent or received on tR&ing dropped after it.
channel. The minimum of all input channels’ To coordinate the local scheduler evolution with
clocks is called thénput clock(ti), and indi- the input clock evolution, we make use of a sim-
cates the minimum timestamp of the next evepte but efficient approach. As the synchronizer is
to be received from other sub-simulators. an active object which execution is controlled by

)) _ the scheduler, the synchronizer object asks contin-

o collect information on the local model objectg,oysly to be scheduled at the date corresponding to
to update local lookaheads; the current input clock value. Therefore, this object

« send and receive null-messages, to propag}ﬁ’tig “monopolize” the s_cheduler, only releasing it to
local lookaheads and to update channel cIock%t,her events when their scheduled _dates are older_ or

equal than the current value of the input clock. This

e coordinate the local simulation evolution, conschema will only allow the execution of events that
trolling the scheduler execution in order t@resents no risk for the global causality constraints.

Based on these descriptions, we can show the biifficulties can be found when implementing opti-
sic structure of a pessimistic synchronizer object anustic strategies, mainly caused by the backtrack-
its methods: ing mechanisms. In an optimistic approach (sec-
tion 2.1), when a causality error is detected, the syn-
chronizer should be able to interact with the local
scheduler and model objects to restore their state to
a previous date, and to cancel events incorrectly dis-
patched to other sub-simulators. Let's examine how
each of these tasks can be accomplished:

obj ect synchroni zer
begin // main |oop
repeat
/1 synchronize with others
send_nul | _messages ();
/1 update input clock ti
ti:=mnj(input[i].clock);

/1 reschedul es for next execution
hold (tlI =ti);
until end_of sinmulation ;
end

/1l notify event reception to synchronizer
met hod notify_reception (date, source)
begi n
if input[source].clock > date then
error: causality violation!
el se
i nput[source].clock := date ;
endi f
end

/1 notify event sending to synchronizer
met hod notify_sending (date,target)
begi n
if output[target].clock > date then
error: causality violation!
el se
output[target].clock := date;
endi f
end

/1 send null nessages
met hod send_nul | _nmessages ()
begi n
| ookahead : = tl + |ookahead;
for each target T do
if output[T].clock < | ookahead then

e Save and restore object statehis task can be
easily done by using state transfer services that
should be implemented by each model object.
A similar approach was used in the Isis system
(Birman and A., 1985) to update states between
process replicas. Following this, each object
should implement two method$etStateand
SetState Both methods can be called by the
synchronizer, the first one to get the current
state of the process and the second one to set
its state to a previous saved state. The synchro-
nizer should then manage a list of past states for
each local model object.

e Cancel events sent incorrecththe synchro-
nizer is notified by the dispatcher object of each
event sent to another sub-simulator. Thus it is
able to manage a list of events sent, to be used
for possible event cancellations. All the local
interactions are canceled restoring the local ob-

output[T].clock := | ookahead ; . .
send {null, | ookahead} to T; JeCtS to their paSt states.
endi f
ende“d e GVT calculationtheGlobal Virtual Timevalue

represents the minimum time value of all pend-
/1 update |ocal |ookaheads ing events in the whole simulation. This value
net hod updat e_l ookaheads () . .
begi n is used for the management of backtracking
information. States and messages older than
the GVT value can be safely discarded to free
_) memory, because they are no more useful. This

chronizer object and the local scheduler completely gnd can be easily calculated with classical dis-
transparent, hence the scheduler code does not need ipyted algorithms (Raynal, 1992).

to be modified. Furthermore, this strategy adjusts
itself automatically to the workload present in each e Backtrack the local schedulerthis task can
sub-simulator. Thus, if the local scheduler has many present some difficulty, mainly because some
local events to process, the synchronizer scheduling modifications on the scheduler code certainly
will be done less frequently, to make local simula- will be needed. Depending on the complexity
tion progress faster. On the other hand, if few local and code availability of the simulation library,
events are scheduled, the synchronizer object will the construction of such an optimistic synchro-
be activated more often, so any updates in the input nizer can become unfeasible.

clock (by the arrival of null messages) will be taken
into account quickly.

end

Thus we can conclude that the implementation of
an optimistic synchronizer can be significantly more
complex than its pessimistic counterpart, and then
can limit the choice of sequential simulation library
The simulation architecture presented can accept dised to provide the basic simulation mechanisms
ferent synchronization strategies, but some technicaeded locally.

4.4.2 An optimistic synchronizer

5 Conclusion Birtwistle, G. M., Dahl, O. J., Myhrhaug, B., and Nygaard, K.
(1973). Simula Begin Chartwell-Bralt Ltd.

This work presented the architecture of a distributeghandy, K. M. and Misra, J. (1979). Distributed simulation:

environment to support object-oriented discrete- a case study in design and verification of distributed pro-

event simulations over heterogeneous platforms. g;g;‘_’;gffzﬁa”sa"“o”s on Software Engineerirgf-

This structure aims to cover some aspects of simﬁ J K " d'M_ 3. (1981). Asvnch distritiut

ulation environments, like the support of objectz"a"d: K. M. and Misra, J. (1981). Asynchronous distritlute

- . L simulation via a sequence of parallel computatioGeam-
oriented models, and the execution over a distributed munications of the ACM24(11):198-206.

heterogeneous middleware. _ ~ Chorus (1996)CHORUS/COOL-ORB r3 - Product Description
As shown, our proposal allows the integration of Chorus Systems. CS/TR-95-157.3.
diﬁerent eeguential simulati_on libraries, notably .iszo/DoD (1997). The High Level Architecture
a pessimistic synchronizer is used. In fact, the in- nttp:/hla.dmso.mil.
teraction schema between the synchronizer and tigmoto, R. M. (1988). Lookahead in parallel discrete dsim-
local scheduler is simple but powerful, as the syn- ulation. InProceedings qf the 1988 Inte(national Confer-
chronizer presents itself just as another object to be ©€nce on Parallel Processing, Pennsylvarpages 34-41.
scheduled. Allied to the ORB, this feature allowsujiimoto, R. M. (1990). Parallel discrete event simulatigom-
to integrate different object-oriented simulation li- ~ munications of the ACMB3(10):31-53,
; Little, M. C. (1994). C++SIM User’s Guide University of New-
braries, languages and platforms. , ;
We presented the implementation of a pessimistic castle Upon Tyne, UK. Public release 1.5, draft version 1.0.
synchronizer based on the nuII-messages deadlbemow, G. and Baezner, D. (1991). A tutorial introduction to
. . object-oriented simulation and Sim. In Proceedings of
avoidance tec_hmque. Nevertheless the structure has thé 1991 Winter Simulation Conferengages 157_1%3.
e,”o,ugh flexibility t.O easily ?”OW other k,mds of pe_SMaIIet, L. and Mussi, P. (1994). Object oriented parallelcdete
simistic synchronizers. It is also possible to define event simulation: The PROSIT approach. Research report
synchronizer classes specialized in each strategy, as 2232, INRIA. Projet Mistral.
it is done iNMOOSE(Waldorf and Bagrodia, 1994)Martin, J. M. and Bagrodia, R. L. (1995). COMPOSE: An
andPROSIT(Mallet and Mussi, 1994). object-oriented environment for parallel discrete-esami-
Recently the american Department of Defense ulations. InProceedings of the 1995 Winter Simulation
. . . Conference
proposed a system architecture to build and mtegrzit}ehI H. (1991). Speed . ive distributed rdis
. . . . W enl, H. . peea-up or conservative distribute C
perallel and dISt_”bUtEd simulations, called HLA event simulation methods by speculative computing. In
High-Level ArchitecturdDMSO/DoD, 1997). This IEEE/ACM/SCS Workshop on parallel and distributed sim-
architecture defines three aspects of a distributed ulation, Anaheim - California.
simulation: Federation rules, Object Model TemMisra, J. (1986). Distributed discrete-event simulati@amput-
plates, and Run-Time Infrastructure. As it looks ing Surveys18(1):39-65.
to define relationship between model objects, modalG (1995). The Common Object Request Broker: Architecture
structures and system services interfaces, it consti- and Specification Object Management Group. Revision
tutes a major change in the way simulations are
built. This year the OMG delivered Request OMG (1998).OMG Request for Information on Distributed Sim-
’ ulation. http://www.omg.org.
for Informationconcerning the integration betweerg2 L (1922) S 9 _ g, ; obal dans |
i¢_Raynal, . . yncronisation et etat global dans les
]:I;? ;:}221 CHol_lleé()(glgﬂAG;nlfr?eS)wguilfar?ﬁo;ﬁl(l)\?\g systemes réparti€yrolles. Collection EDF.
the intearation of existing sim Iat'gn and librarie Righter, R. and Walrand, J. C. (1989). Distributed simalatbf
integrai Xisting simu - lons ! 1es. discrete event systemBroceedings of the IEEE7(1):99—
The HLA/CORBA proposal defines a completely 113,
new envm_)nment, peradlgr_n and system interfacestQigort, J. and Bagrodia, R. L. (1994). A concurrent objett o
build and integrate simulations. ented language for simulation. International Journal of
We are Currenﬂy Working on a prototype of Computer Simulatiorvolume 4(2), pages 235-257.
the architecture, using the C++ simulation libraries
C++Sim and andJavaSim(Little, 1994). The
CORBA functionalities are being provided by the
Chorus/COOLenvironment (Chorus, 1996). Th'%. A. Mazero held a PhD. in Distributed Computing from

framework will allow us to seamlessly integrate sin}-he IRISA/INRIA - France. in 1994. and a MSc. in In-
ulations developed in C++ and Java. ’ ’ X

dustrial Automation from UFSC - Brazil, in 1990. Cur-
rently he works as associate professor and researcher in
Refer ences the Pos-Graduation Program on Applied Informatics of
) o the Catholic University of Parana State, in Brazil. His
Birman, K. P. and A., J. T. (1985). Replication and fauletahce main interest areas are distributed systems, discreteteve
in the Isis system. IMCM SIGOPSvolume 10, pages 79— . . Y ’
6. simulations, and object systems.

