Implementing Replicated Services in Open Systems
Using a Reflective Approach

Joni Fraga, Carlos Maziero, Lau C. Lung, Orlandd.@&jues Filho

Laboratério de Controle e Microinforméatica
Departamento de Engenharia Elétrica - UFSC
88.049-900 Floriandpolis SC - BRAZIL
e-mail: {fraga,maziero,lau} @Icmi.ufsc.br

"P6s-Graduacdo em Computacdo Aplicada e Automagé -
24210-240 Niter6i RJ - BRAZIL
e-mail:logues@caa.uff.br

Abstract

In this paper we evaluate the use of an object-
oriented open platform based on the CORBA standard
[15] for the implementation of replicated services. To
improve the flexibility of the implementation, we use a
reflective approach [13], which allows for separation of
aspects related to the replication model from those re-
lated exclusively to the service being replicated. This
separation makes it possible to modify the replication
protocol according to the fault tolerance level desired,
without any implications for the application code.

Keywords: fault tolerance, object groups, CORBA,
computational reflection.

1. Introduction
Distributed systems have been recently character-
ized by their increase in dimensions and theirrogiene-
ity. These systems have adopted the idea of opdn-ar
tecture, obtaining the interoperability of theimgmonents
by the homogeneity of their corresponding interfadn
effort made in terms of open programming is the AR
standard (Common Object Request Broker Architefiture
the result of the work of various companies which a
part of the Object Management Group [15], whoseiaim
the integration of different programming systemseuh
on objects. The use of CORBA standards, therefore,
permits the interaction of objects distributed e tsys-
tem, regardless of their coding languages, machick-
tecture or operational systems.

The concept of group processing has been intro-
duced in distributed programming models with tha af

providing support for cooperative work (groupware),
making possible an increasing availability of skiare-
sources, or in replicated processing, due to fenlér-
ance. The use of CORBA standards has evolved entec
years in terms of incorporating group processing se
vices. The Group Server abstractions are objespeti-
fication for inclusion in the OMA architecture [2].he
purpose of Group Server is similar to the apprassdd

in ANSA (Advanced Networks Systems Architecture)
[1], presenting a concentrator element in group raam
nications, which is a handicap in the performannd a
reliability of a system.

Furthermore, various prototypes and even products
of CORBA platforms have been developed, offering
support to group processing. Specifically, we manm
tion the ORBs (Object Request Brokers) RDO/C++ [11]
Orbix+lIsis [10] and Electra [14]. These platformake
use of tools such as Isis [5] and Horus [18] thatvjge
group communication based on the reliable broadcast
concept. The tools cited above offer more relididees
than the solutions sought in the specificationsGodup
Server in OMG.

In this article, we have set out to present ourkwo
on the integration of replication techniques intoapen
system, according to the patterns of the CORBA pro-
posal, in order to make available mechanisms ok fau
tolerance to the applications distributed on tHatfprm.
The implementation of replicatiotechniques is backed
by the use of ORBs presenting a support for gragg-p
essing.

With the aim of minimizing the replication reflexe
on the programming of applications, a programming
model was adopted, based on toenputational reflec-
tion [13]. This paradigm permits the complete sepanatio

of the coordination mechanisms among the replicas f
the application in itself. This separation, besid&spli-
fying the programming of the replicated application
introduces a great flexibility into the system bipwaing
the alteration of the replication protocols, withduoter-
fering with the application functionality, or evémvolv-
ing changes on the level of execution support, Wwhic
would be difficult, considering the nature of opgys-
tems.

The programming model presented was used suc-
cessfully in the integration of different repliaati tech-
nigues. As an implementation support, use was node
Electra, an ORB with support to process groupshén
present article, we will present only the activenpeti-
tive replication technique described in [17], tlustrate
the advantages offered by this model in the enwiremt
under consideration.

The article is structured as follows: in sectiow®
present the active competitive replication modelséc-
tion 3 we introduce the concepts of computationfiec-
tion and set out to structure the model according t® thi
approach; in section 4 we describe the CORBA stahda
and the ORB Electra with its extensions for group-s
port; finally, in section 5, we present in detaiétintegra-
tion of the reflective model proposed with the CORB
platform utilized and the results obtained in itsple-

mentation

2. Sofware component replicated mdels

Replication techniques are an alternative that en-
ables services to continue in distributed systesngn
when failed nodes are present. The unit of repticat a
software component (objects, processes, etc.),psnea
lating data identified aseplica state. The replicas are
distributed among different sites in the networkeT
coordination of the replication defines the way difer-
ent replicas must interfere in the processingemms of
maintaining the consistency and transparency of the
whole.

The techniques vary according to the degree of
synchronism and the types of replicas involvedthe
literature, passive, active and semi-active refiboa
models are identified [17]. In the passive replmad, a
privileged replica executes the processing refgrinthe
input data, while the others have their states tgudhy
the privileged one, usingheckpointing (state transfer
mechanisms). Theoordinator-cohort model, presented
in [4] is an example of this type of replication.

In active replication models, all the components
receive the input data, process them simultanecarstly
produce the same outputs. In these models, identids
Sate Machine, the consistency of the replica state neces-

sarily impliesdeterminism of replica, which can be ob-
tained by consensus about the input data and dsror
[19]. Some authors identify semi-active replicatipm
which, although all the replicas work in competiti@only
one produces the output. The order of the inpuimis
posed by a privileged replica. Theader-followers tech-
niqgue described in [17] is an example of semi-a&ctiv
replication.

In [12] exhaustive studies are carried out onicepl
tion techniques and their implementation aspeatshis
text we limit ourselves to the active competitieplica-
tion model described in [17].

2.1 Active competitive replication

In the competitive replication model all the repk
are active but only one responds to a given in@ia d
request. The main characteristic of this model his t
competition among the replicas: only the fastegli&s to
the request. The coordination of the techniquessib-
uted: each replica has an associated controllsporesi-
ble for receiving, broadcasting and comparing ngpssa
with the corresponding replica dedicated to reqpest-
essings. To guarantee replica consistency, allnibe-
sages among them are transmitted by means of atomic
broadcasts. The competitive replication model can b
devised so as to tolerate two sets of faults [1iffing
faults, involving semantics ofrash, omission and timing
errors;arbitrary faults, that take in the whole spectrum of
failure semantics. For clarity and economy of spaee
shall limit ourselves, in this text, to the firgt ©f faults.

group of
servers

replica
result

associated
replica

controller broadcast of

he result

result of the

replicated service fastest replica

client

figure 1. Competitive replication model for
temporization faults.

Figure 1 illustrates competitive replication, in a
simplified manner, under the assumption of timiaglts.
In this case, considering the client/server modihgi a
replicated server, a client request broadcastenstrver
group is received by the controllers, which senid ithe
corresponding replicas. On receiving the result pfoc-
essing of its associata@plica each controller verifies
whether it has already received the message wih th
result of the same processing from another coetralf

the group. In the absence of these messages, i®leo
ler concatenates an identifier to the result, anddicasts
the resulting message tie controllers group. If the
controller receives its own message first, it firds that
its replica is the fastest and therefore is the responsi-
ble for sending the reply to the client; otherwitsemes-
sage is discarded. This algorithm guarantees thbt o
one replica answers to the client request, becallisbe

messages broadcast in the group are observed by eac

member in the same relative order (a total ord@osed
by the use of a atomic broadcast protocol).

Finally, the broadcast of a message_of pro-
cessing, after sending the results to the client, by the
controller of the fastest replica, closes the psoirey
cycle in terms of the client request. This messagkes
it possible to work out strategies to detect faultghe
fastest replica controller and its substitution dnother
controller for sending results to the client.

The protocol shown above covers up errors due to
timing faults. Concerning treatment of failed elernse
two detection procedures are foreseen in the aligin
literature. [17]:

« A weak coupling is perceived between the controller
and its replica. In this caseme-out mechanisms are
maintained in the controller to detect the lackaof
associated replica ;

» Competitive replication gives a privilege to thetést
replica and, consequently, can lead to considerable
asynchronism in the set of replicas. This asynchro-
nism is dealt with, by periodically havingrandez-
vous, in which all the controllers broadcast the results
of their replicas among themselves and the last to
broadcast is the one which sends the results tolithe
ent. Thisrendezvous is limited in time, so as to allow
for the detection of failed controllers.

. Reflective structure for the competitive
model

The computational reflection paradigm allows a
system to execute processing on itself, in ordenadify
its behavior. In [13], the reflective paradigm igro-
duced into the object oriented programming using th
meta-objects approach. Here, the functional and non-
functional aspects are separated through the ubasef
objects and meta-objects. A meta-object is associated
with each base-object. Through their methods, teeb
objects express the application functionalitiesjlevthe
associated meta-objects carry out control procecitat
determine the behavior of their corresponding base-
objects. The calls to the base-object methodsrappéd,
S0 as to activate the meta-methods that make gilges

to modify base-objects behavior or add functioresito
their methods.

In this study, computational reflectios used to
develop an integration model for replication teciugis
in open systems. The reflective paradigm allowstais
assign to the base-object the functionalities akpali-
cated application, while meta-objects execute capli
coordination protocols. This model allows the ude o
different replication techniques while the baseecohy
maintain their characteristics; to this end, alatths
needed is to change the associated meta-objects.

The structure proposed for incorporating active
replication concepts into the reflective processimadel
is presented in figures 2 and 3. Each replica wagpad
under the form of an base-object, with which a meta
object, assuming the functionality of controlley agissoci-
ated. The competitive replication that we use fafica
failure semantic of crash. Since we accept a stomg
pling between the controller and the associatedicagp
the errors generated will be attributed to both;the
crash failure, the controller and associated replica will
cease their execution.

> I =)
2 [meta-controller <J
reqml T reply oon;ugzation
. - 1>) controllers
client) [replica_base]
reply T

figure 2: Reflective structure for the active
competitive replication model.

A request multicast by the client into a group of
replicas is trapped to the respective controllérat, in
turn, have to interact in order to implement therdina-
tion protocols of the replication scheme used. atteons
of a controller are succinctly described in the ecaxf
figure 3. Each base-object method is associated ait
meta-method in the controller, responsible foraittiva-
tion (method base 1 and meta_method 1, in the figure
cited).

The meta_control method implements the coordina-
tion protocol among the replicas described in trexed-
ing section. The basic behavior of the algorithmsists
of iterating betweeithe choice ofa replica for the reply
to the client {i rst) and the closing procedure, until
there is a confirmation that the reply has actubiyen
sent ¢concl uded condition of thewhi | e loop). It is
simple to verify the termination of the requestqassing:
if, after multicasting the methodl osi ng, the fastest

replica i r st) is still alive (into themembership), then

the reply was actually sent. Otherwise, a new capis

chosen and the process is repeated. This procetionie

nates the need to multicast a message about thef ¢mel

processing. In the algorithm, the activations @&f theth-

odsmul ti cast i d andcl osi ng are transmitted to
all the replicas of the group, in a totally orderadnner.

class neta_controller {
/] declaration of variables

net hod neta_nethod 1 (paraneters) {
net hod_base_1 (paraneters);
neta_control (paraneters);

b
. /] declaration of further neta-nethods

/1 inplenentation of the neta-control nethod
net hod neta control (paraneters) {
first :=null ;
concl uded : = fal se ;
ny_id:=get_systemid () ;
whil e not concl uded do
if (first = null) then
group.mul ticast_id (ny_id);
end ;
if (first = ny_id) then
/1 first replicatoreply
return; // return reply to the client
el se
if not concluded then
group.closing () ;
end ;
end ;
end ;

}

nethod nul ticast_id (int id) {

if (first null) then
first :=id; // idof the fastest replica
end ;

}

net hod closing () {
if (first O nenbership) then
concl uded : = true ;
end ;

first :=null ;

figure 3: Competitive replication meta-controller.

Both the competitive replication model and the
support utilized give a privilege to the fastespliea,
what may cause a lack of synchronism in the sloepr
licas. The periodical execution of the glolbahdezvous
technique, proposed in [17] is not used here, duist
cost implications in the system performance. THetsm
adopted is based on the propertywistual synchronism
[5], maintained by the lower layers of the suppmd in
this implementation. In this way, as long as thglica
belongs to themembership of the group, it will have the
same messages in the same order as the others.tki¢éhen
input buffer in the communication support assodiate

with the slowest coordinator/replica pair, reactibe
limit of its capacity, the support withdraws thepliea
from the membership. A replica can detect its exclusion
and reintegrate itself to the group, through theew
change (view) method, defined in the interface BOA of
Electra and activated automatically by the support
each change in thmembership. The activation of this
method is not preemptive, occurring only after pss:
ing the current method. The body of the methedew
change is defined according to the application charac-
teristics. In this way, in our implementation werréged
out a membership test in the body of this methbthe
replica has been excludedsiw. nunber =1), the
BOA functionj oi n (group) is activated, thereby effect-
ing its reintegration into the group.

Regarding the crashes that may occasionally occur
in the evolution of the system, our implementatn-
vides procedures for recuperating the degree diceep
tion. If the number of active replicas in the grofafls
below a preestablished limit, the oldest replideetathe
initiative of producing new replicas, in this wagestab-
lishing the ideal number of replicas. The coderréfg to
these recuperation procedures is based menabership
test ¢i ew. nunber < quorum mi ni mum), and it is
inserted into thei ew change method cited above.

Our replica state recovery approach differs froat t
proposed in [7], in which the recovery occur throug
meta-methods making updates in public attributabeif
associated replicas, with the use of appropriatextdi-
nation protocols. In our approach, we utilize meup-
port-provided primitives and fewer coordination foro
cols, what simplifies the state recoveries. Theesta-
covery, in our system, is based on the primitjgm,
offered by the support, and activated throughvthew
change method.

In object-oriented languages, each meta-objeghis
instance of a class on the meta-level that defisegtruc-
ture and behavior. In this article we limit ourssdvto
talking only about meta-objects because we aredsted
in emphasizing the aspects of execution time ohtk&a-
objects approach. In [8], these aspects added Her ot
referents to the use of the same approach in ireal-t
applications, are approached within the structurea o
language that is being developed.

4. The CORBA support utilized

The implementation of the replication model pre-
sented in section 3 presupposes the existence nfran
time support that offers facilities for programmidgs-
tributed objects. A platform conceived based ondbie-
cepts of the CORBACommon Object Request Broker
Architecture) standard is to provide the necessary support

for distributed object-oriented applications. Instisec-
tion we briefly describe the Electra system, a C@ARB
platform utilized in our implementations.

4.1 CORBA architecture

CORBA specifications form a set of standards and
concepts proposed for open systems by OMG (Object
Management Group) [15]. CORBA architecture is com-
posed of an ORB (Object Request Broker) kernel; tha
implements communication abstractions among distrib
uted objects and an interface management struttiate
contains static and dynamic invocation interfacdgect
adapters, interface and implementation repositdfigs
ure 4).

figure 4: The CORBA architecture.

In a CORBA environment, each object has its inter-
face specified through an Interface DescriptiondLeage
(IDL), a declarative language with syntax and pfiedel
types based on the language C++. The interactaiosf
the client/server model. The CORBA client, in avisy
request, utilizes stubs generated in the compiiatifothe
IDL specification of the server object, or buildsst re-
quest, using the dynamic invocation interface Olb
allow for dynamic invocations, object interfacessibe
stored in the interface repository. The client'quest is
transmitted over the network, using the ORB, thang-
fers the control to the object adapter to activhte op-
eration in the implementation of the server objdwnt,
means of the IDL skeletons.

The original CORBA proposal does not provide for
adequate support mechanisms to groups of objects. T
fill in this gap, some extensions to the CORBA d&d
have been proposed in terms of incorporating this c
cept. Electra [14] is a product of these efforts.

4.2 Electra

Electra [14] is anObject Request Broker (ORB),
compatible with the CORBA standard [15], presenting
support to object groups. This platform combines th
benefits of the CORBA standard with the power efdo
level tools for group processing, such as Horu$, [tk
[5], and others. Interactions in Electra can oasireli-
able multicast or point-to-point communicationsdér-
ing mechanisms (total, causal and fifo) are offeted
guarantee consistency among members of the object
group. The client makes use of a given method iavoc
tion model, regardless of whether the server ingles
object or a group. These invocations may be synchro
nous, asynchronousorfe-way) or semi-synchronous
(deferred-synchronoudly), through static or dynamic
interfaces. On multicasting a method call, through
CORBA static or dynamic invocation interface, the-p
grammer has at his disposal two modes of group asmm
nication in Electra:

e Transparent; the group is seen as a simple and com-
pletely available object, and the client only reesi
the final result furnished by the group;

* Non-transparent: permits access, in an invocation,
the results of each individual member of the grotip
objects.

In the interface BOA Rasic Object Adapter) of
Electra, services referring to group management are
added, such asreating a group of objectsincluding
objects in the group axcluding them from it,selecting
a protocol ofmulticast, membership and transfer of state,
and so on. These services are provided by the Imwvel
tools used, such as Horus or Isis.

5. The integration model of replication
techniques in open systems

In the previous section, we could see that the
CORBA/Electra platform offers adequate support for
group processing. In this section, we describertegra-
tion of the reflective model proposed in sectiomgr
the Electra system.

5.1 The integration model in CORBA platforms

Figure 5 explicits the integration model of replic
tion techniques within the CORBA context. The asdes
the support provided by a CORBA platform is avd#ab
both to the server and to the client by entitiggesented
asmeta-objects (client and server) and identified generi-
cally asmeta-communication. These entities are actually
nothing more than the set sfubs for the client and

server,stubs for the communication among the replicas
and the BOA interfaces providing the group manage-
ment. All thesestubs are generated by the translation of
the IDL [16] declaration of a server object. The s

the term “abstract object” given to meta-commuriarat
on the model follows some authors [9] and has &mses

of a simple separation for greater clarity. In itgathese
interfaces are generated in Electra as a set diiqust
that will be composed of multiple inheritance ie ttlient
and controller meta-objects (section 5.2).

In the model the client introduces itself within a
client-base structure, that represents the application be-
havior, and arneta-client, that does not present an active
function in our implementation, but that could tsed in
managing the replicated client, or to implement inaec
nisms for handling exceptions in the client. Thecure
of each server replica is similar to that of theertt a
replica-base object, carrying out the replicated service,
and a meta-controller, responsible for executing the
coordination protocol of the replication, like ome-
scribed in figure 3.

m|| meta- A meta-
ell client <] controller
t - G

b g

a bV: b

s ase- ; ase

o | dient Client Ser_ver replica

(replicas)
figure 5: Structure of the model on a CORBA
support.

The numbered arrows in figure 5 indicate the nérma
way of a client request: The request made by themntcl
base (1) is then broadcast using a stub approgriatine
client meta-communication. In each replica, the anet
communication, by means of a local stub, receibes t
request and transfers it to the meta-controller \@lich
then activates the local replica (3). On receithmyreply
(4), the meta-server executes the coordinationopobt
by means of the meta-communication so as to interac
with other replicas. The processing and interastion
the level of the meta-controllers are conditionédhés
time by the replication model utilized. Later, theply is
then sent back to the client (5 and 6).

This model can be used in other replication tech-
nigues, the differences centering mainly in semegli-
cated meta-controllers. In some techniques the -meta
communication entities may gain functionality, loes
that of concentrating methods of access to CORBA su
porting services. For example, in the use of aatemi-

cas with voter and adjuster mechanisms, the impitame
tion of voting or adjustment can be programmed ten t
client's side in a more simplified form. Transpargn
could be achieved in this case, implementing these
mechanisms in the client meta-communication entity,
which, with the addition of this functionality, te& on the
characteristics of a real object.

5.2 Building replicated services following
the integration model

The first step in the building of a system on a
CORBA/Electra platform is a description in IDL dfet
meta-controller interface, following the specificat of
the replicated service provided by the server ¢ocifent.
Besides this interface, due to some limitations dsgul
by the Electra, it is necessary to declare a seoord for
implementing the replica coordination, composed by
methods that provide communications among replicas.

/1 10L

interface neta controller_1

{
/1 Description of the data types enpl oyed

/1 Description of the server nethods
bool ean neta_nethod 1 (paraneters);

b&)l ean neta nethod n (paraneters);

h
interface neta controlller_2

/] Description of the neta controll er nethods
bool ean broadcast_id (inint id);
bool ean closing ();

b

figure 6: IDL interface of the replicated server.

Figure 6 presents both IDL declarations of a repli
cated server in according to the specificationsiilesd
in figure 3. The interfaceneta_controller_1 allows cli-
ents access to the services offered, while thefade
meta_controller_2 declares the methods necessary for
intra-replica interactions. It should be pointedt ¢hat
both interfaces are actually two facets of the saerger
(or, in our case, of the same group of objects).

In compile-time, the Electra/IDL compiler automati
cally generates the whole support for communication
(stubs) among the entities involved, including, as well,
the functionalities for group management of the B@A
Electra, every object is an instance of a sub-addbe
BOA class). The compiler also generates files dnintg

structures (declarations of variables and methdds)
including the client and server codes. The programm
then, is responsible for the implementation ofréygicas
(base-objects) and the replica coordination suétabl
(meta-objects), by filling the bodies of the methale-
clared in the interfaces. With this implementation
scheme, illustrated in figure 7, the client andseebase-
objects are kept devoid of all activities that am re-
lated to the application itself. All aspects retate the
replica coordination and the interactions in theRBA
context, are concentrated at the meta-level.

Our implementation was carried on a UNIX plat-
form, where each associated pair base-object/nigsso
was intended to share the same process, makingtére
actions between them local, without the need foBOR

Redundancies and fault tolerance implementations
can follow several approaches [7]. The implemeotati
of fault tolerance techniques by means of runtiogpsrt
offers on the application level some degree ofgpan
ency concerning the coordination aspects of thé-tec
nigue used. The disadvantage is that once the &ault
sumptions and the replication technique are chasen
configuration time, we will have defined a specifice-
cution support. The approaches of library and laggs
for the implementation bring aspects of coordinatio
the programmer level, without, however, separattiregn
from functional application aspects.

Computational reflection permits independence of
the replica codes in relation to the coordinationt@-

The needs for concurrence between base-objects andcols, leading to a greater flexibility in the systechang-

meta-objects within a process are satisfied by#eeof a
threads library offered by the Electra support. ideer,

the current version, (1.0) of this platform doe$ sop-

port pre-emptive threads, which limits the degreeom-

currence in dealing with client requests. As a ltesti

this restriction, it becomes difficult to implemenefplica-

tion techniques, which has forced us to seek altem

implementation solutions. The solution adopted =i®1S
of separating the functionalities of the meta-colter

into two UNIX processes.

client
spedficalio’ | interface = (= b
@ meta-controller 1 == dient
/) cock stubx inmplementatic

figure 7: Application building process.

Due to the fact that the language used (C++) bas n
specific constructions to support reflection. Tiedlec-
tion is implemented artificially, through the ditexctiva-
tion to the meta-method, in the client code. The aisa
language supporting reflection, as is the case @fien
C++ [6], might eliminate this problem, but in this case
the IDL compiler of the CORBA environment used
should support this language.

6. Considerations about the results

ing the technique or altering it by meeting desidsd
grees of fault tolerance, may simply result in shiitg
the coordination protocols on the meta level, ining
no alteration in application algorithms or in theitime
support what is suitable in open systems. The @iskeo
reflective computing for implementing fault toleczn
techniques is proposed in [3] [7], and the sepamati
between the coordination and the replicas has djlrea
been recommended in [17].

The model presented was used for implementing the
active competitive replication protocol, describéd
section 2. The implementation carried out makesnint
sive use of the Electra support facilities, whiclkes
easier the coordination needs of the technique empl
mented. Furthermore, the uses of a CORBA platfaas h
allowed the implementation of our application on an
heterogeneous system (local network of machines run
ning SunOS 4.X and Solaris), facilitating aspedtsne
teroperability.

The integration structure proposed has proveceto b
quite flexible, other replication techniques candasily
implemented. Up to now, we have implementedtie
mary/secondary , leader/followers andcyclic redundancy
techniques, using the same integration model. EHoeg:
sary changes for the substitution of replicatiarhteques
in the integration model are limited to the IDL met
controller interface and their codes that implemia
coordination protocols.

These replication models were applied in the im-
plementation of a multimedia application (animation
viewer accepting theMPEG format). Simulations of
crashes were carried out, utilizing these implementations.
In all these replication techniques utilized, tlatmuity
of service was obtained in case of failures, sittee
premises of each technique were respected. At mirese
we are working out detailed measurements on the per
formance of the replication techniques cited using
Electra platform. We are also porting our work be t

Orbix+lsis platform [10].

7. Conclusion

An integration model for replication techniques in
open distributed systems was presented in thislaurti
The use of computational reflection concepts makes
possible to obtain the necessary flexibility foveeping
and implementing different replication models fawult
tolerance in these environments.

Within this context, the work presented in thig-ar
cle continues at present in various directions. Jdi&la-
tion of the model proposed through application éalr
situations and the incorporation of language costr
tions in terms of facilitating the programming dfet
reflective model are some of the current activitie®lv-
ing this work.

The programming model presented in this article is
part of a cooperative research project, sponsbyeithe
brazilian state agency CNPq (PROTEM-CC projectyl, an
has as its aim to build an object-oriented envirenim
that supports distributed applications with requieats
of real-time and fault tolerance.

Acknowledgment

We would thank S. Maffeis, author of the Electra
system [14], for his kind attention helping us ¢dve our
main difficulties in the beginning of this work.

References
[1] E. Oskiewicz, N. Edwards;A Model for Interface
Groups”, ANSA Phase Il technical report

APM.1002.01, Cambridge-UK, may 1994.

R. M. Adler,“Group-Oriented Coordination Extensions
to OMG’s OMA/CORBA”, OMG Presentation, San
Jose - CA, June 1995.

G. Agha, S. Frolund, R. Panwar, D. Sturmai,Lin-
guistic Framework for Dynamic Composition of De-
pendability Protocols”, Proceedings of the DCCA-3,
1993.

K. Birman, T. Joseph, F. SchmycKkSIS - A Distrib-
uted Programming Users Guide and Reference Man-
ual”, The ISIS Project, Department of Computer Science,
Cornell University, Ithaca - NY, march 1988.

K. P. Birman,"The Process Group Approach to Reli-
able Distributed Computing”, Technical Report TR 91-
1216, Cornell University Computer Science Department,
Ithaca, N.Y., July 1991.

S. Chiba,"Open C++ Programmer’s Guide”, Technical
Report 93-3, Department of Information Science, @niv
sity of Tokio, 1993.

J. Fabre, V. Nicomette, T. Pérennou, R. J. Strand Z.
Wu, “Implementing Fault Tolerant Applications using

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]
(17]

(18]

(19]

Reflective Object-Oriented Programming”, Proceed-
ings of the 25th IEEE International Symposium onlfa
Tolerant Computing, Pasadena (CA), June 1995.

J. Fraga, J.-M. Farines, O. Furtado, F. SiquéiA pro-
gramming model for real-time applications in open
distributed systems. Proc. of the 2nd IEEE Workshop
on Future Trends in Distributed Computing Systeras, a
gust 1995.

O. Hagsand, H. Herzog, K.P. Birman, R. Coogé&h-
ject-Oriented Reliable Distributed Computing”, 2nd
IEEE International Workshop on Object-Orientation i
Operational Systems, 1992.

Isis Distributed Systems Inc., IONA Technolegji Ltd.
"Orbix+Isis Programmer’'s Guide" , 1995. Document
D070-00.

Isis Distributed Systems Inc.;RDO/C++ Tutorial
Release 1.0.3"Apr. 1994.

M. C. Little, “Object Replication in a Distributed
System”, PhD. Thesis, University of Newcastle upon
Tyne Computing Laboratory, September 1991.

P. Maes,“Concepts and Experiments in Computa-
tional Reflection”, OOPSLA 87 Proceedings, pp. 147-
156, October 1987.

S. Maffeis,"Adding Group Communication and Fault-
Tolerance to CORBA", In Proceedings of the 1995
USENIX Conference on Object-Oriented Technologies,
Monterey - CA, June 1995.

Object Management Groupg;The Common Object
Request Broker: Architecture and Specification, Re-
vision 1.2, OMG Document, December 1993.

Object Management GroufiDL C++ Language Map-
ping Specification”, OMG Document 94-9-14, 1994.

D. Powell, “Delta-4 Architecture Guide”, Esprit Il
P2252, Delta-4 Phase 3, August 1991.

Robbert V. Renesse and Kenneth P. Birniémotocol
Composition in Horus" Dept. of Computer Science of
the Cornell University, Mar 1995.

F. B. Schneideriimplementing Fault-Tolerant Service
Using the State Machine Approach: A Tutorial”,
ACM Computing Survey, 22(4):299-319, Dec 1990.

