

Implementing Replicated Services in Open Systems
Using a Reflective Approach

Joni Fraga, Carlos Maziero, Lau C. Lung, Orlando G. Loques Filho*

Laboratório de Controle e Microinformática
Departamento de Engenharia Elétrica - UFSC

88.049-900 Florianópolis SC - BRAZIL
e-mail: {fraga,maziero,lau} @lcmi.ufsc.br

*Pós-Graduação em Computação Aplicada e Automação - UFF

24210-240 Niterói RJ - BRAZIL
e-mail: loques@caa.uff.br

Abstract

 In this paper we evaluate the use of an object-
oriented open platform based on the CORBA standard
[15] for the implementation of replicated services. To
improve the flexibility of the implementation, we use a
reflective approach [13], which allows for separation of
aspects related to the replication model from those re-
lated exclusively to the service being replicated. This
separation makes it possible to modify the replication
protocol according to the fault tolerance level desired,
without any implications for the application code.

Keywords: fault tolerance, object groups, CORBA,
computational reflection.

1. Introduction

 Distributed systems have been recently character-
ized by their increase in dimensions and their heterogene-
ity. These systems have adopted the idea of open archi-
tecture, obtaining the interoperability of their components
by the homogeneity of their corresponding interfaces. An
effort made in terms of open programming is the CORBA
standard (Common Object Request Broker Architecture),
the result of the work of various companies which are
part of the Object Management Group [15], whose aim is
the integration of different programming systems based
on objects. The use of CORBA standards, therefore,
permits the interaction of objects distributed in the sys-
tem, regardless of their coding languages, machine archi-
tecture or operational systems.
 The concept of group processing has been intro-
duced in distributed programming models with the aim of

providing support for cooperative work (groupware),
making possible an increasing availability of shared re-
sources, or in replicated processing, due to fault toler-
ance. The use of CORBA standards has evolved in recent
years in terms of incorporating group processing ser-
vices. The Group Server abstractions are object of speci-
fication for inclusion in the OMA architecture [2]. The
purpose of Group Server is similar to the approach used
in ANSA (Advanced Networks Systems Architecture)
[1], presenting a concentrator element in group commu-
nications, which is a handicap in the performance and
reliability of a system.
 Furthermore, various prototypes and even products
of CORBA platforms have been developed, offering
support to group processing. Specifically, we may men-
tion the ORBs (Object Request Brokers) RDO/C++ [11],
Orbix+Isis [10] and Electra [14]. These platforms make
use of tools such as Isis [5] and Horus [18] that provide
group communication based on the reliable broadcast
concept. The tools cited above offer more reliable bases
than the solutions sought in the specifications of Group
Server in OMG.
 In this article, we have set out to present our work
on the integration of replication techniques into an open
system, according to the patterns of the CORBA pro-
posal, in order to make available mechanisms of fault
tolerance to the applications distributed on that platform.
The implementation of replication techniques is backed
by the use of ORBs presenting a support for group proc-
essing.
 With the aim of minimizing the replication reflexes
on the programming of applications, a programming
model was adopted, based on the computational reflec-
tion [13]. This paradigm permits the complete separation

of the coordination mechanisms among the replicas from
the application in itself. This separation, besides simpli-
fying the programming of the replicated application,
introduces a great flexibility into the system by allowing
the alteration of the replication protocols, without inter-
fering with the application functionality, or even involv-
ing changes on the level of execution support, which
would be difficult, considering the nature of open sys-
tems.
 The programming model presented was used suc-
cessfully in the integration of different replication tech-
niques. As an implementation support, use was made of
Electra, an ORB with support to process groups. In the
present article, we will present only the active competi-
tive replication technique described in [17], to illustrate
the advantages offered by this model in the environment
under consideration.
 The article is structured as follows: in section 2 we
present the active competitive replication model; in sec-
tion 3 we introduce the concepts of computational reflec-
tion and set out to structure the model according to this
approach; in section 4 we describe the CORBA standard
and the ORB Electra with its extensions for group sup-
port; finally, in section 5, we present in detail the integra-
tion of the reflective model proposed with the CORBA
platform utilized and the results obtained in its imple-
mentation.

2. Software component replicated models

 Replication techniques are an alternative that en-
ables services to continue in distributed systems, even
when failed nodes are present. The unit of replication is a
software component (objects, processes, etc.), encapsu-
lating data identified as replica state. The replicas are
distributed among different sites in the network. The
coordination of the replication defines the way the differ-
ent replicas must interfere in the processing, in terms of
maintaining the consistency and transparency of the
whole.
 The techniques vary according to the degree of
synchronism and the types of replicas involved. In the
literature, passive, active and semi-active replication
models are identified [17]. In the passive replications, a
privileged replica executes the processing referring to the
input data, while the others have their states updated by
the privileged one, using checkpointing (state transfer
mechanisms). The coordinator-cohort model, presented
in [4] is an example of this type of replication.
 In active replication models, all the components
receive the input data, process them simultaneously and
produce the same outputs. In these models, identified as
State Machine, the consistency of the replica state neces-

sarily implies determinism of replica, which can be ob-
tained by consensus about the input data and its order
[19]. Some authors identify semi-active replications, in
which, although all the replicas work in competition, only
one produces the output. The order of the inputs is im-
posed by a privileged replica. The leader-followers tech-
nique described in [17] is an example of semi-active
replication.
 In [12] exhaustive studies are carried out on replica-
tion techniques and their implementation aspects. In this
text we limit ourselves to the active competitive replica-
tion model described in [17].

2.1 Active competitive replication

 In the competitive replication model all the replicas
are active but only one responds to a given input data
request. The main characteristic of this model is the
competition among the replicas: only the fastest replies to
the request. The coordination of the technique is distrib-
uted: each replica has an associated controller, responsi-
ble for receiving, broadcasting and comparing messages,
with the corresponding replica dedicated to request proc-
essings. To guarantee replica consistency, all the mes-
sages among them are transmitted by means of atomic
broadcasts. The competitive replication model can be
devised so as to tolerate two sets of faults [17]: timing
faults, involving semantics of crash, omission and timing
errors; arbitrary faults, that take in the whole spectrum of
failure semantics. For clarity and economy of space, we
shall limit ourselves, in this text, to the first set of faults.

client

group of
serv ers

fas tes t replica

broadcas t of
the result

replica
res ult

res ult of the
replic ated serv ice

controller

associated
replica

figure 1: Competitive replication model for
 temporization faults.

 Figure 1 illustrates competitive replication, in a
simplified manner, under the assumption of timing faults.
In this case, considering the client/server model using a
replicated server, a client request broadcast in the server
group is received by the controllers, which send it to the
corresponding replicas. On receiving the result of a proc-
essing of its associated replica, each controller verifies
whether it has already received the message with the
result of the same processing from another controller of

the group. In the absence of these messages, the control-
ler concatenates an identifier to the result, and broadcasts
the resulting message to the controllers group. If the
controller receives its own message first, it finds out that
its replica is the fastest and therefore is the one responsi-
ble for sending the reply to the client; otherwise its mes-
sage is discarded. This algorithm guarantees that only
one replica answers to the client request, because all the
messages broadcast in the group are observed by each
member in the same relative order (a total order imposed
by the use of a atomic broadcast protocol).
 Finally, the broadcast of a message end_of_pro-
cessing, after sending the results to the client, by the
controller of the fastest replica, closes the processing
cycle in terms of the client request. This message makes
it possible to work out strategies to detect faults in the
fastest replica controller and its substitution by another
controller for sending results to the client.
 The protocol shown above covers up errors due to
timing faults. Concerning treatment of failed elements,
two detection procedures are foreseen in the original
literature. [17]:

• A weak coupling is perceived between the controller

and its replica. In this case, time-out mechanisms are
maintained in the controller to detect the lack of an
associated replica ;

• Competitive replication gives a privilege to the fastest
replica and, consequently, can lead to considerable
asynchronism in the set of replicas. This asynchro-
nism is dealt with, by periodically having a rendez-
vous, in which all the controllers broadcast the results
of their replicas among themselves and the last to
broadcast is the one which sends the results to the cli-
ent. This rendezvous is limited in time, so as to allow
for the detection of failed controllers.

3. Reflective structure for the competitive
 model

 The computational reflection paradigm allows a
system to execute processing on itself, in order to modify
its behavior. In [13], the reflective paradigm is intro-
duced into the object oriented programming using the
meta-objects approach. Here, the functional and non-
functional aspects are separated through the use of base-
objects and meta-objects. A meta-object is associated
with each base-object. Through their methods, the base-
objects express the application functionalities, while the
associated meta-objects carry out control procedures that
determine the behavior of their corresponding base-
objects. The calls to the base-object methods are trapped,
so as to activate the meta-methods that make it possible

to modify base-objects behavior or add functionalities to
their methods.
 In this study, computational reflection is used to
develop an integration model for replication techniques
in open systems. The reflective paradigm allows us to
assign to the base-object the functionalities of a repli-
cated application, while meta-objects execute replica
coordination protocols. This model allows the use of
different replication techniques while the base-objects
maintain their characteristics; to this end, all that is
needed is to change the associated meta-objects.
 The structure proposed for incorporating active
replication concepts into the reflective processing model
is presented in figures 2 and 3. Each replica was mapped
under the form of an base-object, with which a meta-
object, assuming the functionality of controller, is associ-
ated. The competitive replication that we use follows a
failure semantic of crash. Since we accept a strong cou-
pling between the controller and the associated replica,
the errors generated will be attributed to both; in the
crash failure, the controller and associated replica will
cease their execution.

request

reply

trap
communication

among
controllers

request reply

client

meta-controller

replica_base

figure 2: Reflective structure for the active
 competitive replication model.

 A request multicast by the client into a group of
replicas is trapped to the respective controllers, that, in
turn, have to interact in order to implement the coordina-
tion protocols of the replication scheme used. The actions
of a controller are succinctly described in the code of
figure 3. Each base-object method is associated with a
meta-method in the controller, responsible for its activa-
tion (method base 1 and meta method 1, in the figure
cited).
 The meta control method implements the coordina-
tion protocol among the replicas described in the preced-
ing section. The basic behavior of the algorithm consists
of iterating between the choice of a replica for the reply
to the client (first) and the closing procedure, until
there is a confirmation that the reply has actually been
sent (concluded condition of the while loop). It is
simple to verify the termination of the request processing:
if, after multicasting the method closing, the fastest

replica (first) is still alive (into the membership), then
the reply was actually sent. Otherwise, a new replica is
chosen and the process is repeated. This procedure elimi-
nates the need to multicast a message about the end of the
processing. In the algorithm, the activations of the meth-
ods multicast_id and closing are transmitted to
all the replicas of the group, in a totally ordered manner.

class meta_controller {
 // declaration of variables

 method meta_method_1 (parameters) {
 method_base_1 (parameters);
 meta_control (parameters);
 };

 ... // declaration of further meta-methods

 // implementation of the meta-control method
 method meta_control (parameters) {
 first := null ;
 concluded := false ;
 my_id := get_system_id () ;
 while not concluded do
 if (first = null) then
 group.multicast_id (my_id);
 end ;
 if (first = my_id) then
 // first replica to reply
 return ; // return reply to the client
 else
 if not concluded then
 group.closing () ;
 end ;
 end ;
 end ;
 }

 method multicast_id (int id) {
 if (first = null) then
 first := id ; // id of the fastest replica
 end ;
 }

 method closing () {
 if (first ∈ membership) then
 concluded := true ;
 end ;
 first := null ;
 }

figure 3: Competitive replication meta-controller.

 Both the competitive replication model and the
support utilized give a privilege to the fastest replica,
what may cause a lack of synchronism in the slower rep-
licas. The periodical execution of the global rendezvous
technique, proposed in [17] is not used here, due to its
cost implications in the system performance. The solution
adopted is based on the property of virtual synchronism
[5], maintained by the lower layers of the support used in
this implementation. In this way, as long as the replica
belongs to the membership of the group, it will have the
same messages in the same order as the others. When the
input buffer in the communication support associated

with the slowest coordinator/replica pair, reaches the
limit of its capacity, the support withdraws the replica
from the membership. A replica can detect its exclusion
and reintegrate itself to the group, through the view
change (view) method, defined in the interface BOA of
Electra and activated automatically by the support for
each change in the membership. The activation of this
method is not preemptive, occurring only after process-
ing the current method. The body of the method view
change is defined according to the application charac-
teristics. In this way, in our implementation we carried
out a membership test in the body of this method: if the
replica has been excluded (view.number=1), the
BOA function join (group) is activated, thereby effect-
ing its reintegration into the group.
 Regarding the crashes that may occasionally occur
in the evolution of the system, our implementation pro-
vides procedures for recuperating the degree of replica-
tion. If the number of active replicas in the group falls
below a preestablished limit, the oldest replica takes the
initiative of producing new replicas, in this way, reestab-
lishing the ideal number of replicas. The code referring to
these recuperation procedures is based on a membership
test (view.number < quorum minimum), and it is
inserted into the view change method cited above.
 Our replica state recovery approach differs from that
proposed in [7], in which the recovery occur through
meta-methods making updates in public attributes of their
associated replicas, with the use of appropriated coordi-
nation protocols. In our approach, we utilize more sup-
port-provided primitives and fewer coordination proto-
cols, what simplifies the state recoveries. The state re-
covery, in our system, is based on the primitive join,
offered by the support, and activated through the view
change method.
 In object-oriented languages, each meta-object is an
instance of a class on the meta-level that defines its struc-
ture and behavior. In this article we limit ourselves to
talking only about meta-objects because we are interested
in emphasizing the aspects of execution time of the meta-
objects approach. In [8], these aspects added to other
referents to the use of the same approach in real-time
applications, are approached within the structure of a
language that is being developed.

4. The CORBA support utilized

 The implementation of the replication model pre-
sented in section 3 presupposes the existence of an run-
time support that offers facilities for programming dis-
tributed objects. A platform conceived based on the con-
cepts of the CORBA (Common Object Request Broker
Architecture) standard is to provide the necessary support

for distributed object-oriented applications. In this sec-
tion we briefly describe the Electra system, a CORBA
platform utilized in our implementations.

4.1 CORBA architecture

 CORBA specifications form a set of standards and
concepts proposed for open systems by OMG (Object
Management Group) [15]. CORBA architecture is com-
posed of an ORB (Object Request Broker) kernel, that
implements communication abstractions among distrib-
uted objects and an interface management structure that
contains static and dynamic invocation interfaces, object
adapters, interface and implementation repositories (fig-
ure 4).

IDL
skeleton

Dynamic
invocation

skeleton

Object
adapter

Dynamic
invocation
interface

IDL
Stubs ORB

interface

Client
Object implementation

Interfaces
repository Implementation

repository

ORB

figure 4: The CORBA architecture.

 In a CORBA environment, each object has its inter-
face specified through an Interface Description Language
(IDL), a declarative language with syntax and predefined
types based on the language C++. The interactions follow
the client/server model. The CORBA client, in a service
request, utilizes stubs generated in the compilation of the
IDL specification of the server object, or builds this re-
quest, using the dynamic invocation interface DII. To
allow for dynamic invocations, object interfaces must be
stored in the interface repository. The client’s request is
transmitted over the network, using the ORB, that trans-
fers the control to the object adapter to activate the op-
eration in the implementation of the server object, by
means of the IDL skeletons.
 The original CORBA proposal does not provide for
adequate support mechanisms to groups of objects. To
fill in this gap, some extensions to the CORBA standard
have been proposed in terms of incorporating this con-
cept. Electra [14] is a product of these efforts.

4.2 Electra

 Electra [14] is an Object Request Broker (ORB),
compatible with the CORBA standard [15], presenting
support to object groups. This platform combines the
benefits of the CORBA standard with the power of lower
level tools for group processing, such as Horus [18], Isis
[5], and others. Interactions in Electra can occur as reli-
able multicast or point-to-point communications. Order-
ing mechanisms (total, causal and fifo) are offered to
guarantee consistency among members of the object
group. The client makes use of a given method invoca-
tion model, regardless of whether the server is a single
object or a group. These invocations may be synchro-
nous, asynchronous (one-way) or semi-synchronous
(deferred-synchronously), through static or dynamic
interfaces. On multicasting a method call, through a
CORBA static or dynamic invocation interface, the pro-
grammer has at his disposal two modes of group commu-
nication in Electra:

• Transparent: the group is seen as a simple and com-

pletely available object, and the client only receives
the final result furnished by the group;

• Non-transparent: permits access, in an invocation, to
the results of each individual member of the group of
objects.

 In the interface BOA (Basic Object Adapter) of
Electra, services referring to group management are
added, such as creating a group of objects, including
objects in the group or excluding them from it, selecting
a protocol of multicast, membership and transfer of state,
and so on. These services are provided by the lower level
tools used, such as Horus or Isis.

5. The integration model of replication
 techniques in open systems

 In the previous section, we could see that the
CORBA/Electra platform offers adequate support for
group processing. In this section, we describe the integra-
tion of the reflective model proposed in section 3 over
the Electra system.

5.1 The integration model in CORBA platforms

 Figure 5 explicits the integration model of replica-
tion techniques within the CORBA context. The access to
the support provided by a CORBA platform is available
both to the server and to the client by entities represented
as meta-objects (client and server) and identified generi-
cally as meta-communication. These entities are actually
nothing more than the set of stubs for the client and

server, stubs for the communication among the replicas
and the BOA interfaces providing the group manage-
ment. All these stubs are generated by the translation of
the IDL [16] declaration of a server object. The use of
the term “abstract object” given to meta-communication
on the model follows some authors [9] and has the sense
of a simple separation for greater clarity. In reality, these
interfaces are generated in Electra as a set of methods
that will be composed of multiple inheritance in the client
and controller meta-objects (section 5.2).
 In the model the client introduces itself within a
client-base structure, that represents the application be-
havior, and a meta-client, that does not present an active
function in our implementation, but that could be used in
managing the replicated client, or to implement mecha-
nisms for handling exceptions in the client. The structure
of each server replica is similar to that of the client: a
replica-base object, carrying out the replicated service,
and a meta-controller, responsible for executing the
coordination protocol of the replication, like one de-
scribed in figure 3.

ORB

base-
client

meta-
client

meta-
communi-
cation

meta-
controller

base
replica

meta-
communi-
cation

m
e
t
a

b
a
s
e

 Client Server
(replicas)

�

�

��

�

�

stubs

manag
.

stubs

manag
..

figure 5: Structure of the model on a CORBA
 support.

 The numbered arrows in figure 5 indicate the normal
way of a client request: The request made by the client
base (1) is then broadcast using a stub appropriated in the
client meta-communication. In each replica, the meta-
communication, by means of a local stub, receives the
request and transfers it to the meta-controller (2), which
then activates the local replica (3). On receiving the reply
(4), the meta-server executes the coordination protocol,
by means of the meta-communication so as to interact
with other replicas. The processing and interactions on
the level of the meta-controllers are conditioned at this
time by the replication model utilized. Later, the reply is
then sent back to the client (5 and 6).
 This model can be used in other replication tech-
niques, the differences centering mainly in server repli-
cated meta-controllers. In some techniques the meta-
communication entities may gain functionality, besides
that of concentrating methods of access to CORBA sup-
porting services. For example, in the use of active repli-

cas with voter and adjuster mechanisms, the implementa-
tion of voting or adjustment can be programmed on the
client’s side in a more simplified form. Transparency
could be achieved in this case, implementing these
mechanisms in the client meta-communication entity,
which, with the addition of this functionality, takes on the
characteristics of a real object.

5.2 Building replicated services following
 the integration model

 The first step in the building of a system on a
CORBA/Electra platform is a description in IDL of the
meta-controller interface, following the specification of
the replicated service provided by the server to the client.
Besides this interface, due to some limitations imposed
by the Electra, it is necessary to declare a second one, for
implementing the replica coordination, composed by
methods that provide communications among replicas.

// IDL

interface meta_controller_1
{
 // Description of the data types employed

 // Description of the server methods
 boolean meta_method_1 (parameters);
 ...
 boolean meta_method_n (parameters);
};

interface meta_controlller_2
{
 // Description of the meta_controller methods
 boolean broadcast_id (in int id);
 boolean closing ();
};

figure 6: IDL interface of the replicated server.

 Figure 6 presents both IDL declarations of a repli-
cated server in according to the specifications described
in figure 3. The interface meta controller_1 allows cli-
ents access to the services offered, while the interface
meta controller 2 declares the methods necessary for
intra-replica interactions. It should be pointed out that
both interfaces are actually two facets of the same server
(or, in our case, of the same group of objects).
 In compile-time, the Electra/IDL compiler automati-
cally generates the whole support for communication
(stubs) among the entities involved, including, as well,
the functionalities for group management of the BOA (in
Electra, every object is an instance of a sub-class of the
BOA class). The compiler also generates files containing

structures (declarations of variables and methods) for
including the client and server codes. The programmer,
then, is responsible for the implementation of the replicas
(base-objects) and the replica coordination suitable
(meta-objects), by filling the bodies of the methods de-
clared in the interfaces. With this implementation
scheme, illustrated in figure 7, the client and server base-
objects are kept devoid of all activities that are not re-
lated to the application itself. All aspects related to the
replica coordination and the interactions in the CORBA
context, are concentrated at the meta-level.
 Our implementation was carried on a UNIX plat-
form, where each associated pair base-object/meta-object
was intended to share the same process, making the inter-
actions between them local, without the need for ORB.
The needs for concurrence between base-objects and
meta-objects within a process are satisfied by the use of a
threads library offered by the Electra support. However,
the current version, (1.0) of this platform does not sup-
port pre-emptive threads, which limits the degree of con-
currence in dealing with client requests. As a result of
this restriction, it becomes difficult to implement replica-
tion techniques, which has forced us to seek alternative
implementation solutions. The solution adopted consists
of separating the functionalities of the meta-controller
into two UNIX processes.

IDL
compiler compiler

server
implementation

011
1011000
0110111
0001101
0110111

client
implementation

replica
coordination

compiler

code stubs

meta-controller_2

code stubs

client

code stubs

meta-controller_1

IDL interface
meta-controller_1

IDL interface
meta-controller_2

client
specification

server
specification

011
1011000
0110111
0001101
0110111

figure 7: Application building process.

 Due to the fact that the language used (C++) has no
specific constructions to support reflection. The reflec-
tion is implemented artificially, through the direct activa-
tion to the meta-method, in the client code. The use of a
language supporting reflection, as is the case with Open
C++ [6], might eliminate this problem, but in this case,
the IDL compiler of the CORBA environment used
should support this language.

6. Considerations about the results

 Redundancies and fault tolerance implementations
can follow several approaches [7]. The implementation
of fault tolerance techniques by means of runtime support
offers on the application level some degree of transpar-
ency concerning the coordination aspects of the tech-
nique used. The disadvantage is that once the fault as-
sumptions and the replication technique are chosen in
configuration time, we will have defined a specific exe-
cution support. The approaches of library and languages
for the implementation bring aspects of coordination to
the programmer level, without, however, separating them
from functional application aspects.
 Computational reflection permits independence of
the replica codes in relation to the coordination proto-
cols, leading to a greater flexibility in the system: chang-
ing the technique or altering it by meeting desired de-
grees of fault tolerance, may simply result in switching
the coordination protocols on the meta level, involving
no alteration in application algorithms or in the run-time
support what is suitable in open systems. The use of the
reflective computing for implementing fault tolerance
techniques is proposed in [3] [7], and the separation
between the coordination and the replicas has already
been recommended in [17].
 The model presented was used for implementing the
active competitive replication protocol, described in
section 2. The implementation carried out makes inten-
sive use of the Electra support facilities, which makes
easier the coordination needs of the technique imple-
mented. Furthermore, the uses of a CORBA platform has
allowed the implementation of our application on an
heterogeneous system (local network of machines run-
ning SunOS 4.X and Solaris), facilitating aspects of in-
teroperability.
 The integration structure proposed has proved to be
quite flexible, other replication techniques can be easily
implemented. Up to now, we have implemented the pri-
mary/secondary , leader/followers and cyclic redundancy
techniques, using the same integration model. The neces-
sary changes for the substitution of replication techniques
in the integration model are limited to the IDL meta-
controller interface and their codes that implement the
coordination protocols.
 These replication models were applied in the im-
plementation of a multimedia application (animation
viewer accepting the MPEG format). Simulations of
crashes were carried out, utilizing these implementations.
In all these replication techniques utilized, the continuity
of service was obtained in case of failures, since the
premises of each technique were respected. At present,
we are working out detailed measurements on the per-
formance of the replication techniques cited using the
Electra platform. We are also porting our work to the

Orbix+Isis platform [10].

7. Conclusion

 An integration model for replication techniques in
open distributed systems was presented in this article.
The use of computational reflection concepts makes it
possible to obtain the necessary flexibility for developing
and implementing different replication models for fault
tolerance in these environments.
 Within this context, the work presented in this arti-
cle continues at present in various directions. The valida-
tion of the model proposed through application in real
situations and the incorporation of language construc-
tions in terms of facilitating the programming of the
reflective model are some of the current activities involv-
ing this work.
 The programming model presented in this article is
part of a cooperative research project, sponsored by the
brazilian state agency CNPq (PROTEM-CC project), and
has as its aim to build an object-oriented environment
that supports distributed applications with requirements
of real-time and fault tolerance.

Acknowledgment

 We would thank S. Maffeis, author of the Electra
system [14], for his kind attention helping us to solve our
main difficulties in the beginning of this work.

References

[1] E. Oskiewicz, N. Edwards, “A Model for Interface

Groups” , ANSA Phase III technical report
APM.1002.01, Cambridge-UK, may 1994.

[2] R. M. Adler, “Group-Oriented Coordination Extensions
to OMG´s OMA/CORBA” , OMG Presentation, San
Jose - CA, June 1995.

[3] G. Agha, S. Frolund, R. Panwar, D. Sturman, “A Lin-
guistic Framework for Dynamic Composition of De-
pendability Protocols”, Proceedings of the DCCA-3,
1993.

[4] K. Birman, T. Joseph, F. Schmuck, “ISIS - A Distrib-
uted Programming Users Guide and Reference Man-
ual” , The ISIS Project, Department of Computer Science,
Cornell University, Ithaca - NY, march 1988.

[5] K. P. Birman, "The Process Group Approach to Reli-
able Distributed Computing" , Technical Report TR 91-
1216, Cornell University Computer Science Department,
Ithaca, N.Y., July 1991.

[6] S. Chiba, “Open C++ Programmer’s Guide”, Technical
Report 93-3, Department of Information Science, Univer-
sity of Tokio, 1993.

[7] J. Fabre, V. Nicomette, T. Pérennou, R. J. Stroud and Z.
Wu, “Implementing Fault Tolerant Applications using

Reflective Object-Oriented Programming”, Proceed-
ings of the 25th IEEE International Symposium on Fault-
Tolerant Computing, Pasadena (CA), June 1995.

[8] J. Fraga, J.-M. Farines, O. Furtado, F. Siqueira, “A pro-
gramming model for real-time applications in open
distributed systems”. Proc. of the 2nd IEEE Workshop
on Future Trends in Distributed Computing Systems, au-
gust 1995.

[9] O. Hagsand, H. Herzog, K.P. Birman, R. Cooper, “Ob-
ject-Oriented Reliable Distributed Computing”, 2nd
IEEE International Workshop on Object-Orientation in
Operational Systems, 1992.

[10] Isis Distributed Systems Inc., IONA Technologies, Ltd.
"Orbix+Isis Programmer’s Guide" , 1995. Document
D070-00.

[11] Isis Distributed Systems Inc., "RDO/C++ Tutorial
Release 1.0.3", Apr. 1994.

[12] M. C. Little, “Object Replication in a Distributed
System”, PhD. Thesis, University of Newcastle upon
Tyne Computing Laboratory, September 1991.

[13] P. Maes, “Concepts and Experiments in Computa-
tional Reflection” , OOPSLA 87 Proceedings, pp. 147-
156, October 1987.

[14] S. Maffeis, "Adding Group Communication and Fault-
Tolerance to CORBA", In Proceedings of the 1995
USENIX Conference on Object-Oriented Technologies,
Monterey - CA, June 1995.

[15] Object Management Group, "The Common Object
Request Broker: Architecture and Specification", Re-
vision 1.2, OMG Document, December 1993.

[16] Object Management Group, “IDL C++ Language Map-
ping Specification”, OMG Document 94-9-14, 1994.

[17] D. Powell, “Delta-4 Architecture Guide” , Esprit II
P2252, Delta-4 Phase 3, August 1991.

[18] Robbert V. Renesse and Kenneth P. Birman, "Protocol
Composition in Horus" Dept. of Computer Science of
the Cornell University, Mar 1995.

[19] F. B. Schneider, “Implementing Fault-Tolerant Service
Using the State Machine Approach: A Tutorial”,
ACM Computing Survey, 22(4):299-319, Dec 1990.

