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Abstract 
 
 In this paper we evaluate the use of an object-
oriented open platform based on the CORBA standard 
[15] for the implementation of replicated services. To 
improve the flexibility of the implementation, we use a 
reflective approach [13], which allows for separation of 
aspects related to the replication model from those re-
lated exclusively to the service being replicated. This 
separation makes it possible to modify the replication 
protocol according to the fault tolerance level desired, 
without any implications for the application code. 
 
Keywords: fault tolerance, object groups, CORBA, 
computational reflection. 
 

1. Introduction 
 
 Distributed systems have been recently character-
ized by their increase in dimensions and their heterogene-
ity. These systems have adopted the idea of open archi-
tecture, obtaining the interoperability of their components 
by the homogeneity of their corresponding interfaces. An 
effort made in terms of open programming is the CORBA 
standard (Common Object Request Broker Architecture), 
the result of the work of various companies which are 
part of the Object Management Group [15], whose aim is 
the integration of different programming systems based 
on objects. The use of CORBA standards, therefore, 
permits the interaction of objects distributed in the sys-
tem, regardless of their coding languages, machine archi-
tecture or operational systems.  
 The concept of group processing has been intro-
duced in distributed programming models with the aim of 

providing support for cooperative work (groupware), 
making possible an increasing availability of shared re-
sources, or in replicated processing, due to fault toler-
ance. The use of CORBA standards has evolved in recent 
years in terms of incorporating group processing ser-
vices. The Group Server abstractions are object of speci-
fication for inclusion in the OMA architecture [2]. The 
purpose of Group Server is similar to the approach used 
in ANSA (Advanced Networks Systems Architecture) 
[1], presenting a concentrator element in group commu-
nications, which is a handicap in the performance and 
reliability of a system. 
 Furthermore, various prototypes and even products 
of CORBA platforms have been developed, offering 
support to group processing. Specifically, we may men-
tion the ORBs (Object Request Brokers) RDO/C++ [11], 
Orbix+Isis [10] and Electra [14]. These platforms make 
use of tools such as Isis [5] and Horus [18] that provide 
group communication based on the reliable broadcast 
concept. The tools cited above offer more reliable bases 
than the solutions sought in the specifications of Group 
Server in OMG. 
 In this article, we have set out to present our work 
on the integration of replication techniques into an open 
system, according to the patterns of the CORBA pro-
posal, in order to make available mechanisms of fault 
tolerance to the applications distributed on that platform. 
The implementation of replication techniques is backed 
by the use of ORBs presenting a support for group proc-
essing. 
 With the aim of minimizing the replication reflexes 
on the programming of applications, a programming 
model was adopted, based on the computational reflec-
tion [13]. This paradigm permits the complete separation 



of the coordination mechanisms among the replicas from 
the application in itself. This separation, besides simpli-
fying the programming of the replicated application, 
introduces a great flexibility into the system by allowing 
the alteration of the replication protocols, without inter-
fering with the application functionality, or even involv-
ing changes on the level of execution support, which 
would be difficult, considering the nature of open sys-
tems. 
 The programming model presented was used suc-
cessfully in the integration of different replication tech-
niques. As an implementation support, use was made of 
Electra, an ORB with support to process groups. In the 
present article, we will present only the active competi-
tive replication technique described in [17], to illustrate 
the advantages offered by this model in the environment 
under consideration.  
 The article is structured as follows: in section 2 we 
present the active competitive replication model; in sec-
tion 3 we introduce the concepts of computational reflec-
tion and set out to structure the model according to this 
approach; in section 4 we describe the CORBA standard 
and the ORB Electra with its extensions for group sup-
port; finally, in section 5, we present in detail the integra-
tion of the reflective model proposed with the CORBA 
platform utilized and the results obtained in its imple-
mentation. 
 
2. Software component replicated models 
 
 Replication techniques are an alternative that en-
ables services to continue in distributed systems, even 
when failed nodes are present. The unit of replication is a 
software component (objects, processes, etc.), encapsu-
lating data identified as replica state. The replicas are 
distributed among different sites in the network. The 
coordination of the replication defines the way the differ-
ent replicas must interfere in the processing, in terms of 
maintaining the consistency and transparency of the 
whole.  
 The techniques vary according to the degree of 
synchronism and the types of replicas involved. In the 
literature, passive, active and semi-active replication 
models are identified [17]. In the passive replications, a 
privileged replica executes the processing referring to the 
input data, while the others have their states updated by 
the privileged one, using checkpointing (state transfer 
mechanisms). The coordinator-cohort model, presented 
in [4] is an example of this type of replication.  
 In active replication models, all the components 
receive the input data, process them simultaneously and 
produce the same outputs. In these models, identified as 
State Machine, the consistency of the replica state neces-

sarily implies determinism of replica, which can be ob-
tained by consensus about the input data and its order 
[19]. Some authors identify semi-active replications, in 
which, although all the replicas work in competition, only 
one produces the output. The order of the inputs is im-
posed by a privileged replica. The leader-followers tech-
nique described in [17] is an example of semi-active 
replication.  
 In [12] exhaustive studies are carried out on replica-
tion techniques and their implementation aspects. In this 
text we limit ourselves to the active competitive replica-
tion model described in [17]. 
 
2.1 Active competitive replication 
 
 In the competitive replication model all the replicas 
are active but only one responds to a given input data 
request. The main characteristic of this model is the 
competition among the replicas: only the fastest replies to 
the request. The coordination of the technique is distrib-
uted: each replica has an associated controller, responsi-
ble for receiving, broadcasting and comparing messages, 
with the corresponding replica dedicated to request proc-
essings. To guarantee replica consistency, all the mes-
sages among them are transmitted by means of atomic 
broadcasts. The competitive replication model can be 
devised so as to tolerate two sets of faults [17]: timing 
faults, involving semantics of crash, omission and timing 
errors; arbitrary faults, that take in the whole spectrum of 
failure semantics. For clarity and economy of space, we 
shall limit ourselves, in this text, to the first set of faults. 
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figure 1: Competitive replication model for 
  temporization faults. 
 
 Figure 1 illustrates competitive replication, in a 
simplified manner, under the assumption of timing faults. 
In this case, considering the client/server model using a 
replicated server, a client request broadcast in the server 
group is received by the controllers, which send it to the 
corresponding replicas. On receiving the result of a proc-
essing of its associated replica, each controller verifies 
whether it has already received the message with the 
result of the same processing from another controller of 



the group. In the absence of these messages, the control-
ler concatenates an identifier to the result, and broadcasts 
the resulting message to the controllers group. If the 
controller receives its own message first, it finds out that 
its replica is the fastest and therefore is the one responsi-
ble for sending the reply to the client; otherwise its mes-
sage is discarded. This algorithm guarantees that only 
one replica answers to the client request, because all the 
messages broadcast in the group are observed by each 
member in the same relative order (a total order imposed 
by the use of a atomic broadcast protocol).  
 Finally, the broadcast of a message end_of_pro-
cessing, after sending the results to the client, by the 
controller of the fastest replica, closes the processing 
cycle in terms of the client request. This message makes 
it possible to work out strategies to detect faults in the 
fastest replica controller and its substitution by another 
controller for sending results to the client.  
 The protocol shown above covers up errors due to 
timing faults. Concerning treatment of failed elements, 
two detection procedures are foreseen in the original 
literature. [17]: 
 
• A weak coupling is perceived between the controller 

and its replica. In this case, time-out mechanisms are 
maintained in the controller to detect the lack of an 
associated replica ; 

• Competitive replication gives a privilege to the fastest 
replica and, consequently, can lead to considerable 
asynchronism in the set of replicas. This asynchro-
nism is dealt with, by periodically having a rendez-
vous, in which all the controllers broadcast the results 
of their replicas among themselves and the last to 
broadcast is the one which sends the results to the cli-
ent. This rendezvous is limited in time, so as to allow 
for the detection of failed controllers. 

 

3. Reflective structure for the competitive 
 model 
 
 The computational reflection paradigm allows a 
system to execute processing on itself, in order to modify 
its behavior. In [13], the reflective paradigm is intro-
duced into the object oriented programming using the 
meta-objects approach. Here, the functional and non-
functional aspects are separated through the use of base-
objects and meta-objects. A meta-object is associated 
with each base-object. Through their methods, the base-
objects express the application functionalities, while the 
associated meta-objects carry out control procedures that 
determine the behavior of their corresponding base-
objects. The calls to the base-object methods are trapped, 
so as to activate the meta-methods that make it possible 

to modify base-objects behavior or add functionalities to 
their methods.  
 In this study, computational reflection is used to 
develop an integration model for replication techniques 
in open systems. The reflective paradigm allows us to 
assign to the base-object the functionalities of a repli-
cated application, while meta-objects execute replica 
coordination protocols. This model allows the use of 
different replication techniques while the base-objects 
maintain their characteristics; to this end, all that is 
needed is to change the associated meta-objects.  
 The structure proposed for incorporating active 
replication concepts into the reflective processing model 
is presented in figures 2 and 3. Each replica was mapped 
under the form of an base-object, with which a meta-
object, assuming the functionality of controller, is associ-
ated. The competitive replication that we use follows a 
failure semantic of crash. Since we accept a strong cou-
pling between the controller and the associated replica, 
the errors generated will be attributed to both; in the 
crash failure, the controller and associated replica will 
cease their execution. 
 

request

reply

trap
communication

among
controllers

request reply

client

meta-controller

replica_base

 
figure 2: Reflective structure for the active 
  competitive replication model. 
 
 A request multicast by the client into a group of 
replicas is trapped to the respective controllers, that, in 
turn, have to interact in order to implement the coordina-
tion protocols of the replication scheme used. The actions 
of a controller are succinctly described in the code of 
figure 3. Each base-object method is associated with a 
meta-method in the controller, responsible for its activa-
tion (method base 1 and meta method 1, in the figure 
cited). 
 The meta control method implements the coordina-
tion protocol among the replicas described in the preced-
ing section. The basic behavior of the algorithm consists 
of iterating between the choice of a replica for the reply 
to the client (first) and the closing procedure, until 
there is a confirmation that the reply has actually been 
sent (concluded condition of the while loop). It is 
simple to verify the termination of the request processing: 
if, after multicasting the method closing, the fastest 



replica (first) is still alive (into the membership), then 
the reply was actually sent. Otherwise, a new replica is 
chosen and the process is repeated. This procedure elimi-
nates the need to multicast a message about the end of the 
processing. In the algorithm, the activations of the meth-
ods multicast_id and closing are transmitted to 
all the replicas of the group, in a totally ordered manner. 
 
class meta_controller {
   // declaration of variables

   method meta_method_1 (parameters) {
      method_base_1 (parameters);
      meta_control  (parameters);
   };

   ... // declaration of further meta-methods

   // implementation of the meta-control method
   method meta_control (parameters) {
      first := null ;
      concluded := false ;
      my_id := get_system_id () ;
      while not concluded do
         if (first = null) then
            group.multicast_id (my_id);
         end ;
         if (first = my_id) then
            // first replica to reply
            return ; // return reply to the client
         else
            if not concluded then
               group.closing () ;
            end ;
         end ;
      end ;
   }

   method multicast_id (int id) {
      if (first = null) then
         first := id ; // id of the fastest replica
      end ;
   }

   method closing () {
      if (first ∈ membership) then
         concluded := true ;
      end ;
      first := null ;
   }  

 
figure 3: Competitive replication meta-controller. 
 
 Both the competitive replication model and the 
support utilized give a privilege to the fastest replica, 
what may cause a lack of synchronism in the slower rep-
licas. The periodical execution of the global rendezvous 
technique, proposed in [17] is not used here, due to its 
cost implications in the system performance. The solution 
adopted is based on the property of virtual synchronism 
[5], maintained by the lower layers of the support used in 
this implementation. In this way, as long as the replica 
belongs to the membership of the group, it will have the 
same messages in the same order as the others. When the 
input buffer in the communication support associated 

with the slowest coordinator/replica pair, reaches the 
limit of its capacity, the support withdraws the replica 
from the membership. A replica can detect its exclusion 
and reintegrate itself to the group, through the view 
change (view) method, defined in the interface BOA of 
Electra and activated automatically by the support for 
each change in the membership. The activation of this 
method is not preemptive, occurring only after process-
ing the current method. The body of the method view 
change is defined according to the application charac-
teristics. In this way, in our implementation we carried 
out a membership test in the body of this method: if the 
replica has been excluded (view.number=1), the 
BOA function join (group) is activated, thereby effect-
ing its reintegration into the group.  
 Regarding the crashes that may occasionally occur 
in the evolution of the system, our implementation pro-
vides procedures for recuperating the degree of replica-
tion. If the number of active replicas in the group falls 
below a preestablished limit, the oldest replica takes the 
initiative of producing new replicas, in this way, reestab-
lishing the ideal number of replicas. The code referring to 
these recuperation procedures is based on a membership 
test (view.number < quorum minimum), and it is 
inserted into the view change method cited above. 
 Our replica state recovery approach differs from that 
proposed in [7], in which the recovery occur through 
meta-methods making updates in public attributes of their 
associated replicas, with the use of  appropriated coordi-
nation protocols. In our approach, we utilize more sup-
port-provided primitives and fewer coordination proto-
cols, what simplifies the state recoveries. The state re-
covery, in our system, is based on the primitive join, 
offered by the support, and activated through the view 
change method.  
 In object-oriented languages, each meta-object is an 
instance of a class on the meta-level that defines its struc-
ture and behavior. In this article we limit ourselves to 
talking only about meta-objects because we are interested 
in emphasizing the aspects of execution time of the meta-
objects approach. In [8], these aspects added to other 
referents to the use of the same approach in real-time 
applications, are approached within the structure of a 
language that is being developed. 
 

4. The CORBA support utilized  
 
 The implementation of the replication model pre-
sented in section 3 presupposes the existence of an run-
time support that offers facilities for programming dis-
tributed objects. A platform conceived based on the con-
cepts of the CORBA (Common Object Request Broker 
Architecture) standard is to provide the necessary support 



for distributed object-oriented applications. In this sec-
tion we briefly describe the Electra system, a CORBA 
platform utilized in our implementations. 
 
4.1 CORBA architecture 
 

 CORBA specifications form a set of standards and 
concepts proposed for open systems by OMG (Object 
Management Group) [15]. CORBA architecture is com-
posed of an ORB (Object Request Broker) kernel, that 
implements communication abstractions among distrib-
uted objects and an interface management structure that 
contains static and dynamic invocation interfaces, object 
adapters, interface and implementation repositories (fig-
ure 4). 
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figure 4: The CORBA architecture. 
 
 In a CORBA environment, each object has its inter-
face specified through an Interface Description Language 
(IDL), a declarative language with syntax and predefined 
types based on the language C++. The interactions follow 
the client/server model. The CORBA client, in a service 
request, utilizes stubs generated in the compilation of the 
IDL specification of the server object, or builds this re-
quest, using the dynamic invocation interface DII. To 
allow for dynamic invocations, object interfaces must be 
stored in the interface repository. The client’s request is 
transmitted over the network, using the ORB, that trans-
fers the control to the object adapter to activate the op-
eration in the implementation of the server object, by 
means of the IDL skeletons. 
 The original CORBA proposal does not provide for 
adequate support mechanisms to groups of objects. To 
fill in this gap, some extensions to the CORBA standard 
have been proposed in terms of incorporating this con-
cept. Electra [14] is a product of these efforts. 
 
 
 
 
4.2 Electra  

 
 Electra [14] is an Object Request Broker (ORB), 
compatible with the CORBA standard [15], presenting 
support to object groups. This platform combines the 
benefits of the CORBA standard with the power of lower 
level tools for group processing, such as Horus [18], Isis 
[5], and others. Interactions in Electra can occur as reli-
able multicast or  point-to-point communications. Order-
ing mechanisms (total, causal and fifo) are offered to 
guarantee consistency among members of the object 
group. The client makes use of a given method invoca-
tion model, regardless of whether the server is a single 
object or a group. These invocations may be synchro-
nous, asynchronous (one-way) or semi-synchronous 
(deferred-synchronously), through static or dynamic 
interfaces. On multicasting a method call, through a 
CORBA static or dynamic invocation interface, the pro-
grammer has at his disposal two modes of group commu-
nication in Electra: 
 
• Transparent: the group is seen as a simple and com-

pletely available object, and the client only receives 
the final result furnished by the group; 

• Non-transparent: permits access, in an invocation, to 
the results of each individual member of the group of 
objects. 

 
 In the interface BOA (Basic Object Adapter) of 
Electra, services referring to group management are 
added, such as creating a group of objects, including 
objects in the group or excluding them from it, selecting 
a protocol of multicast, membership and transfer of state, 
and so on. These services are provided by the lower level 
tools used, such as Horus or Isis. 
  
5. The integration model of replication 
 techniques in open systems 
 
 In the previous section, we could see that the 
CORBA/Electra platform offers adequate support for 
group processing. In this section, we describe the integra-
tion of the reflective model proposed in section 3 over 
the Electra system. 
 
5.1 The integration model in CORBA platforms 
 
 Figure 5 explicits the integration model of replica-
tion techniques within the CORBA context. The access to 
the support provided by a CORBA platform is available 
both to the server and to the client by entities represented 
as meta-objects (client and server) and identified generi-
cally as meta-communication. These entities are actually 
nothing more than the set of stubs for the client and 



server, stubs for the communication among the replicas 
and the BOA interfaces providing the group manage-
ment. All these stubs are generated by the translation of 
the IDL [16] declaration of a server object. The use of 
the term “abstract object” given to meta-communication 
on the model follows some authors [9] and has the sense 
of a simple separation for greater clarity. In reality, these 
interfaces are generated in Electra as a set of methods 
that will be composed of multiple inheritance in the client 
and controller meta-objects (section 5.2). 
 In the model the client introduces itself within a 
client-base structure, that represents the application be-
havior, and a meta-client, that does not present an active 
function in our implementation, but that could be used in 
managing the replicated client, or to implement mecha-
nisms for handling exceptions in the client. The structure 
of each server replica is similar to that of the client: a 
replica-base object, carrying out the replicated service, 
and a meta-controller, responsible for executing the 
coordination protocol of the replication, like one de-
scribed in figure 3. 
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figure 5: Structure of the model on a CORBA 
  support. 
 
 The numbered arrows in figure 5 indicate the normal 
way of a client request: The request made by the client 
base (1) is then broadcast using a stub appropriated in the 
client meta-communication. In each replica, the meta-
communication, by means of a local stub, receives the 
request and transfers it to the meta-controller (2), which 
then activates the local replica (3). On receiving the reply 
(4), the meta-server executes the coordination protocol, 
by means of the meta-communication so as to interact 
with other replicas. The processing and interactions on 
the level of the meta-controllers are conditioned at this 
time by the replication model utilized. Later, the reply is 
then sent back to the client (5 and 6).  
 This model can be used in other replication tech-
niques, the differences centering mainly in server repli-
cated meta-controllers. In some techniques the meta-
communication entities may gain functionality, besides 
that of concentrating methods of access to CORBA sup-
porting services. For example, in the use of active repli-

cas with voter and adjuster mechanisms, the implementa-
tion of voting or adjustment can be programmed on the 
client’s side in a more simplified form. Transparency 
could be achieved in this case, implementing these 
mechanisms in the client meta-communication entity, 
which, with the addition of this functionality, takes on the 
characteristics of a real object. 
  
5.2 Building replicated services following 
 the integration model 
 
 The first step in the building of a system on a 
CORBA/Electra platform is a description in IDL of the 
meta-controller interface, following the specification of 
the replicated service provided by the server to the client. 
Besides this interface, due to some limitations imposed 
by the Electra, it is necessary to declare a second one, for 
implementing the replica coordination, composed by 
methods that provide communications among replicas. 
 

// IDL

interface meta_controller_1
{
   // Description of the data types employed

   // Description of the server methods
   boolean meta_method_1 (parameters);
   ...
   boolean meta_method_n (parameters);
};

interface meta_controlller_2
{
   // Description of the meta_controller methods
   boolean broadcast_id (in int id);
   boolean closing ();
};

 
 
figure 6: IDL interface of the replicated server. 
 
 Figure 6 presents both IDL declarations of a repli-
cated server in according to the specifications described 
in figure 3. The interface meta controller_1 allows cli-
ents access to the services offered, while the interface 
meta controller 2 declares the methods necessary for 
intra-replica interactions. It should be pointed out that 
both interfaces are actually two facets of the same server 
(or, in our case, of the same group of objects). 
 In compile-time, the Electra/IDL compiler automati-
cally generates the whole support for communication 
(stubs) among the entities involved, including, as well, 
the functionalities for group management of the BOA (in 
Electra, every object is an instance of a sub-class of the 
BOA class). The compiler also generates files containing 



structures (declarations of variables and methods) for 
including the client and server codes. The programmer, 
then, is responsible for the implementation of the replicas 
(base-objects) and the replica coordination suitable 
(meta-objects), by filling  the bodies of the methods de-
clared in the interfaces. With this implementation 
scheme, illustrated in figure 7, the client and server base-
objects are kept devoid of all activities that are not re-
lated to the application itself. All aspects related to the 
replica coordination and the interactions in the CORBA 
context, are concentrated at the meta-level. 
 Our implementation was carried on a UNIX plat-
form, where each associated pair base-object/meta-object 
was intended to share the same process, making the inter-
actions between them local, without the need for ORB. 
The needs for concurrence between base-objects and 
meta-objects within a process are satisfied by the use of a 
threads library offered by the Electra support. However, 
the current version, (1.0) of this platform does not sup-
port pre-emptive threads, which limits the degree of con-
currence in dealing with client requests. As a result of 
this restriction, it becomes difficult to implement replica-
tion techniques, which has forced us to seek alternative 
implementation solutions. The solution adopted consists 
of separating the functionalities of the meta-controller 
into two UNIX processes. 
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figure 7: Application building process. 
 
 Due to the fact that the language used (C++) has no 
specific constructions to support reflection. The reflec-
tion is implemented artificially, through the direct activa-
tion to the meta-method, in the client code. The use of a 
language supporting reflection, as is the case with Open 
C++ [6], might eliminate this problem, but in this case, 
the IDL compiler of the CORBA environment used 
should support this language. 
 

6. Considerations about the results 

 
 Redundancies and fault tolerance implementations 
can follow several approaches [7]. The implementation 
of fault tolerance techniques by means of runtime support 
offers on the application level some degree of transpar-
ency concerning the coordination aspects of the tech-
nique used. The disadvantage is that once the fault as-
sumptions  and the replication technique are chosen in 
configuration time, we will have defined a specific exe-
cution support. The approaches of library and languages 
for the implementation bring aspects of coordination to 
the programmer level, without, however, separating them 
from functional application aspects. 
 Computational reflection permits independence of 
the replica codes in relation to the coordination proto-
cols, leading to a greater flexibility in the system: chang-
ing the technique or altering it by meeting desired de-
grees of fault tolerance, may simply result in switching 
the coordination protocols on the meta level, involving 
no alteration in application algorithms or in the run-time 
support what is suitable in open systems. The use of the 
reflective computing for implementing fault tolerance 
techniques is proposed in [3] [7], and the separation 
between the coordination and the replicas has already 
been recommended in [17]. 
 The model presented was used for implementing the 
active competitive replication protocol, described in 
section 2. The implementation carried out makes inten-
sive use of the Electra support facilities, which makes 
easier the coordination needs of the technique imple-
mented. Furthermore, the uses of a CORBA platform has 
allowed the implementation of our application on an 
heterogeneous system (local network of machines run-
ning SunOS 4.X and Solaris), facilitating aspects of in-
teroperability. 
 The integration structure proposed has proved to be 
quite flexible, other replication techniques can be easily 
implemented. Up to now, we have implemented the pri-
mary/secondary , leader/followers and cyclic redundancy 
techniques, using the same integration model. The neces-
sary changes for the substitution of replication techniques 
in the integration model are limited to the IDL meta-
controller interface and their codes that implement the 
coordination protocols.  
 These replication models were applied in the im-
plementation of a multimedia application (animation 
viewer accepting the MPEG format). Simulations of 
crashes were carried out, utilizing these implementations. 
In all these replication techniques utilized, the continuity 
of service was obtained in case of failures, since the 
premises of each technique were respected. At present, 
we are working out detailed measurements on the per-
formance of the replication techniques cited using the 
Electra platform. We are also porting our work to the 



Orbix+Isis platform [10]. 
 

7. Conclusion 
 
 An integration model for replication techniques in 
open distributed systems was presented in this article. 
The use of computational reflection concepts makes it 
possible to obtain the necessary flexibility for developing 
and implementing different replication models for fault 
tolerance in these environments. 
 Within this context, the work presented in this arti-
cle continues at present in various directions. The valida-
tion of the model proposed through application in real 
situations and the incorporation of language construc-
tions in terms of facilitating the programming of the 
reflective model are some of the current activities involv-
ing this work.  
 The programming model presented in this article is 
part of a cooperative research project,  sponsored by the 
brazilian state agency CNPq (PROTEM-CC project), and  
has as its aim to build an object-oriented environment 
that supports distributed applications with requirements 
of real-time and fault tolerance. 
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