A Distributed Kernel for Virtual Time Driven Applications

Philippe Ingels, Carlos Maziero*, Michel Raynal
Team ADP - IRISA?
Campus de Beaulieu — 35042 Rennes cedex — France
< Name>Qirisa.fr

Abstract

The advent of distributed memory parallel machines
turns feasible the design and implementation of dedi-
cated environments for distributed applications. This
paper addresses such a realization by presenting a dis-
tributed kernel, called FLORIA, whose aim is to pro-
vide a virtual time environment for application pro-
gramns (distributed discrele eveni simulation is the
most known of the applications based on such a vir-
tual time - the so called simulation time - and con-
sequently constitutes the paradigm of this class). This
paper presents first basic features of the virtual time
concept and then describes the time-related aspects of
the implementation of a distributed kernel dedicated to
wrtual time driven applications.

1 Introduction

Uses of computers can be roughly divided into two cat-
egories according to the way they take the time into
account, namely the applications whose semantics is
based on some notion of time and those that do not.
Real-time applications are the most famous represen-
tative of the first category; numeric applications are
an example of the second one. Specificities of each
category have to be taken into account by the ded-
icated underlying operating system; actually, in the
first category the physical time is a programming ob-
ject that drives the application and that can be used
by it, whereas in the second category the time appears
only as an implementation support.

Thus for real-time applications, physical time, de-
fined by the environment, constitutes the point of ref-
erence common to all the processes that allow them
to synchronize the ones with the others and with the
environment in order to carry out the desired control.
This way of using time, applied to its logical aspects,
has given rise to the virtual time concept [3]. Such
a context is so characterized by a global logical clock,
common to all the processes; its progress is defined by

*This author is supported by a fellowship from the CAPES
Agency of the Government of Brazil.

tThis work has been partly funded by the french national
project C3 on concurrency and distribution.

0-8186-2812-X/92 $03.00 © 1992 IEEE

457

application relevant rules 8 nd not by external phys-
ical phenomenon as in real-time applications). This
clock allows to manage the computation, to control
its progress, to timestamp events, to measure virtual
time durations, etc.

The FLORIA project is devoted to the definition,
and to the associated implementation on a distributed
memory parallel machine, of a distributed kernel for
virtual time driven applications. This paper is com-
posed of two main parts; the first one (§2) states the
properties offered to user programs by the virtual time
concept; the second one (§3) presents the correspond-
ing distributed system kernel we have implemented on
an Intel iPSC/2 hypercube.

2 The virtual time provided by
the kernel

2.1 Virtual time properties

A virtual time driven application is structured as
a network of processes communicating though FIFO
channels. Each process is endowed with input chan-
nels from which it can receive messages, and output
channels on which it can send messages.

The two main features of the virtual time offered
by the kernel can be expressed as temporal proper-
ties that can be used by processes of an application
program:

P1: All the application processes have the same per-
ception of the virtual time (logical synchronism
of the processes), that is to say, the virtual time
is the same and progresses logically at the same
speed for all of them.

P2: Within the virtual time frame, any message sent
by a process at the date ¢ is received by its desti-

nation process at the same date t.

The processes interact only by messages. Conse-
quently, virtual time constitutes the only mechanism
to synchronize processes.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on June 19, 2009 at 02:28 from IEEE Xplore. Restrictions apply.

mailto:Name>@irisa.fr

2.2 The kernel interface

The kernel can be seen by a process P; as a machine
working in virtual time; in particular it provides a
global virtual clock gve which gives the current vir-
tual date; for this, the kernel supplies each process
P; on the one hand with a local representation of the
global virtual clock gvc, and on the other hand with all
messages sent to it till the current virtual date (which
is by definition the value of guc).

So as all the messages sent to a process P; at a
time less than gvc are known by P;, 1t can consumes
them or not (the effective message consuming depends
on its own behaviour): these messages are put in a
queue called known;, ordered by increasing sending
dates. The kernel offers some primitives to access this
queue (Empty, First, Last, Next (msg), Previous
(rnsg)) and to take messages from 1t (Take (msg)).
These operations have a zero duration in virtual time.
So at virtual timet the queue known; contains all the
messages sent to P; before or at the date t, not yet
consumed by P; with the help of the primitive Take
(msy).

In addition to the message sending primitive, the
kernel provides the processes with the following prim-
itives, which have non-zero durations with respect to
virtual time:

e Wait (gve = t) : the invoking process progresses
without interruption till the value of the global
virtual clock is ¢.

e Wait msg : the process is blocked till a new
message is received (then the global virtual clock
value is equal to the message sending date - prop-
erty P2 - and the message is put in known;; it
can be consumed by Take (msg)).

e Wait (gvc = t) or msg : the progress of the
invoking process is blocked till the global virtual
clock value is ¢, unless a message m is received by
the date ¢ (in other words, that is a waiting for a
message with a deadline t).

All the other operations a process can execute have
zero duration with respect to the virtual time.

Designing and implementing a kernel consists In
building a basic software layer providing a set of prim-
itives general enough to solve a class of problems.
These kernel primitives are not to be used directly
by the user program. For example, if one is interested
in designing queueing network simulation programs,
he/she will use a well-suited simulation language, and
a compiler will translate the statements in which vir-
tual time occurs into calls to the kernel primitives.
More generally, operations offered to the user are imn-
plemented with calls to the previous basic primitives.
So for example waiting, by a process P;, for a message
according to the FIFO discipline would be realized
with calls to Empty, Wait msg, Take (msg) and
First.

458

3 Kernel implementation

3.1 Objectives

Building a virtual time kernel on an asynchronous dis-
tributed memory parallel machine demands to solve
the two following important problems: the assignment
of the processes to the processors and the consistent
implementation of a virtual-time run-time. In the cur-
rent version we concentrated our efforts only on the
run-time needed by the virtual time; this one has to
be consistent, i.e. ensure properties P1 and P2, and
it has to be efficient in order to have the best possible
computing time (measured in real time).

The kernel has been implemented using the lan-
guage C, on a 64 processors Intel hypercube iPSC/2.
It is made of two parts: the communication layer that
ensures the property P2 and, in conjunction with this
communication layer, process managers that drive the
progress of each process as independently as possible.

3.2 The Communication layer

Here the property to ensure is P2, namely every mes-
sage sent at virtual time ¢ has to be delivered to its
destination process at the same virtual timet. In order
to implement it first each message piggybacks a times-
tamp (its sending virtual time) and second the com-
munication layer delivers to each process the messages
received according to the increasing timestamp order.
This rule ensures the consistent delivery of messages
to a process according to the virtual time progress (in
other words, a process cannot backtracks in virtual
time by receiving first a message sent at virtual date ¢
and after another message sent at date ¢’ with t’ < ¢)
2,3, 5).

[This] simple rule ensures safety of deliveries but is
not sufficient to ensure their liveness (i.e. each mes-
sage that can be delivered will be delivered); deadlock
situations are actually possible [2, 3, 5]. Let us con-
sider the figure 1, where process P;, endowed with two
input channels, has received three messages m;, ms et
ms with respective timestamps such that ¢; < 3 < ¢3.

Figure 1: Deadlock in message delivering

The communication layer can safely deliver m; at vir-
tual time ¢, then my at time t5, but cannot deliver
my at time t3 : because process P; can send to P
a message mj at virtual time t, with ¢t < tj < i3,
and in that case m) has to be delivered to P; before
ma; in other words, while a message with a timestamp
greater than ¢3 has not been received from P;, the ker-
nel cannot safely delivers m3 to P;. Consequently a
deadlock is possible. To solve this problem, two class
of techniques have been proposed: the optimistic ones
[3] and the conservative ones [1].

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on June 19, 2009 at 02:28 from IEEE Xplore. Restrictions apply.

The FLORIA kernel implements a conservative ap-
proach to prevent deadlock [5] : additional control
messages, called NULL messages, are used. When a
process P; knows it will not send an application mes-
sage on some channel by virtual time ¢, the kernel
sends the control message (NULL,t); this anticipa-
tion on the future of output channels allows a look-
ahead for receiving processes that allow them to pre-
vent deadlocks; the higher the value of ¢ is, the more
efficient the implementation is [2]. The kernel offers
to a process a primitive to define its look-ahead value.

Let the following variables, the process P; being
endowed with k; input channels : in;[1], ..., ini(ki] :

e channel_time(in;[z]) : the timestamp of the last
(application or NULL) message received by P
on its input channel in;{z].

e ec; = miny<o<k, (channel time(in;(z])) ; that is
actually a local clock associated to the set of input
channels of P;; this entry clock is managed by the
communication layer.

Then the communication layer can safely delivers to
P; (in their timestamp order) all the messages (m,t)
received that have a timestamp ¢ less than or equal
to ec;; in other words this value represents the date
upperbound till which the content of input channels
of a process P; are safely known and consequently can
be delivered to it (put in known;) according to the
progress of the virtual time.

3.3 Process managers

Each application process P; is endowed with a local
representation lc¢; of the global virtual clock guve; in
other words, l¢; = t means that P; has progressed
till the virtual date t. In fact it is possible to have,
at a given execution time, l¢; # lc; without violating
property P1; to ensure this property it 1s sufficient
that every process P; at virtual date ¢ (le; = t) does
not perceive another application process at a different
virtual date.

If for P; the current virtual time is ¢ ({¢e; =),
ec; > 1 is always verified, thanks to the virtual time
communication layer (§3.2) which put in known; all
the messages (m,t') such as t/ < le; = t. We re-
mind that P; is free to take or not the messages from
known;, that depends on its own program text.

In fact these two virtual clocks l¢; (process clock)
and ec; (entry clock) of a process P; need not be tightly
synchronized; a loose synchromization tiproves exe-
cution efficiency, the kernel do only the synchroniza-
tion needed to ensure properties P1 and P2 in virtual
time. The following describes this loose synchroniza-
tion for two primitives whose semantics 1s based on
virtual time (the third one is only a combination of
those two ones).

3.3.1 Implementation of a waiting for a dead-

line

When a process executes Wait (gve =), it continues
with I¢; = t. We remind that by definition the known;

459

queue contains, at time ¢, all the messages sent to P;
before ¢ and not yet consumed by the Take (msg)
primitive. With this implementation, which consists
simply to do the assignment lc; := t, this property
can be violated. But the analysis of the two following
situations shows that it can always be restored in such
a way that this temporary inconsistency can never be
perceived by the process P;.

e l¢; < ec; : all the messages (m,t’) sent in the past
of P; (i.e. such that t' < lc;) are available in the
queue known; queue (figure 3.3.1); P; can access
and take them, according to its program text.

process

past future virtual time

¢ unknown

input channels

known;

Figure 2: situation l¢; < ec;

e lc; > ec;: in that case, a part of the messages
sent in the past of P; (the messages (m,t’) such
as e¢; < t' < lc;) 1s not really available, hence
the queue known; is not completely known (white
part in figure 3.3.1).

Only the messages (m,t') such as t' < ec; are
really available 1n known;. In this situation we
could block P;’s execution till le; < ec;, but that
is not always necessary. (for example, when F;
don’t use messages sent between ec; and lc;, as it
is the case with a simulation program of a FIFO
server that has still to serve client requests ar-
rived before ec;). We have chosen to allow F; to
continue its execution in this situation; but, in
order to be consistent, if P; calls an access prim-
itive to known; (First, Last, etc), the call will
be blocked if it tries to access the unknown part
of known; (the white part in figure 3.3.1) and
the execution of P; will continue when the vir-
tual time communication layer delivers to it the
needed messages; so the property associated to
the definition of known; will always be verified
from P;’s point of view.

past future virtual time
known unknown
] J input channels
ecy
known;

Figure 3: situation lc; > ec;

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on June 19, 2009 at 02:28 from IEEE Xplore. Restrictions apply.

3.3.2 Implementation of an unconditional
waiting for a message

The execution by P; of a Wait msg primitive always
provokes the progress of P;’s virtual clock. P; can be
blocked or not, according to the existence of a message
in its input channels:

e I(m,t) [le; < t < ec; : in this case the older
message (i, t) is put into known; and l¢; is moved
forward to t (P; can then consume it with the
kernel primitive Take (msg), §2.2).

e Am,t) | le; < t < ec; : the process is blocked
and its execution will continue only when a new
message is delivered to it by the virtual time com-
munication layer; then the same treatment as in
the previous case can be applied.

4 Conclusion

A first version of the FLORIA kernel is now imple-
mented; the debugging and assessment process is on.
Various queueing networks simulation programs have
been executed on top of this kernel. These experi-
ments show that the primitives offered by the FLO-
RIA kernel provides an efficient and simple run-time
for this kind of virtual-time based applications.

At a more general level, the design of a distributed
kernel suited to virtual time driven applications is an
interesting research area, thanks to the synchroniza-
tion constraints defined on communications (property
P2 : a message send at time t is received at the
same time t); we call this property VTO (virtual time
ordering). The potential causality relation between
events, defined by Lamport [4] and noted ”—”, allows
to model a distributed computation as a partial or-
der on the events produced that shows only causalities
between them. Some system kernels offer the causal
communication [6] (noted CO, for ”causal ordering”)
as the basic communication scheme; CO is defined in
the following way : if send(m) and send(my) are two
sendings of messages to the same destination process
P; and if send(m,) — send(my), then m; must be
delivered to P; before m; (in the case m; and m; are
sent by the same process, the CO property is reduced
to the FIFO property). It is easy to see that for com-
munications we have VTO property = CO property
= FIFO property. That suggests a thorough study of
the properties of basic communication schemes. The
FLORIA kernel is a concrete step in this direction.

References

1] K.M. Chandy and J. Misra. Distributed simula-
tion: a case study in design and verification of dis-
tributed programs. IEEE Trans. on Sofl. Eng.,
Vol. 5, No 5, 440-452, September 1979.

[2] R. M. Fujimoto. Parallel discrete event simulation.
Commaunications of ACM, 33:31-53, October 1990.

(3] D. Jefferson. Virtual time. ACM Toplas, Vol. 7,
No 3, 404-425, July 1985.

{4] L. Lamport. Time, clocks and the ordering of
events in a distributed system. Communications
of the ACM, 21(7):558-565, July 1978.

[5] J. Misra. Distributed discrete-event simulation.
Computing Surveys, Vol. 18, No 1, 39-65, March
1986.

[6] M. Raynal, A. Schiper, and S. Toueg. The causal
ordering abstraction and a simple way to imple-
ment it. Inf. Proc. Letters, 30:343-350, 1991.

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on June 19, 2009 at 02:28 from IEEE Xplore. Restrictions apply.

