
I I

A Distributed Kernel for Virtual Time Driven Applications

Philippe Ingels, Carlos Maziero*, Michel Raynal
Team ADP - IRISAt

Campus de Beaulieu - 35042 Rennes cedex - France
< Name>@irisa.fr

Abstract

The advent of distributed m e m o r y parallel muchines
turns feasible the design and implementat ion of dedi-
cated environments for distributed applications. This
puper addresses such a realization b y present iny a dis-
tributed kernel, called FLORIA, whose uim is t o pro-
vide a virtiial t i m e environment f o r , application pro-
yr'ums (distributed discrete eveiit simulation is the
most krwwn of the applications based on such a vir-
id t ime - the so called s i m u l a t i o n t i m e - and con-
sequently constatutes the paradigm of this class). This
paper presents first basic feutures of the virtual t i m e
concept and then describes the time-related aspects of
the amplementataon of a distributed kernel dedicuted to
virtual t ime driven applications.

1 Introduction
IJses of computers can be roughly divided into two cat-
egories according to the way they take the time into
account, namely the applications whose semalitics is
ba.sed oii soine notion of tirne and tliose that tlo irot.
Keal-tiiiie applications are the most, faiiious represell-
t.ative of the first category; numeric applications are
a i l example of the second one. Specificities of each
category have to be taken into account by the ded-
icated underlying operating system; actually, in the
first category the physical time is a programming ob-
ject, that drives the application and that can be used
by i t , whereas in the second category the time appears
only as an implementation support.

Thus for real-time applications, physical time, de-
fined by the environment, constitutes the point, of ref-
ereiice common to all the processes that allow them
tjo synchronize the ones with the others and with the
enviroiiment in order to carry out the desired control.
This way of using time, applied to its logical aspects,
has given rise to the v i r t u a l t i m e concept [3]. Such
a context, is so characterized by a global logical clock,
coninioii to all the processes; its progress is defined by

'This author is supported by a fellowship fru111 the CAPES

tThis work has been partly funded by the french national
Agency of the Government of Brazil.

project C3 on concurrency and distribution

application relevant rules and not by external phys-

clock allows to manage the computation, to control
its progress, to timestamp events, t o measure virtual
time durations, etc.

The FLORIA project is devoted to the definition,
and to the associated implementation on a distributed
memory parallel machine, of a distributed kernel for
virtual time driven applications. This paper is com-
posed of two main parts; the first one ($2) states the
properties offered to user programs by the virtual time
concept; the second one ($3) presents the correspond-
ing distributed system kernel we have implemented on
an Intel iPSC/2 hypercube.

ical phenomenon as in rea \ -time applications). This

2 The virtual time provided by
the kernel

2.1 Virtual time properties

A virtual time driven application is structured as
a network of processes communicating though FIFO
channels. Each process is endowed with input chan-
nels from which it can receive messages, and output
chaiinels on which it can send messages.

The two main features of the virtual time offered
by the kernel can be expressed as temporal proper-
ties that can be used by processes of an application
program :

P1:

P2:

All the application processes have the same per-
ception of the virtual time (logical synchronism
of the processes), that is to say, the virtual time
is the same and progresses logically at the same
speed for all of them.

Within the virtual time frame, any message sent
by a process at the date t is received by its desti-
nation process at the same date t .

The processes interact only by messages. Conse-
quently, virtual time constitutes the only mechanism
to synchronize processes.

457
0-8186-2812-X/92 $03.00 Q 1992 IEBE

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on June 19, 2009 at 02:28 from IEEE Xplore. Restrictions apply.

mailto:Name>@irisa.fr

I I

2.2 The kernel interface
‘The kernel can be seen by a process Pi as a inachiiie
working in virtual time; in particular it provides a
global virtual clock gvc which gives the current vir-
t.ua.1 date; for this, the kernel supplies each process
Pi oil the one hand with a local representation of the
global virtual clock guc, and on the other hand with all
messages sent to it till the current virtual date (which
is by definition the value of gvc).

So as all the messages sent to a process Pi at a
time less than gwc are known by P;, it can consumes
t,hem or not (the effective message consuming depends
oil its own behaviour): these messages are put in a
queue called k n o w n , , ordered by increasing sending
dates. The kernel offers some primitives to access this
queue (E m p t y , First, Las t , Nex t (m s g) , Prev ious
(msy)) and to take messages from it (Take (msg)).
These operations have a zero duration in virtual time.
So at, virtual time t the queue k n o w n , contailis all the
messages sent to Pi before or at the date t , not yet,
consumed by Pi with the help of the primitive Take

In addition to the message sending primitive, the
keriiel provides the processes with the following prim-
itives, which have non-zero durations with respect to
virtual time:

(Ins!/).

0 Wai t (yoc = t) : the invoking process progrtxes
without interruption till the value of the g1ol)al
virt.ua.1 clock is t .

0 Wai t msg : the process is bloc,ked till a I I ~ W
message is received (then the global virtual clock
value is equal to the message sending date - prop-
erty P2 - and the message is put in k n o w n , ; it
can be consumed by Take (m s g)) .

0 Wait (gvc = t) or msg : the progress of the
invoking process is blocked till the global virtual
clock value is t , unless a message m is received by
the date t (in other words, that is a waiting for a
message with a deadline t) .

All the other operations a process can execute have
zero duration with respect to the virt.ual time.

Designing and implementing a kernel consist.s in
buildiiig a basic software layer providing a set, of prii i i-
itives general enough to solve a class of probleins.
These kernel primitives are not to be used directly
by the user program. For example, if one is interested
in designing queueing network simulation programs,
he/she will use a well-suited simulation language, and
a compiler will translate the statements in which vir-
tual time occurs into calls to the kernel primitives.
More generally, operations offered t,o the user are irn-
I)lenient.ed with c,alls to the previous basic priinit.ives.
So for exaiiiple waitiiig, by a process P;, for a inessage
according to the FIFO discipline would be realized
with calls to E m p t y , Wait msg, Take (ntsg) and
F i r s t .

3 Kernel implementation
3.1 Objectives
Building a virtual time kernel on an asynchronous dis-
tributed memory parallel machine demands to solve
the two following important problems: the assignment
of the processes to the processors and the consistent
implementation of a virtual-time run-time. In the cur-
rent version we concentrated our efforts only on the
run-time needed by the virtual time; this one has to
be consistent] i.e. ensure properties PI and P2, and
it has to be efficient in order to have the best possible
computing time (measured in real time).

The kernel has been implemented using the lan-
guage C, on a 64 processors Intel hypercube iPSC/2.
It is made of two parts: the communication layer that
ensures the property P2 and, in conjunction with this
communication layer, process managers that drive the
progress of each process as independently as possible.

3.2 The Communication layer
Here the property to ensure is P2, namely every mes-
sage sent at virtual time t has to be delivered to its
destination process at the same virtual time 2 . In order
to implement it first each message piggybacks a times-
tamp (its sending virtual time) and second the com-
inunication layer delivers to each process the messages
received according to the increasing timestamp order.
This rule ensures the consistent delivery of messages
1.0 a process according to the virtual time progress (in
ot,her words, a process cannot backtracks in virtual
tiiiie by receiving first a message sent a t virtual dat,e t
and after another message sent a t date t’ with t’ < t)
[2, 3, 51.

This simple rule ensures safety of deliveries but is
not sufficient to ensure their liveness (i.e. each mes-
sage that can be delivered will be delivered); deadlock
situations are actually possible [2, 3, 51. Let us con-
sider the figure 1 , where process Pi] endowed with two
input channels, has received three messages m1, m2 et
i n g with respective timestampssuch that t l < t 2 < t 3 .

Figure 1: Deadlock in message delivering

The communication layer can safely deliver ml at vir-
tual time t l , then m2 at time t z , but cannot deliver
m3 at time t3 : because process Pj can send to Pi
a message mi a t virtual time t’ with t 2 < t i < t 3 ,
and in that case mi has to be aklivered to Pi before
“3; in other words, while a message with a timestamp
greater than t 3 has not been received from Pj, the ker-
nel cannot safely delivers m3 to P i . Consequently a
deadlock is possible. To solve this problem, two class
of techniques have been proposed: the optimistic ones
[4 and the conservative ones [I].

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on June 19, 2009 at 02:28 from IEEE Xplore. Restrictions apply.

The FLORIA kernel implements a conservative ap-
proach to prevent deadlock [5] : additional control
messages, called N U L L messages, are used. When a
process Pj knows it will not send an application mes-
sage on some channel by virtual time t , the kernel
setids the control message (N U L L , t) ; this anticipa-
tion on the future of output channels allows a look-
ahead for receiving processes that allow them to pre-
vent deadlocks; the higher the value of t is, the more
efficient the implementation is [2]. The kernel offers
t,o a process a primitive to define its look-ahead value.

Let, the following variables, the process Pi being
endowed with k , input channels : i n i [l] , , . . , in,[k;] :

0 channel-time(ini[z]) : the timestamp of the last
(application or N U L L) message received by Pi
on its input, channel i n ; [z] .

0 ec; = minl<z<k (channel_ t ime(in;[~])) ; that is
actually a lobrciock associated to the set of input
channels of PI.; this entry clock is managed by t.he
coiiinirinication layer.

Then the communication layer can safely delivers tm
I’, (In their timestamp order) a.ll the niessa.g:rs (m, 2)
received that have a timestamp t less tIhiiii or equal
t,o E C , ; i n other words this value represents tlie date
upperbound till which the content of input chaniiels
of a process Pi are safely known and consequently can
be delivered to it (put in knotmi) according to the
progress of the virtual time.

3.3 Process managers
Eacli a.pplication process Pi is endowed wit,li a local
representation lei of the global virtual clock yvc; in
other words, I C , = t means that P, has progressed
till the virtual date t . In fact it is possible to have,
at, a given execution time, le, # lcj without violatiiig
property P1; to ensure this property it is suffic,ierit,
t.hat. every process Pi at virtual date t (I C , = t) does
i i o t , perceive another application process at, a differerit.
virt,ual date.

If for P, the current, virtual t h i e is t (IC, = i),
t c , 2 t is always verified, thanks to the virtual time
communication layer ($3.2) which put i n known; all
t,he messages (m,t’) such as t’ 5 le, = t . We re-
riiirid that, P; is free to take or not the messages from
kr /ow, iL , , that depeitds on its owtt program t.ext..

111 fact, these two virtual clocks le , (process clock)
i i i i d tc, (eiit,ry clock) of a prowss Pi u w t l tiot, be t.iglit,ly
syuchroiiizeti; a loose sytichronizativri iiiiptoc’es exe-
cutioti efficiency, trhe kernel do only t.lie synchroniza-
t,ion needed to ensure properties P1 and P2 i n virtual
t,iine. The following describes this loose synchroniza-
tion for two primitives whose semantics is based OH
virt,ual time (the third one is only a combination of
those two ones).

3.3.1 Implementation of a wait ing for a deatl-
line

Wlien a process executes Wait (yvc = t) , it cotitinues
w i t h IC, = 1 . We remind that by definition the known,

queue contains, a t time t , all the messages sent t o Pi
before t and not yet consumed by the Take (msg)
primitive. With this implementation, which consists
simply to do the assignment lci := t , this property
can be violated. But the analysis of the two following
situations shows that it can always be restored in such
a way that this temporary inconsistency can never be
perceived by the process Pi.

0 lei < eci : all the messages (m, i’) sent in the past
of Pi (i.e. such that t’ 5 IC;) are available in the
queue known, queue (figure 3.3.1); P, can access
and take them, according to its program text.

..................................

I
known,

Figure 2: situation le, < ec,

0 lei 2 ec,: in that case, a part of the messages
sent in the past of Pi (the messages (m, t ’) such
as ec, < t‘ 5 I C ,) is not really available, hence
the queue knowni is not completely known (white
part in figure 3.3 .1) .

Only the messages (m,t’) such as d’ 5 eci are
really available in knowni. In this situation we
could block Pi’s execution till lci < ec i , but that
is not always necessary. (for example, when Pi
don’t use messages sent between eci and lci, as it
is tlie case with a simulation program of a FIFO
server that has still to serve client requests ar-
rived before ec,). We have chosen to allow P; to
continue its execution in this situation; but, in
order to be consistent, if Pi calls an access prim-
itive to known, (First, Last, etc), the call will
be blocked if it tries to access the unknown part
of kriown, (the white part in figure 3.3.1) and
the execution of Pi will continue when the vir-
tual time communication layer delivers to it the
needed messages; so the property associated to
the definition of known; will always be verified
from Pi’s point, of view.

= t
...........

process
future virtual time

n
input channels

known,

Figure 3: situation 1Ci 2 eci

459

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on June 19, 2009 at 02:28 from IEEE Xplore. Restrictions apply.

I I

3.3.2 Implementation of an unconditional
waiting for a message

The execution by Pi of a Wait msg primitive always
provokes the progress of Pi’s virtual clock. Pi can be
blocked or not, according to the existence of a message
in its input channels:

0 3(m,t) I IC, < t 5 eci : in this case the older
message (n, t) is put into knowni and lci is moved
forward to t (Pi can then consume it with the
kernel primitive Take (msg) , 52.2).

0 J(m, , t) I IC, < t 5 ec, : the process is blocked
and its execution will continue only when a new
message is delivered to it by the virtual time com-
munication layer; then the same treatment as in
the previous case can be applied.

4 Conclusion
A first version of the FLORIA kernel is now imple-
mented; the debugging and assessment process is on.
Various queueing networks simulation programs have
been executed on top of this kernel. These experi-
ments show that the primitives offered by the FLO-
RIA kernel provides an efficient and simple run-time
for this kind of virtual-time based applications.

At, a more general level, the design of a dist,ribtltled
kernel suited to virtual time driven applications is an
interesting research area, thanks to the synclironiza-
tion constraints defined on communications (property
P2 : a message send at time t is received at the
same time 1); we call this property V T O (virtual time
ordering. The potential causality relation between
events, efined by Lamport [4] and noted ”-+” , allows
to model a distributed computation as a partial or-
tier on the events produced that shows only causalities
between them. Some system kernels offer the causal
conimunication [6] (noted CO, for ”causal ordering”)
a.s t21ie basic communication scheme; CO is defi~ietl i n
t,tie following way : if send(m1) and seiad(~rr2) are tlwo
seiidings of’ messages to the same destination process
P, and if send(m1) -+ send(mz) , then nil must be
delivered to Pi before m 2 (in the case ml and 7722 are
sent. by the same process, the CO property is reduced
to the FIFO property). It is easy to see that for com-
iiiunications we have VTO property j CO propert,y
j FIFO property. That suggests a thorough study of
t.he properties of basic communicatioll schemes. The
FLORIA kernel is a concrete step i n this direction.

References
[l] 1 i . M . Chandy and J . Misra. Dist,ribut,etl s in~ i~ la -

t,ion: a case study in design arid verification of tlis-
tributed programs. IEEE Truits. on Soft. E I L ~ . ,
Vol. 5, No 5, 440-452, September 1979.

(31 D. Jefferson. Virtual time. ACM Toplas, Vol. 7,
NO 3, 404-425, July 1985.

[4] L. Lamport. Time, clocks and the ordering of
events in a distributed system. Communicat ions
of the ACM, 21(7):558-565, July 1978.

[5] 3. Misra. Distributed discrete-event simulation.
Computing Surveys, Vol. 18, N o 1, 39-65, March
1986.

[SI M. Raynal, A. Schiper, and S. Toueg. The causal
ordering abstraction and a simple way to imple-
ment it. Inf. Proc. Leffers, 30:343-350, 1991.

[2] H. M . Fujimoto. Parallel discrete event simulation.
C~‘onirnunacutions of A C M , 33:31-53. October 1990.

460

Authorized licensed use limited to: UNIVERSITA DEGLI STUDI DI MILANO. Downloaded on June 19, 2009 at 02:28 from IEEE Xplore. Restrictions apply.

