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Abstract 

The advent of distributed m e m o r y  parallel muchines 
turns feasible the design and implementat ion of dedi- 
cated environments  for distributed applications. This  
puper addresses such a realization b y  present iny a dis- 
tributed kernel, called FLORIA, whose uim is  t o  pro- 
vide a virtiial t i m e  environment f o r ,  application pro- 
yr'ums (distributed discrete eveiit simulation is  the 
most  krwwn of the applications based on such a vir- 
id t ime  - the so called s i m u l a t i o n  t i m e  - and con- 
sequently constatutes the paradigm of this class). This  
paper presents  first basic feutures of the virtual t i m e  
concept and then describes the time-related aspects of 
the amplementataon of a distributed kernel dedicuted to  
virtual t ime driven applications. 

1 Introduction 
IJses of computers can be roughly divided into two cat- 
egories according to the way they take the time into 
account, namely the applications whose semalitics is 
ba.sed oii soine notion of tirne and tliose that tlo irot. 
Keal-tiiiie applications are the most, faiiious represell- 
t.ative of the first category; numeric applications are 
a i l  example of the second one. Specificities of each 
category have to be taken into account by the ded- 
icated underlying operating system; actually, in the 
first category the physical time is a programming ob- 
ject, that drives the application and that can be used 
by i t ,  whereas in the second category the time appears 
only as an implementation support. 

Thus for real-time applications, physical time, de- 
fined by the environment, constitutes the point, of ref- 
ereiice common to all the processes that allow them 
tjo synchronize the ones with the others and with the 
enviroiiment in order to carry out the desired control. 
This way of using time, applied to its logical aspects, 
has given rise to the v i r t u a l  t i m e  concept [3]. Such 
a context, is so characterized by a global logical clock, 
coninioii to all the processes; its progress is defined by 
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application relevant rules and not by external phys- 

clock allows to manage the computation, to control 
its progress, to timestamp events, t o  measure virtual 
time durations, etc. 

The FLORIA project is devoted to the definition, 
and to the associated implementation on a distributed 
memory parallel machine, of a distributed kernel for 
virtual time driven applications. This paper is com- 
posed of two main parts; the first one ($2) states the 
properties offered to user programs by the virtual time 
concept; the second one ($3) presents the correspond- 
ing distributed system kernel we have implemented on 
an Intel iPSC/2 hypercube. 

ical phenomenon as in rea \ -time applications). This 

2 The virtual time provided by 
the kernel 

2.1 Virtual time properties 

A virtual time driven application is structured as 
a network of processes communicating though FIFO 
channels. Each process is endowed with input chan- 
nels from which it can receive messages, and output 
chaiinels on which it can send messages. 

The two main features of the virtual time offered 
by the kernel can be expressed as temporal proper- 
ties that can be used by processes of an application 
program : 

P1: 

P2: 

All the application processes have the same per- 
ception of the virtual time (logical synchronism 
of the processes), that  is to say, the virtual time 
is the same and progresses logically at  the same 
speed for all of them. 

Within the virtual time frame, any message sent 
by a process at  the date t is received by its desti- 
nation process at  the same date t .  

The processes interact only by messages. Conse- 
quently, virtual time constitutes the only mechanism 
to synchronize processes. 
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2.2 The kernel interface 
‘The kernel can be seen by a process Pi as a inachiiie 
working in virtual time; in particular it provides a 
global virtual clock gvc which gives the current vir- 
t.ua.1 date; for this, the kernel supplies each process 
Pi oil the one hand with a local representation of the 
global virtual clock guc, and on the other hand with all 
messages sent to it till the current virtual date (which 
is by definition the value of gvc). 

So as all the messages sent to a process Pi at a 
time less than gwc are known by P;, it can consumes 
t,hem or not (the effective message consuming depends 
oil its own behaviour): these messages are put in  a 
queue called k n o w n , ,  ordered by increasing sending 
dates. The kernel offers some primitives to access this 
queue ( E m p t y ,  First, Las t ,  Nex t  ( m s g ) ,  Prev ious  
(msy))  and to take messages from it (Take (msg)). 
These operations have a zero duration in virtual time. 
So at, virtual time t the queue k n o w n ,  contailis all the 
messages sent to Pi before or at the date t ,  not yet, 
consumed by Pi with the help of the primitive Take  

In addition to the message sending primitive, the 
keriiel provides the processes with the following prim- 
itives, which have non-zero durations with respect to 
virtual time: 

(Ins!/). 

0 Wai t  (yoc = t )  : the invoking process progrtxes 
without interruption till the value of the g1ol)al 
virt.ua.1 clock is t .  

0 Wai t  msg : the process is bloc,ked till a I I ~ W  
message is received (then the global virtual clock 
value is equal to the message sending date - prop- 
erty P2 - and the message is put in k n o w n , ;  it 
can be consumed by Take  ( m s g ) ) .  

0 Wait (gvc = t) or msg : the progress of the 
invoking process is blocked till the global virtual 
clock value is t ,  unless a message m is received by 
the date t (in other words, that is a waiting for a 
message with a deadline t ) .  

All the other operations a process can execute have 
zero duration with respect to the virt.ual time. 

Designing and implementing a kernel consist.s in 
buildiiig a basic software layer providing a set, of prii i i-  
itives general enough to solve a class of probleins. 
These kernel primitives are not to be used directly 
by the user program. For example, if one is interested 
in designing queueing network simulation programs, 
he/she will use a well-suited simulation language, and 
a compiler will translate the statements in which vir- 
tual time occurs into calls to the kernel primitives. 
More generally, operations offered t,o the user are irn- 
I)lenient.ed with c,alls to the previous basic priinit.ives. 
So for exaiiiple waitiiig, by a process P;, for a inessage 
according to the FIFO discipline would be realized 
with calls to E m p t y ,  Wait msg, Take  (ntsg) and 
F i r s t .  

3 Kernel implementation 
3.1 Objectives 
Building a virtual time kernel on an asynchronous dis- 
tributed memory parallel machine demands to solve 
the two following important problems: the assignment 
of the processes to the processors and the consistent 
implementation of a virtual-time run-time. In the cur- 
rent version we concentrated our efforts only on the 
run-time needed by the virtual time; this one has to 
be consistent] i.e. ensure properties PI and P2, and 
it has to be efficient in order to have the best possible 
computing time (measured in real time). 

The kernel has been implemented using the lan- 
guage C, on a 64 processors Intel hypercube iPSC/2. 
It is made of two parts: the communication layer that 
ensures the property P2 and, in conjunction with this 
communication layer, process managers that drive the 
progress of each process as independently as possible. 

3.2 The Communication layer 
Here the property to ensure is P2, namely every mes- 
sage sent at  virtual time t has to be delivered to its 
destination process at the same virtual time 2 .  In order 
to implement it first each message piggybacks a times- 
tamp (its sending virtual time) and second the com- 
inunication layer delivers to each process the messages 
received according to the increasing timestamp order. 
This rule ensures the consistent delivery of messages 
1.0 a process according to the virtual time progress (in 
ot,her words, a process cannot backtracks in virtual 
tiiiie by receiving first a message sent a t  virtual dat,e t 
and after another message sent a t  date t’ with t’ < t )  
[2, 3, 51. 

This simple rule ensures safety of deliveries but is 
not sufficient to ensure their liveness (i.e. each mes- 
sage that can be delivered will be delivered); deadlock 
situations are actually possible [2, 3, 51. Let us con- 
sider the figure 1 ,  where process Pi ] endowed with two 
input channels, has received three messages m1, m2 et 
i n g  with respective timestampssuch that t l  < t 2  < t 3 .  

Figure 1: Deadlock in message delivering 

The communication layer can safely deliver ml at vir- 
tual time t l ,  then m2 at time t z ,  but cannot deliver 
m3 at time t3 : because process Pj can send to Pi 
a message mi a t  virtual time t’ with t 2  < t i  < t 3 ,  
and in that case mi has to be aklivered to Pi before 
“3; in other words, while a message with a timestamp 
greater than t 3  has not been received from Pj,  the ker- 
nel cannot safely delivers m3 to P i .  Consequently a 
deadlock is possible. To solve this problem, two class 
of techniques have been proposed: the optimistic ones 
[4 and the conservative ones [I]. 
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The FLORIA kernel implements a conservative ap- 
proach to prevent deadlock [5] : additional control 
messages, called N U L L  messages, are used. When a 
process Pj knows it will not send an application mes- 
sage on some channel by virtual time t ,  the kernel 
setids the control message ( N U L L ,  t ) ;  this anticipa- 
tion on the future of output channels allows a look- 
ahead for receiving processes that allow them to pre- 
vent deadlocks; the higher the value of t is, the more 
efficient the implementation is [2]. The kernel offers 
t,o a process a primitive to  define its look-ahead value. 

Let, the following variables, the process Pi being 
endowed with k ,  input channels : i n i [ l ] ,  , . . , in,[k;] : 

0 channel-time(ini[z]) : the timestamp of the last 
(application or N U L L )  message received by Pi 
on its input, channel i n ; [ z ] .  

0 ec; = minl<z<k (channel_ t ime( in;[~]) )  ; that  is 
actually a lobrciock associated to the set of input 
channels of PI.; this entry clock is managed by t.he 
coiiinirinication layer. 

Then the communication layer can safely delivers tm 
I’, ( In their timestamp order) a.ll the niessa.g:rs (m, 2 )  
received that have a timestamp t less tIhiiii or equal 
t,o E C , ;  i n  other words this value represents tlie date 
upperbound till which the content of input chaniiels 
of a process Pi are safely known and consequently can 
be delivered to it (put in knotmi)  according to the 
progress of the virtual time. 

3.3 Process managers 
Eacli a.pplication process Pi is endowed wit,li a local 
representation lei of the global virtual clock yvc;  in 
other words, I C ,  = t means that P, has progressed 
till the virtual date t .  In fact it is possible to have, 
at, a given execution time, le, # lcj without violatiiig 
property P1; to ensure this property it is suffic,ierit, 
t.hat. every process Pi at  virtual date t ( I C ,  = t )  does 
i i o t ,  perceive another application process at, a differerit. 
virt,ual date. 

If for P, the current, virtual t h i e  is t (IC, = i), 
t c ,  2 t is always verified, thanks to the virtual time 
communication layer ($3.2) which put i n  known; all 
t,he messages (m,t’) such as t’ 5 le, = t .  We re- 
riiirid that, P; is free to take or not the messages from 
kr /ow, iL , ,  that depeitds on its owtt program t.ext.. 

111  fact, these two virtual clocks le ,  (process clock) 
i i i i d  tc, (eiit,ry clock) of a prowss Pi u w t l  tiot, be  t.iglit,ly 
syuchroiiizeti; a loose sytichronizativri iiiiptoc’es exe- 
cutioti efficiency, trhe kernel do only t.lie synchroniza- 
t,ion needed to ensure properties P1 and P2 i n  virtual 
t,iine. The following describes this loose synchroniza- 
tion for two primitives whose semantics is based OH 
virt,ual time (the third one is only a combination of 
those two ones). 

3.3.1 Implementation of a wait ing for a deatl- 
line 

Wlien a process executes Wait (yvc  = t ) ,  it  cotitinues 
w i t h  IC, = 1 .  We remind that by definition the known, 

queue contains, a t  time t ,  all the messages sent t o  Pi 
before t and not yet consumed by the Take (msg) 
primitive. With this implementation, which consists 
simply to do the assignment lci := t ,  this property 
can be violated. But the analysis of the two following 
situations shows that it can always be restored in such 
a way that this temporary inconsistency can never be 
perceived by the process Pi. 

0 lei < eci : all the messages (m,  i’) sent in the past 
of Pi (i.e. such that t’ 5 IC;) are available in the 
queue known, queue (figure 3.3.1); P, can access 
and take them, according to  its program text. 

.................................. 

I 
known, 

Figure 2: situation le, < ec, 

0 lei 2 ec,: in that  case, a part of the messages 
sent in the past of Pi (the messages (m, t ’ )  such 
as ec, < t‘ 5 I C , )  is not really available, hence 
the queue knowni is not completely known (white 
part in figure 3.3 .1) .  

Only the messages (m,t’) such as d’ 5 eci are 
really available in knowni. In this situation we 
could block Pi’s execution till lci < ec i ,  but that 
is not always necessary. (for example, when Pi 
don’t use messages sent between eci and lci, as it 
is tlie case with a simulation program of a FIFO 
server that  has still to serve client requests ar- 
rived before ec,). We have chosen to allow P; to 
continue its execution in this situation; but,  in 
order to be consistent, if Pi calls an access prim- 
itive to known, (First, Last, etc), the call will 
be blocked if it tries to access the unknown part 
of kriown, (the white part in figure 3.3.1) and 
the execution of Pi will continue when the vir- 
tual time communication layer delivers to it the 
needed messages; so the property associated to 
the definition of known; will always be verified 
from Pi’s point, of view. 

= t  
........... 

process ........... 
future virtual time 

n ........... 
input channels .......... 

known, 

Figure 3: situation 1Ci 2 eci 
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3.3.2 Implementation of an unconditional 
waiting for a message 

The execution by Pi of a Wait msg primitive always 
provokes the progress of Pi’s virtual clock. Pi can be 
blocked or not, according to the existence of a message 
in its input channels: 

0 3(m,t)  I IC, < t 5 eci : in this case the older 
message (n, t )  is put into knowni and lci is moved 
forward to t (Pi can then consume it with the 
kernel primitive Take (msg) ,  52.2). 

0 J(m, , t )  I IC, < t 5 ec, : the process is blocked 
and its execution will continue only when a new 
message is delivered to it by the virtual time com- 
munication layer; then the same treatment as in 
the previous case can be applied. 

4 Conclusion 
A first version of the FLORIA kernel is now imple- 
mented; the debugging and assessment process is on. 
Various queueing networks simulation programs have 
been executed on top of this kernel. These experi- 
ments show that the primitives offered by the FLO- 
RIA kernel provides an efficient and simple run-time 
for this kind of virtual-time based applications. 

At, a more general level, the design of a dist,ribtltled 
kernel suited to virtual time driven applications is an 
interesting research area, thanks to the synclironiza- 
tion constraints defined on communications (property 
P2 : a message send at  time t is received at  the 
same time 1); we call this property V T O  (virtual time 
ordering. The potential causality relation between 
events, efined by Lamport [4] and noted ”-+” , allows 
to model a distributed computation as a partial or- 
tier on the events produced that shows only causalities 
between them. Some system kernels offer the causal 
conimunication [6] (noted CO, for ”causal ordering”) 
a.s t21ie basic communication scheme; CO is defi~ietl i n  
t,tie following way : if send(m1) and seiad(~rr2) are tlwo 
seiidings of’ messages to the same destination process 
P, and if send(m1) -+ send(mz) ,  then nil must be 
delivered to Pi before m 2  (in the case ml and 7722 are 
sent. by the same process, the CO property is reduced 
to the FIFO property). It is easy to see that for com- 
iiiunications we have VTO property j CO propert,y 
j FIFO property. That suggests a thorough study of 
t.he properties of basic communicatioll schemes. The 
FLORIA kernel is a concrete step i n  this direction. 
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