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Abstract—Traditional monolithic operating systems have 

conceptually remained almost unchanged since the UNIX, that is, 
since the late 70s. Several experimental operating systems from 
the research community have been based on alternative 
paradigms. Today we are facing the dawn of mobile or wireless 
Internet. This new operational environment calls for new 
solutions. We discuss four significant research issues for future 
end-user systems: self-awareness, detection and notifications, 
system integrity, and power management. A paradigm shift in 
operating system design, as demonstrated in x-kernel, 
microkernels, exokernels, and TinyOS, can help us to lay the 
software foundation for reconfigurable end-user systems. 
 

Index Terms—mobile networking, operating systems, wireless 
access. 

I. INTRODUCTION 
PERATING systems have been in the core of computer 
science from the very beginning. Therefore, one can ask 

is there some issues still open. If the answer is yes then one 
can ask why fifty years have not been enough in solving all 
relevant issues. Clearly operating systems have evolved a lot 
during the years. However, changes in operational 
requirements have changed so that today we need to 
reconsider even the fundamentals of operating systems. 

The need of this reconsideration has its roots in the 
fundamental changes in usage patterns. Communication and 
computing devices move; users move and change their 
devices; (sub)networks in cars, trains and airplanes move; 
software moves from one execution environment to another. 
These changes can be characterized as personal networking 
domains. By personal networking we mean not only body and 
personal area networks but also protocol aspects of 
networking in the personal domain, digital home and other 
smart places like shopping centers, public and private 
transportation vehicles, ad-hoc communities, and networked 
(i.e., infrastructure provided) services. In addition, the 
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solutions should also work in a reasonable manner in non-
smart places that do not have a high-bandwidth connectivity 
or any connectivity at all. The ultimate objective is that the 
solution stacks for different domains are as similar as possible. 

All of us hope that we can reuse existing software 
technology as far as possible. It saves us a lot of money now 
but may in the future turn out to be extremely expensive. If we 
are not all the time ready for a revolution, we may miss the 
train and we may find ourselves at the trap of basing next 
releases of our products on existing legacy. We do not claim 
that today is the right time to forget all legacy systems. 
However, tomorrow it is even more costly to replace them. 
We should ask ourselves whether or not we want to produce 
pullovers for dinosaurs although the climate has already 
started to cool and sooner or later the dinosaurs will disappear. 

In this paper we discuss research challenges in operating 
systems for future end-user systems. We start by stating our 
assumptions about future mobile applications. Based on the 
widely accepted vision of wireless future we examine the 
functional requirements. In Section III we take a look at some 
milestones in operating systems. We briefly summarize key 
contributions of x-kernel, microkernels, exokernels, and 
TinyOS. In Section IV we elaborate the fundamental research 
issues for future generations of operating systems. 

II. FUNCTIONALITY IN FUTURE MOBILE SYSTEMS 
Published visions of the wireless future ([1]-[6]) can be 

summarized as follows: future applications will be context-
sensitive, adaptive and personalized, and future systems will 
be reconfigurable. These properties have been examined by 
WWRF [7] in details. Below we briefly elaborate the 
functional requirements behind the concepts of 
reconfigurability, context-awareness, adaptability, and 
personalization. 

A. Reconfigurability 
In essence reconfigurability means that system’s hardware 

and software configurations can seamlessly change in run-
time.  

The end-user devices of today are primarily integrated units 
like PDAs, laptops, or mobile phones. However, the situation 
will change in the future. A personal trusted device, we call it 
FuturePhone, will be the core of the personal networking 
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system. It probes its surrounding looking for suitable 
peripheral devices such as displays, input devices, processors, 
fast access memories and access points to communication 
channels. It dynamically builds up the most appropriate end-
user system that can be autoconfigured. The FuturePhone also 
probes for other similar devices in order to establish suitable 
ad-hoc communities and different kinds of sensors in order to 
extract context information associated to the current smart 
place. The FuturePhone also tries to detect actuators which 
provide the means to affect properties of the smart place. 

The scenario above implies that the system is able to do 
device detection and service discovery, as well as hardware 
and software configuration management. 

Efficient device detection and service discovery require that 
the system is able to monitor the environment and to deliver 
notifications when something new appears, something old 
disappears, and something existing changes its state. A 
notification should only be delivered to those who are 
interested in it. This, in turn, implies that notifications need to 
be filtered. 

When the state of the systems or its environment changes, 
then the system needs to decide whether or not the system 
needs to be reconfigured. This decision engine needs to have a 
model of its environment (external context) and of its own 
configuration and capabilities. In other words, the system 
needs to be self-aware (or reflective). The decision engine also 
needs a “target function” that indicate how preferable different 
configurations are to the user. In that sense the target function 
reflects the personal preferences of the user. It is impossible to 
assume that all the capabilities and preferences used by the 
decision engine are complete from the very beginning. 
Therefore, the models need to be learned, and the system must 
have learning capabilities. 

When the system reconfigures itself, it must maintain its 
integrity. This requires protection against unauthorized 
modification. When the system includes a new piece of code 
into its execution base, it must trust that the code is neither 
malfunctioning nor introducing undesirable side-effects. An 
alternative is that the system can verify or validate the code. In 
addition, the system needs to trust, verify, or validate the 
pieces of information so that the models used by the decision 
engine are coherent and reliable. When the system moves into 
a new administrative domain, it needs to establish a trust 
relationship in that domain. The establishment needs, at least, 
mutual authentication, usually also some kind of authorization 
to use certain resources and services. 

B. Context-Awareness 
Context-awareness means that one is able to use context 

information. In principle, almost any piece of information 
available at the time of interaction can be context information. 
If nobody is utilizing a piece of information, then that piece 
does not belong to context information. Since the set of 
running applications is dynamic, the context information is a 
set the content of which evolve in time. 

An application is context-aware if it can extract, interpret 

and use context information and adapt its functionality to the 
current context of use. The grand challenge is to create a 
flexible context modeling framework. The objective is to have 
efficient means of presenting, maintaining, sharing, 
protecting, reasoning, and querying context information.  

Traditional data management solutions are not sufficient for 
context-awareness. We can, however, use a database 
metaphor: all available information is the content of the 
database, and the pieces in use—that is context information—
is the current Database view. The primary difference to the 
traditional data management is the high rate of changes over 
time both in the available information and in the context 
information. Another difference is that context information is, 
by its nature, distributed and also, to some extent, bound to 
time and location.  

Context reasoning introduces an additional flavor to the 
requirements: the semantics of context information must be 
presented in an understandable way. The current Semantic 
Web and ontologies are insufficient. It is implausible to 
assume that all necessary terms needed could be defined 
beforehand. Therefore, context-awareness needs a language 
that can be used to describe the exact semantics of a new term. 
The requirement is that a reasoning engine implemented today 
can understand the semantics of a term to be introduced 
tomorrow. 

C. Adaptability 
The basic principle of adaptability is simple: the behavior of 

an application changes when the circumstances change. 
Conceptually adaptability is quite close to reconfigurability, 
but we want to keep them separate. In our terminology 
reconfigurability is a system level concept and adaptability is 
an application level concept: system reconfigures itself, but an 
application adapts its behavior. 

If an application wants to be able to adapt its behavior 
according to the changed circumstances, then the system must 
be able to notify the application of the changes. In some cases 
the required adaptation can be achieved by changing an 
algorithm internal to the application. However, in many cases 
an alternative approach is much more plausible through 
replacing some components of the application or relocating 
them. Therefore, an adaptive application may request the 
system to reconfigure itself or to supply a service from 
another provider. An alternative is that the system 
configuration remains the same, but the application 
components are changed and/or relocated. The user-centric 
approach requires that all such modifications are automatic, 
but guided and controlled by user preferences. 

In some situations reactive adaptation is not enough. If the 
connectivity is lost, synchronization, downloads and uploads 
are impossible. However, if the application had been notified 
in advance that the connectivity will soon be lost, then the 
application could have made some proactive preparations. 
Such proactive actions require predictions that are essential 
enablers of adaptive applications. A prediction service must 
support both requests and subscribed notifications. An 
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application should, for example, be able to request the 
probability of being able to transmit a certain amount of data 
in a given time.  “Inform me as soon as the probability of 
losing connectivity in the next two minutes exceeds 75%” is 
an example of a subscribed prediction. 

D. Personalization 
Personalization is considered to be a key enabler for the 

success of future applications and services. It tackles the 
phenomenon of information flooding met, already today, 
almost everywhere. The objective is to increase the usefulness 
of information and applications by tailoring the content and 
presentation according to the needs and wishes of the user. 

In order to provide personalization, the system needs to be 
aware of wishes and preference of the user. In mobile and 
dynamic environments these preferences depend on available 
capabilities. Enumeration of preferences and capabilities 
beforehand is a mission impossible. Therefore, the system 
needs modeling and learning capabilities. 

In many respects, the requirements from personalization on 
software infrastructure are quite similar to those from context-
awareness. In personalization, the focus is on extracting user 
preferences and on utilizing those pieces of information in 
applications. One essential challenge is to take cultural 
differences into account. 

E. Summary 
In this Section we have elaborated functional requirements for 
future mobile systems. The key enablers include: 

− environment monitoring, 
− device detection and service discovery, 
− event notification and filtering, 
− hardware and software configuration management 

o auto-configuration 
− decisions engines 

o when and how to reconfigure 
− modeling and learning capabilities 
− maintaining system integrity 

Clearly, all these issues are not solved on the operating 
system level alone. Support form hardware, protocol stack, 
and middleware is needed to for a feasible solution. Operating 
system support is needed in monitoring, detection, 
notifications, configuration management, and system integrity. 

III. SOME MILESTONES IN OPERATING SYSTEMS 
The structure and abstractions (see Fig. 1) in the traditional 

monolithic operating systems have not practically evolved 
since the Unix [8]. Other milestones in operating systems 
include THE [9], “Nucleus” [10], Multics [11], and Hydra 
[12]. Edsger Dijkstra’s recollections [13] and Fernando 
Corbato’s retrospective [14] give interesting information 
about early problems in operating systems.  
 

In the late 1980s the research community introduced the 
microkernel approach that minimized the size of the kernel 
and implemented most of operating system services as servers 
outside the kernel. The first generation of microkernels, such 

as Amoeba [15], Mach [16], and V [17], introduced too much 
overhead to be more than academic exercises. However, they 
laid the foundation for future developments. 

The x-kernel [18], [19] at the University of Arizona, L4 
kernel [20], [21] at GMD, exokernel [22], [23] at MIT, and 
TinyOS [24], [25] at UC Berkeley introduced interesting 
solutions and new concepts. Below we briefly summarize the 
key ideas in these four systems. A recent survey of 
customizability in operating system [26] provides additional 
information. 

A. The x-Kernel 
The x-kernel [18], [19] was designed to facilitate efficient 

implementation of communication protocols. It included 
components that manage processes, memory, and 
communication. The process and memory managers were 
quite similar to those in other operating systems. The x-kernel 
supports multiple address spaces so that multiple light-weight 
processes can execute in each address space. Synchronization 
of processes within an address space is based on kernel-
supported semaphores. 

The novel aspect of the x-kernel was the communication 
manager that provides an object-oriented infrastructure for 
composing protocols. The communication manager was 
designed to balance generality (x-kernel can implement a wide 
variety of network protocols) and efficiency (none of the 
protocols in the x-kernel suffer severe performance penalties). 

The communication manager of the x-kernel provides an 
object-oriented infrastructure for implementing and 
composing protocols. The design is based on two abstract 
communication objects: protocols and sessions. Both objects 
export a well-defined set of operations implemented by each 
network protocol the kernel will support. This helped in 
keeping the protocol interface clean and in eliminating special 
cases. All protocols assume that another protocol sits above 
them in the protocol dependency graph. 

When a message arrives at a network device, a kernel 
process shepherds it up through a sequence of protocol and 
session objects. When a kernel-level protocol invokes a user’s 

Fig. 1.  Structure of traditional operating systems. 
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Demux operation, a shepherd process crosses the boundary 
and continues executing in user mode. Since the kernel area is 
part of each address space, no address space switch is needed. 
When a user process generates a message, the process crosses 
the user-kernel boundary and shepherds the message down 
through a sequence of protocol and session objects in the 
kernel. 

The x-kernel demonstrated in practice that a platform for 
efficient protocol stack is feasible when the operating system 
is designed on terms of communication needs. 

B. L4 µ-Kernel Family 
L4 [20], [21] was developed at GMD. Its underlying design 

philosophy is based on the claim that efficiency and flexibility 
require a minimal set of general microkernel abstractions and 
that microkernels are processor dependent. L4 is a lean kernel 
featuring fast message-based synchronous IPC, a simple-to-
use external paging mechanism and a security mechanism 
based on secure domains. Fiasco [27], [28]−developed at the 
TU Dresden−implements the L4 interface [29] in C++. 
Another microkernel in the L4-family is Pistachio [30] from 
University of Karlsruhe. 

The L4 µ-kernel is based on two basic concepts, threads 
and address spaces. A thread is an activity executing inside an 
address space. Cross-address-space communication (IPC) is 
designed to be efficient.  

A basic idea of L4 is to support recursive construction of 
address spaces by user-level servers outside the kernel. The 
initial address space essentially represents the physical 
memory. Further address spaces can be constructed by 
granting, mapping and unmapping logical pages. All address 
spaces are thus constructed and maintained by user-level 
servers, also called pagers. Only the grant, map and unmap 
operations are implemented inside the kernel. I/O ports are 
treated as parts of address spaces so that they can be mapped 
and unmapped in the same manner as memory pages. 

Hardware interrupts are handled as IPC. The µ-kernel 
transforms an incoming interrupt into a message to the 
associated thread. This is the basis for implementing all device 
drivers as user-level servers outside the kernel. In contrast to 
interrupts, exceptions and traps are synchronous to the raising 
thread.The kernel simply mirrors them to the user level. 

The main contribution of the L4 team was the 
demonstration that IPC can be implemented in an efficient 
manner. 

C. Exokernel 
Traditional operating systems hide information about 

hardware resources behind high-level abstractions such as 
processes, files, address spaces and interprocess 
communication. A group at MIT designed a new operating 
system architecture, called exokernel [22], [23], which only 
securely multiplexes available hardware resources. All 
traditional operating system abstractions are implemented 
entirely at application level by untrusted software. 

In order to provide applications control over machine 

resources, an exokemel defines a low-level interface. The 
design rational is based on the observation that the lower the 
level of a primitive, the more efficiently it can be 
implemented, and the more latitude it grants to implementors 
of higher-level abstractions. This approach also allows 
separation of protection from management. In contract to the 
virtual machine approach [31], the exokemel exports hardware 
resources rather than emulating them. 

The exokernel approach is also motivated by the familiar 
“end-to-end” argument [32]. Applications know better than 
operating systems what the goal of their resource management 
decisions should be. Therefore, the applications should be 
given as much control as possible in resource management 
decisions.  

In order to provide the maximum opportunity for 
application-level resource management, the exokernel 
architecture consists of a thin exokemel core that multiplexes 
and exports physical resources securely through a set of low-
level primitives. Library operating systems implement higher-
level abstractions. 

The design challenge is to give library operating systems 
maximum freedom in managing physical resources while 
protecting them from each other. In separating protection from 
management, an exokemel performs three important tasks: 1) 
tracking ownership of resources, 2) ensuring protection by 
guarding all resource usage or binding points, and 3) revoking 
access to resources. To achieve these tasks, an exokemel 
employs three techniques. First, using secure bindings, library 
operating systems can securely bind to machine resources. 
Second, visible revocation allows library operating systems to 
participate in a resource revocation protocol. Third, an abort 
protocol is used by an exokemel to break secure bindings of 
uncooperative library operating systems by force. 

The MIT exokernel team laid the foundation but the 
primary contribution later came from University of 
Cambridge. The Nemesis [33] and particularly the Xen [34], 
[35] demonstrated that paravirtualization introduces only a 
small overhead, typically 2-4%. 

D. TinyOS 
TinyOS [24] is a very small microthreaded operating 

system design for netwoks of sensor nodes (SmartDust [36]). 
The TinyOS is usually accompanied by Maté [25], a really 
minimalistic virtual machine. TinyDB [37] and the 
programming language nesC [38] belong to the same solution 
family. 

The TinyOS draws on previous architectural work on 
lightweight thread support and efficient network interfaces. 
According to the design team, the core challenge they faced 
was the operating system framework that retains the 
characteristics of the hardware design by managing the 
hardware capabilities effectively, while supporting 
concurrency-intensive operation in a manner that achieves 
efficient modularity and robustness. 

TinyOS solves the design challenge by selecting an event 
model so that high levels of concurrency can be handled in a 
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very small amount of space. The TinyOS also adopts the two-
level scheduling structure from CILK [39] so that a small 
amount of processing associated with hardware events can be 
performed immediately while long running tasks are 
interrupted. 

A complete system configuration consists of a tiny 
scheduler and a graph of components. A component has four 
interrelated parts: a set of command handlers, a set of event 
handlers, an encapsulated fixed-size frame, and a bundle of 
simple tasks. Tasks, commands, and handlers execute in the 
context of the frame and operate on its state. To facilitate 
modularity, each component also declares the commands it 
uses and the events it signals.  

Commands are non-blocking requests made to lower level 
components. Typically, a command will deposit request 
parameters into its frame and conditionally post a task for later 
execution. 

Event handlers are invoked to deal with hardware events, 
either directly or indirectly. The lowest level components have 
handlers connected directly to hardware interrupts, which may 
be external interrupts, timer events, or counter events. An 
event handler can deposit information into its frame, post 
tasks, signal higher level events or call lower level commands. 

Maté is a tiny communication-centric virtual machine 
designed for sensor networks. Its high-level interface allows 
complex programs to be very short, usually under 100 bytes. 
Code is broken up into small capsules of 24 instructions, 
which can self-replicate through the network. Maté is a 
bytecode interpreter. It is a single TinyOS component that sits 
on top of several system components. There are two stacks: an 
operand stack and a return address stack. Most instructions 
operate solely on the operand stack. Maté has three execution 
contexts that can run concurrently at instruction granularity. 

The Tiny solution family clearly indicates that a small and 
efficient operating system and development environment can 
be build. The primary lesson is similar to that from the x-
kernel: Design the operating system for a specific target 
system. In addition, the Maté shows that a tiny virtual 
machine is useful for installing new applications. 

E. Summary 
The four examples presented above clearly demonstrate the 

advantages of a paradigm shift in operating system design. 
Other significant experiments in operating system research 
include operating system frameworks (Flux OS Kit [40], 
Choices [41], Pebble [42]), portal-based operating systems 
(Kea [43], Space [44]), reflective operating systems (MetaOS 
[45]) and dynamically adaptive operating systems (Synthetix 
[46]). Additional interesting results have been in the area of 
software protection (Software Fault Isolation [47], Proof-
Carrying Code [48]). 

IV. SOME RESEARCH CHALLENGES IN OPERATING SYSTEMS 
As already discussed the need of reconsideration comes 

from the new operational requirements: reconfigurability, 
context-awareness, adaptation, and personalization. The 

problems with the current plug-and-play are a clear indication 
that new approaches are needed. Our claim is that we need a 
paradigm shift: forget the end-user terminal and start 
thinking about end-user systems! 

The fundamental challenge is that we must tackle 
reconfigurability and adaptation issues on hardware level and 
on all levels of software (operating system, protocol stack, 
middleware, applications). We must also remember that the 
system needs to be usable anywhere, anyhow, anytime, and by 
everybody. This implies that the end-user systems will also 
contain carry-on, battery-powered devices. 

In the research space of operating systems we have 
identified four key issues: self-awareness, detection-
notifications, system integrity, and power management. In this 
Section we briefly summarize the current state-of-the-art and 
highlight some research topics in these four areas. 

A. Self-Awareness 
In order to be reconfigurable, the system needs to be self-

aware. In other words, the system needs to understand its own 
state; the operating system must understand its own state and 
configuration, and the state and the configuration of the 
resources it is controlling and managing. 

The understanding requires a model of hardware and 
operating system level software configuration. This model, or 
these models, will be used to describe the configurations and 
to reason about the configurations. 

Operating systems have such models, but their use is 
limited to operating system’s internal bookkeeping. 
Particularly in reasoning, the operating system needs to pass 
the model to other software.  

B. Detection and Notifications 
In order to reconfigure a system, the system needs to detect 

new devices/subsystems and services that have come 
available. The system needs also to detect the subsystems or 
services that have disappeared, or whose properties have 
significantly changed. 

Issues in this area include interrupt handling and event 
notifications. We need also revisit many optimization 
techniques currently used in operating systems. For example, 
lazy update should not be used if we must take into account 
that the persistent storage subsystem may disappear. 

Most of detection in the operating system level is done in 
interrupt handlers and device drivers. Interrupt handling is 
also affected by sensors. When a carry-on device provide 
motion detection, we will get interrupts very frequently. The 
traditional way of handling interrupts would consume too 
much CPU cycles. 

An event system—such as CORBA Notification Service 
[49], Java Message Service [50] Siena [51]—is a typical 
middleware service to deliver notifications. In current 
operating systems event notifications are typically delivered in 
one-to-one communication pattern. When more than one 
subscriber is interested in an event, scheduling should take 
into account the timeliness requirements of event 
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notifications. 

C. System Integrity 
The success of the future Internet will totally depend on 

consumers' trust. The current Internet is vulnerable to worms, 
viruses, spam and fraud. It clearly demonstrates that “fix it 
later” does not work. Security, trust and privacy must be 
addressed from the very beginning of system design and on all 
levels: hardware, operating system, protocols, middleware. 

Authenticated boot is a fundamental enabler for system 
integrity. Trusted Computing Group [52] has specified one 
way of providing the necessary chains of trust. In  
dynamically reconfigurable systems, chains of trust must be 
re-established each time the configuration changes. How this 
can be done efficiently enough is a research challenge. The re-
establishment of the chains of trust is also needed each time a 
new piece of software is to be included. The Proof-Carrying 
Code [48] is a prominent way of verifying what the received 
piece of code will do. Alternatives include various sandboxing 
techniques. 

Without sufficient hardware support, system integrity 
cannot be provided. For example, most game applications run 
their own logic on display processor. If the display processor 
is DMA-enabled, hardware support is necessary to prevent the 
application code from modifying internal data structures of 
operating system. 

D. Power Management 
In future systems, available energy, as embodied by the 

system battery, will have an increasingly important role. 
Despite wide-spread recognition of the importance of energy, 
current operating systems do not provide application 
developers a convenient abstraction of the energy resource. 
There have been broad efforts to better manage the energy use 
of individual devices, but there has been relatively little 
attention to managing energy as a resource. 

In order to manage energy, the operating system must have 
a model for power consumption. There are two primary 
problems in addressing specific energy-related goals in 
operating system level. The first one is to develop resource 
management policies. The second one is related to adaptation 
in application behavior.  

The Smart Battery interface in the ACPI specifications [53] 
is a fundamental enabler for operating system to manage the 
battery resource. It allows the system to query the status of the 
battery. However, the operation of querying the interface is 
too slow to be useful for gathering power consumption data at 
a sufficiently fine grain for resource management functions 
without introducing unacceptable overhead. 

Energy management at the operating system level can be 
viewed in two dimensions. 

1) There are a wide variety of devices in the system that 
concurrently consume power and that are amenable to very 
different management techniques. 2) The devices in the 
system are shared by multiple applications. It is a hard 
problem to accurately attribute power consumption to the 

correct processes. However, solving this accounting problem 
is a prerequisite to managing the battery resource. It involves 
three fundamental issues. First, we must understand the nature 
and determining the level of resource consumption. Second, 
we must appropriately be able to charge for use of the various 
devices in the system. Finally we must be able to attribute 
those charges to the responsible entity. 

The special issue on power-aware embedded computing 
[54] addresses the system-level design gap between a given 
algorithm specification and the selected target architecture 
platform. Some of the fundamental research issues identified 
in the issue include: 

− Which decisions and optimizations should be 
statically defined? 

− Which require a synergy between both 
approaches? 

− How can such decisions and techniques adapt to 
dynamically varying working conditions and/or 
performance targets? 

− What is the cost-effectiveness of the required 
hardware assists (if any)? 

− Which components, features, and parameters of a 
system architecture should be statically tuned or 
specialized to the needs and requirements of a 
target embedded application so as to improve 
energy efficiency? 

− Which ones should be dynamically reconfigurable 
and/or adaptive? 

− Which fundamental characteristics of an embedded 
application influence or impact the above design 
choices? 

V. CONCLUSIONS 
We have shown that a paradigm shift in operating system 

design is necessary to meet the needs of future end-user 
system. We proposed to take reconfigurability as the main 
concern. This will be a similar to the design principles in x-
kernel [18] and TinyOS [24].  

If we are not all the time ready for a revolution, we may 
miss the train and we may find ourselves at the trap of basing 
next releases of our products on existing legacy. We do not 
claim that today is the right time to forget all legacy systems. 
However, tomorrow it is even more costly to replace them. 
We should ask ourselves whether or not we want to produce 
pullovers for dinosaurs although the climate has already 
started to cool and sooner or later the dinosaurs will disappear. 

In order to support reconfigurability, the operating system 
research must solve several research issues related to self-
awareness, detection and notifications, system integrity, and 
power management. The fundamental challenge is to find a 
reasonable balance of solutions in the areas of hardware, 
system software (operating system, protocol suite, 
middleware), and development tools. 
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