
Implementing Lightweight Threads
D. Stein, D. Shah – SunSoft, Inc.

ABSTRACT

We describe an implementation of a threads library that provides extremely lightweight
threads within a single UNIX process while allowing fully concurrent access to system
resources. The threads are lightweight enough so that they can be created quickly, there can
be thousands present, and synchronization can be accomplished rapidly. These goals are
achieved by providing user threads which multiplex on a pool of kernel-supported threads of
control. This pool is managed by the library and will automatically grow or shrink as
required to ensure that the process will make progress while not using an excessive amount
of kernel resources. The programmer can also tune the relationship between threads and
kernel supported threads of control. This paper focuses on scheduling and synchronizing user
threads, and their interaction with UNIX signals in a multiplexing threads library.

Introduction

This paper describes a threads library imple-
mentation that provides extremely lightweight
threads within a single UNIX process while allowing
fully concurrent access to system resources. The
threads are lightweight enough so that they can be
created quickly, there can be thousands present, and
synchronization can be accomplished rapidly. These
goals are achieved by providing user threads which
multiplex on a pool of kernel-supported threads of
control. The implementation consists of a threads
library and a kernel that has been modified to sup-
port multiple threads of control within a single UNIX
process [Eykholt 1992].

The paper contains 7 sections: The first section
is an overview of the threads model exported by the
library. The second section is an overview of the
threads library architecture. Readers familiar with
the SunOS Multi-thread Architecture [Powell 1991]
can skip the first two sections. The third section
details the interfaces supplied by the kernel to sup-
port multiple threads of control within a single pro-
cess. The fourth section details how the threads
library schedules threads on kernel-supported threads
of control. The fifth section details how the library
implements thread synchronization. The sixth sec-
tion details how the threads library implements sig-
nals even though threads are not known to the ker-
nel. The final section briefly describes a way to
implement a debugger that understands threads.

Threads Model

A traditional UNIX process has a single thread
of control. In the SunOS Multi-thread Architecture
[Powell 1991], there can be more than one thread of
control, or simply more threads, that execute
independently within a process. In general, the
number or identities of threads that an application
process applies to a problem are invisible from out-
side the process. Threads can be viewed as execution

resources that may be applied to solving the problem
at hand.

Threads share the process instructions and most
of its data. A change in shared data by one thread
can be seen by the other threads in the process.
Threads also share most of the operating system
state of a process. For example, if one thread opens
a file, another thread can read it. There is no
system-enforced protection between threads.

There are a variety of synchronization facilities
to allow threads to cooperate in accessing shared
data. The synchronization facilities include mutual
exclusion (mutex) locks, condition variables, sema-
phores and multiple readers, single writer
(readers/writer) locks. The synchronization variables
are allocated by the application in ordinary memory.
Threads in different processes can also synchronize
with each other via synchronization variables placed
in shared memory or mapped files, even though the
threads in different processes are generally invisible
to each other. Such synchronization variables must
be marked as being process-shared when they are
initialized. Synchronization variables may also have
different variants that can, for example, have dif-
ferent blocking behavior even though the same syn-
chronization semantic (e.g., mutual exclusion) is
maintained.

Each thread has a program counter and a stack
to maintain of local variables and return addresses.
Each thread can make arbitrary system calls and
interact with other processes in the usual ways.
Some operations affect all the threads in a process.
For example, if one thread calls exit(), all
threads are destroyed.

Each thread has its own signal mask. This per-
mits a thread to block asynchronously generated sig-
nals while it accesses state that is also modified by a
signal handler. Signals that are synchronously gen-
erated (e.g., SIGSEGV) are sent to the thread that
caused them. Signals that are generated externally

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 1



Implementing Lightweight Threads D. Stein, D. Shah

are sent to one of the threads within a process that
has it unmasked. If all threads mask a signal, it is
set pending on the process until a thread unmasks
that signal. Signals can also be sent to particular
threads within the same process. As in single-
threaded processes, the number of signals received
by the process is less than or equal to the number
sent.

All threads within a process share the set of
signal handlers1. If the handler is set to SIG_IGN
any received signals are discarded. If the handler is
set to SIG_DFL the default action (e.g., stop, con-
tinue, exit) applies to the process as a whole.

A process can fork in one of two ways: The
first way clones the entire process and all of its
threads. The second way only reproduces the calling
thread in the new process. This last is useful when
the process is simply going to call exec().

Threads Library Architecture

Threads are the programmer’s interface for
multi-threading. Threads are implemented by a
dynamically linked library that utilizes underlying
kernel-supported threads of control, called light-
weight processes (LWPs)2, as shown in Figure 1.

= Thread = LWP = CPU

User

Kernel

Hardware

proc 1 proc 2

Figure 1: Multi-thread Architecture Examples

Each LWP can be thought of as a virtual CPU
which is available for executing code or system
calls. Each LWP is separately dispatched by the ker-
nel, may perform independent system calls, incur

1Allowing each thread to have its own vector of signal
handlers was rejected because it would add a non-trivial
amount of storage to each thread and it allowed the
possibility of conflicting requests by different threads (e.g.,
SIG_DFL and a handler) that would make both
implementation and use difficult. In addition, per-thread
can be programmed on top of a shared vector of handlers,
if required.

2The LWPs in this document are fundamentally different
than the LWP library in SunOS 4.0. Lack of imagination
and a desire to conform to generally accepted terminology
lead us to use the same name.

independent page faults, and may run in parallel on
a multiprocessor. All the LWPs in the system are
scheduled by the kernel onto the available CPUs
according to their scheduling class and priority.

The threads library schedules threads on a pool
of LWPs in the process, in much the same way as the
kernel schedules LWPs on a pool of processors3.
Threads themselves are simply data structures and
stacks that are maintained by the library and are
unknown to the kernel. The thread library can cause
an LWP to stop executing its current thread and start
executing a new thread without involving the operat-
ing system. Similarly, threads may also be created,
destroyed, blocked, activated, etc., without operating
system involvement. LWPs are relatively much more
expensive than threads since each one uses dedicated
kernel resources. If the threads library dedicated an
LWP to each thread as in [Cooper 1990] then many
applications such as data bases or window systems
could not use threads freely (e.g. one or more per
client) or they would be inefficient. Although the
window system may be best expressed as a large
number of threads, only a few of the threads ever
need to be active (i.e., require kernel resources, other
than virtual memory) at the same instant.

Sometimes a particular thread must be visible
to the system. For example, when a thread must sup-
port real-time response (e.g., mouse tracking thread)
and thus be scheduled with respect to all the other
execution entities in the system (i.e., global schedul-
ing scope). The library accommodates this by allow-
ing a thread to be permanently bound to an LWP.
Even when a thread is bound to an LWP, it is still a
thread and can interact or synchronize with other
threads in the process, bound or unbound.

By defining both levels of interface in the
architecture, we make clear the distinction between
what the programmer sees and what the kernel pro-
vides. Most programmers program using threads and
do not think about LWPs. When it is appropriate to
optimize the behavior of the program, the program-
mer has the ability to tune the relationship between
threads and LWPs. This allows programmers to struc-
ture their application assuming extremely lightweight
threads while bringing the appropriate degree of
kernel-supported concurrency to bear on the compu-
tation. A threads programmer can think of LWPs
used by the application as the degree of real con-
currency that the application requires.

LWP interfaces

LWPs are like threads. They share most of the
process resources. Each LWP has a private set of
registers and a signal mask. LWPs also have

3Actually, the SunOS 5.0 kernel schedules kernel threads
on top of processors. Kernel threads are used for the
execution context underlying LWPs. See [Eykholt 1992].

2 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX



D. Stein, D. Shah Implementing Lightweight Threads

attributes that are unavailable to threads. For exam-
ple they have a kernel-supported scheduling class,
virtual time timers, an alternate signal stack and a
profiling buffer.

The system interface to LWPs4 is shown in Fig-
ure 2.

int _lwp_create(context, flag, lwpidp)
void _lwp_makecontext(ucp, func, arg, private,

stack, size);
void *_lwp_getprivate();
void _lwp_setprivate(ptr);
void _lwp_exit();
int _lwp_wait(waitfor, departedp);
lwpid_t _lwp_self();
int _lwp_suspend(lwpid);
int _lwp_continue(lwpid);
void _lwp_mutex_lock(lwp_mutexp);
void _lwp_mutex_unlock(lwp_mutex);
int _lwp_cond_wait(lwp_condp, lwp_mutexp);
int _lwp_cond_timedwait(lwp_condp, lwp_mutexp,

timeout);
int _lwp_cond_signal(lwp_condp);
int _lwp_cond_broadcast(lwp_condp);
int _lwp_sema_wait(lwp_semap);
int _lwp_sema_post(lwp_semap);
int _lwp_kill(lwpid, sig);

Figure 2: LWP Interfaces

The _lwp_create() interface creates
another LWP within the process. The
_lwp_makecontext() interface creates a
machine context that emulates the standard calling
sequence to a function. The machine context can
then be passed to _lwp_create(). This allows
some degree of machine independence when using
the LWP interfaces.

The LWP synchronization interfaces implement
mutual exclusion locks, condition variables and
counting semaphores. Variants are allowed that can
support priority inversion prevention protocols such
as priority inheritance. Counting semaphores are also
provided to ensure that a synchronization mechanism
that is safe with respect to asynchronous signals is
available. In general, these routines only actually
enter the kernel when they have to. For example, in
some cases acquiring an LWP mutex does not
require kernel entry if there is no contention. The
kernel has no knowledge of LWP synchronization
variables except during actual use.

The LWP synchronization variables are placed
in memory by the application. If they are placed in
shared memory or in mapped files that are accessible
to other processes, they will synchronize LWPs
between all the mapping processes even though the
LWPs in different processes are generally invisible to
each other. An advantage of using memory mapped
files is that the synchronization variables along with
other shared data can be preserved in a file. The
application can be restarted and continue using its
shared synchronization variables without any

4The LWP interfaces described here are compatible with
the current UNIX International LWP interfaces.

initialization. When a LWP synchronization primitive
causes the calling LWP to block, the LWP is then
suspended on a kernel-supported sleep queue associ-
ated with the offset in the mapped file or the shared
memory segment5 6. This allows LWPs in different
processes to synchronize even though they have the
synchronization variable mapped at different virtual
addresses.

Both the _lwp_getprivate() and
_lwp_setprivate() interfaces provide one
pointer’s worth of storage that is private to the LWP.
Typically, a threads package can use this to point to
its thread data structure. On SPARC this interface
sets and gets the contents of register %g77.

An alternative to this approach is to have a
private memory page per LWP. This requires more
kernel effort and perhaps more memory requirements
for each LWP. However, it is probably the most rea-
sonable choice on register constrained machines, or
on machines where user registers have not been
reserved to the system.

The kernel also provides two additional signals.
The first, SIGLWP is simply a new signal reserved for
threads packages. It is used as an inter-LWP signal
mechanism when directed to particular LWPs within
the process via the _lwp_kill() interface. The
second signal is SIGWAITING. This is currently gen-
erated by the kernel when it detects that all the LWPs
in the process have blocked in indefinite waits. It is
used by threads packages to ensure that processes
don’t deadlock indefinitely due to lack of execution
resources.

Threads Library Implementation

Each thread is represented by a thread structure
that contains the thread ID, an area to save the
thread execution context, the thread signal mask, the
thread priority, and a pointer to the thread stack. The
storage for the stack is either automatically allocated
by the library or it is passed in by the application on
thread creation. Library allocated stacks are obtained
by mapping in pages of anonymous memory. The
library ensures that the page following the stack is
invalid. This represents a ‘‘red zone’’ so that the
process will be signalled if a thread should run off
the stack. If the application passed in its own stack
storage, it can provide a red zone or pack the stacks
in its own way.

5Multics parlance used to call this the virtual address
and what most people today call the virtual address (the
effective addresses computed by the instructions) was
called the logical address,

6Internally, the kernel uses a hash queue to synchronize
LWPs. The hash lookup is based on a two word value that
represents the internal file handle (vnode) and offset.

7On SPARC, register %g7, is reserved to the system in
the Application Binary Interface [USO 1990]. ABI
compliant applications cannot use it.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 3



Implementing Lightweight Threads D. Stein, D. Shah

When a thread is created, a thread ID is
assigned. In an earlier threads library implementa-
tion, the thread ID was a pointer to the thread struc-
ture. This implementation was discarded in favor of
one where the thread ID was used as an index in a
table of pointers to thread structures. This allows the
library to give meaningful errors when a thread ID
of an exited and deallocated thread is passed to the
library.
Thread-local Storage

Threads have some private storage (in addition
to the stack) called thread-local storage (TLS). Most
variables in the program are shared among all the
threads executing it, but each thread has its own
copy of thread-local variables. Conceptually, thread-
local storage is unshared, statically allocated data. It
is used for thread-private data that must be accessed
quickly. The thread structure itself and a version of
errno that is private to the thread is allocated in
TLS.

Thread-local storage is obtained via a new
#pragma, unshared, supported by the compiler
and linker. The contents of TLS are zeroed, initially;
static initialization is not allowed. The size of TLS
is computed by the run-time linker at program start
time by summing the sizes of the thread-local
storage segments of the linked libraries and comput-
ing offsets of the items in TLS8. The linker defines
a symbol called _etls that represent the size of
TLS. The threads library uses this at thread creation
time to allocate space for TLS from the base of the
new thread’s stack. After program startup, the size of
TLS is fixed and can no longer grow. This restricts
programmatic dynamic linking (i.e., dlopen()) to
libraries that do not contain TLS. Because of these
restrictions, thread-local storage is not an exported
interface. Instead a programmatic interface called
thread-specific data [POSIX 1992] is available.

On SPARC, global register %g7 is assumed by
the compiler to point to the base address of TLS.
This is the same register used by the LWP private
storage interfaces. The compiler generates code for
TLS references relative to %g7. The threads library
ensures that %g7 is set to the base address of TLS
for the currently executing thread. The impact of this
on thread scheduling is minimal.

Thread Scheduling

The threads library implements a thread
scheduler that multiplexes thread execution across a
pool of LWPs. The LWPs in the pool are set up to be
nearly identical. This allows any thread to execute

8The size of TLS and offsets in TLS are computed at
startup time rather than link time so that the amount of
thread-local storage required by any particular library is
not compiled into the application binary and the library
may change it without breaking the binary interface.

on any of the LWPs in this pool. When a thread exe-
cutes, it is attached to an LWP and has all the attri-
butes of being a kernel-supported thread.

All runnable, unbound, threads are on a user
level, prioritized dispatch queue. Thread priorities
range from 0 to ‘‘infinity’’9 A thread’s priority is
fixed in the sense that the threads library does not
change it dynamically as in a time shared scheduling
discipline. It can be changed only by the thread itself
or by another thread in the same process. The
unbound thread’s priority is used only by the user
level thread scheduler and is not known to the ker-
nel.

...

LWP Pool

min pool
size

pool growth
SIGWAITING

Run queue

Sleep queue

idle

switch

= LWP = thread = Synch. variable

Figure 3: Thread Scheduling

Figure 3 gives an overview of the multiplexed
scheduling mechanism. An LWP in the pool is either
idling or running a thread. When an LWP is idle it
waits on a synchronization variable (actually it can
use one of two, see below) for work to do. When a
thread, T1 is made runnable, it is added to the
dispatch queue, and an idle LWP L1 (if one exists) in
the pool is awakened by signalling the idle syn-
chronization variable. LWP L1 wakes up and switches
to the highest priority thread on the dispatch queue.
If T1 blocks on a local synchronization object (i.e.,
one that is not shared between processes), L1 puts
T1 on a sleep queue and then switches to the highest
priority thread on the dispatch queue. If the dispatch
queue is empty, the LWP goes back to idling. If all
LWPs in the pool are busy when T1 becomes runn-
able, T1 simply stays on the dispatch queue, waiting
for an LWP to become available. An LWP becomes
available either when a new one is added to the pool
or when one of the running threads blocks on a
process-local synchronization variable, exits or stops,
freeing its LWP.

9Currently, "infinity" is the maximum number
representable by 32 bits.

4 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX



D. Stein, D. Shah Implementing Lightweight Threads

Thread States and the Two Level Model
An unbound thread can be in one of five dif-

ferent states: RUNNABLE, ACTIVE, SLEEPING,
STOPPED, and ZOMBIE. The transitions between these
states and the events that cause these transitions are
shown in Figure 4.

ACTIVERUNNABLE

ZOMBIE

SLEEPING

STOPPED

dispatch

preempt
stop

terminate

continuestop

sleep

stop

wakeup

Figure 4: Thread states

While a thread is in the ACTIVE state, its under-
lying LWP can be running on a processor, sleeping in
the kernel, stopped, or waiting for a processor on the
kernel’s dispatch queue. The four LWP states and the
transitions between them can be looked upon as a
detailed description of the thread ACTIVE state. This
relationship between LWP states and thread states is
shown in Figure 5.

RUNNING

STOPPED

BLOCKED

RUNNABLE

timeslice or
preemptdispatch

blocking syscall

wakeup

stop continue

stop
continue

(thread) ACTIVE

Figure 5: LWP states

Idling and parking
When an unbound thread exits and there are no

more RUNNABLE threads, the LWP that was running
the thread switches to a small idle stack associated
with each LWP and idles by waiting on a global LWP
condition variable. When another thread becomes
RUNNABLE the global condition variable is signaled,
and an idling LWP wakes up and attempts to run any
RUNNABLE threads.

When a bound thread blocks on a process-local
synchronization variable, its LWP must also stop run-
ning. It does so by waiting on a LWP semaphore
associated with the thread. The LWP is now parked.
When the bound thread unblocks, the parking sema-
phore is signalled so that the LWP can continue exe-
cuting the thread.

When an unbound thread becomes blocked and
there are no more RUNNABLE threads, the LWP that
was running the thread also parks itself on the
thread’s semaphore, rather than idling on the idle
stack and global condition variable. This optimizes
the case where the blocked thread becomes runnable
quickly, since it avoids the context switch to the idle
stack and back to the thread.
Preemption

Threads compete for LWPs based on their priori-
ties just as kernel threads compete for CPUs. A
queue of ACTIVE threads is maintained. If there is a
possibility that a RUNNABLE thread has a higher
priority than that of some ACTIVE thread, the ACTIVE
queue is searched to find such a thread. If such a
thread is found, then this thread is removed from the
queue and preempted from its LWP. This LWP then
schedules another thread which is typically the
higher priority RUNNABLE thread which caused the
preemption.

There are basically two cases when the need to
preempt arises. One is when a newly RUNNABLE
thread has a higher priority than that of the lowest
priority ACTIVE thread and the other is when the
priority of an ACTIVE thread is lowered below that of
the highest priority RUNNABLE thread.

ACTIVE threads are preempted by setting a flag
in the thread’s thread structure and then sending its
LWP a SIGLWP. The threads library always installs its
own handler for SIGLWP. When an LWP receives the
signal, the handler checks if the current thread has a
preemption posted. If it is, it clears the flag and then
switches to another thread.

One side-effect of preemption is that if the tar-
get thread is blocked in the kernel executing a sys-
tem call, it will be interrupted by SIGLWP, and the
system call will be re-started when the thread
resumes execution after the preemption. This is only
a problem if the system call should not be re-started.
The Size of the LWP Pool

By default, the threads library automatically
adjusts the number of LWPs in the pool of LWPs that
are used to run unbound threads. There are two main
requirements in setting the size of this pool: First, it
must not allow the program to deadlock due to lack
of LWPs. For example if there are more runnable
unbound threads than LWPs and all the active threads
block in the kernel in indefinite waits (e.g., read a
tty), then the process can make no further progress
until one of the waiting threads returns. The second
requirement is that the library should make efficient

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 5



Implementing Lightweight Threads D. Stein, D. Shah

use of LWPs. If the library were to create one LWP
for every thread, in many cases these LWPs would
simply be idle and the operating system would be
overloaded by the resource requirements of many
more LWPs than are actually being used. The advan-
tages of a two-level model would be lost.

Let C be the total number of ACTIVE and RUNN-
ABLE threads in an application, at any instant. In
many cases, the value of C will fluctuate, sometimes
quite dramatically as events come in and are pro-
cessed, or threads synchronize. Ideally, if the time
for creating or destroying an LWP were zero, the
optimal design would be for the threads library to
keep the size of the LWP pool equal to C at all times.
This design would meet both requirements for the
pool perfectly. In reality, since adjusting the size of
the LWP pool has a cost, the threads library does not
attempt to match it perfectly with C since this would
be inefficient.

The current threads library implementation
starts by guaranteeing that the application does not
deadlock. It does so by using the new SIGWAITING
signal that is sent by the kernel when all the LWPs in
the process block in indefinite waits. The threads
library ignores SIGWAITING by default. When the
number of threads exceeds the number of LWPs in
the pool, the threads library installs a handler for
SIGWAITING. If the threads library receives a
SIGWAITING and there are runnable threads, it creates
a new LWP and adds it to the pool. If there are no
runnable threads at the time the signal is received
and the number of threads is less than the number of
LWPs in the pool, it disables SIGWAITING.

A more aggressive implementation might
attempt to compute a weighted time average of the
application’s concurrency requirements, and adjust
the pool of LWPs more aggressively. Currently, it is
not known whether the advantages of doing this
would outweigh the extra overhead of creating more
LWPs.

The application sometimes knows its con-
currency requirements better than the threads library.
The threads library provides an interface,
thr_setconcurrency() that gives the library a
hint as to what the expected concurrency level is.
For example, a multi-threaded file copy program,
with one input and one output thread might set its
concurrency level to two; a multi-threaded window
system server might set its concurrency level to the
number of expected simultaneously active clients
times the number of threads per client. If n is the
level of concurrency given in
thr_setconcurrency(), the threads library will
ensure there are at least n LWPs in the pool when the
number of threads is greater than or equal to n. If
the number of threads is less than n, the library
ensures that the number of LWPs is at least equal to
the number of threads. Any growth in the number of
LWPs past n is due to receiving a SIGWAITING.

The number of LWPs in the pool can grow to be
greater than the number of threads currently in the
process due to previous receptions of SIGWAITING or
uses of thr_setconcurrency(). This can
result in an excessive number of LWPs in the pool.
The library therefore ‘‘ages’’ LWPs; they are ter-
minated if they are unsued for a ‘‘long’’ time,
currently 5 minutes. This is implemented by setting
a per-LWP timer whenever the LWP starts idling. If
the timer goes off, the LWP is terminated.
Mixed Scope Scheduling

A mixture of bound and unbound threads can
coexist in the same process. Applications such as
window systems can benefit from such mixed scope
scheduling. A bound thread in the real-time schedul-
ing class can be devoted to fielding mouse events
which then take precedence over all other unbound
threads which are multiplexing over time-sharing
LWPs. When a bound thread calls the system’s prior-
ity control interface, priocntl(), it affects the
LWP it is bound to, and thus the thread itself. Thus,
bound, real-time threads can coexist with unbound
threads multiplexing across time-shared LWPs.
Unbound threads continue to be scheduled in a mul-
tiplexed fashion in the presence of bound threads.
Reaping bound/unbound threads

When a detached thread (bound or unbound)
exits, it is put on a single queue, called deathrow
and their state is set to ZOMBIE. The action of free-
ing a thread’s stack is not done at thread exit time to
minimize the cost of thread exit by deferring
unnecessary and expensive work. The threads library
has a special thread called the reaper whose job is to
do this work periodically. The reaper runs when
there are idle LWPs, or when a reap limit is reached
(the deathrow gets full). The reaper traverses the
deathrow list, freeing the stack for each thread
that had been using a library allocated stack.

When an undetached thread (bound or unbound)
exits, it is added to the zombie list. Threads on the
zombie list are reaped by the thread that executes
thr_join() on them.

Since the reaper runs at high priority, it should
not be run too frequently. Yet, it should not be run
too rarely, since the rate at which threads are reaped
has an impact on the speed of thread creation. This
is because the reaper puts the freed stacks on a
cache of available thread stacks, which speeds up
stack allocation for new threads, an otherwise expen-
sive operation.

Thread Synchronization

The threads library implements two basic types
of synchronization variables, process-local (the
default) or process-shared. In both cases the library
ensures that the synchronization primitives them-
selves are safe with respect to asynchronous signals
and therefore they can be called from signal

6 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX



D. Stein, D. Shah Implementing Lightweight Threads

handlers.
Process-local Synchronization Variables

The default blocking behavior is to put the
thread to sleep. Each synchronization variable has a
sleep queue associated with it. The synchronization
primitives put the blocking threads on the synchroni-
zation variable’s sleep queue and surrenders the exe-
cuting thread to the scheduler. If the thread is
unbound, the scheduler dispatches another thread to
the thread’s underlying LWP. A Bound thread, how-
ever, must stay permanently bound to its LWP so the
LWP is parked on its thread.

Blocked threads are awakened when the syn-
chronization variables become available. The syn-
chronization primitives that release blocked threads
first check if threads are waiting for the synchroniza-
tion variables. A blocked thread is removed from the
synchronization variable’s sleep queue and is
dispatched by the scheduler. If the thread is bound,
the scheduler unparks the bound thread so that its
LWP is dispatched by the kernel. For unbound
threads, the scheduler simply places the thread on a
run queue corresponding to its priority. The thread is
then dispatched to an LWP in priority order.
Process-shared Synchronization variables

Process-shared synchronization objects can also
be placed in memory that is accessible to more than
one process and can be used to synchronize threads
in different processes. Process-shared synchroniza-
tion variables must be initialized when they are
created because their blocking behavior is different
from the default. Each synchronization primitive
supports an initialization function that must be called
to mark the process-shared synchronization variable
as process-shared. The primitives can then recognize
the synchronization variables that are shared and
provide the correct blocking behavior. The primi-
tives rely on LWP synchronization primitives to put
the blocking threads to sleep in the kernel still
attached to their LWPs, and to correctly synchronize
between processes.

Signals

The challenge in providing the SunOS MT sig-
nal semantics for user threads in a two-level model
of multi-threading is that signals are sent by the ker-
nel but user level threads and their masks are invisi-
ble to the kernel. In particular, since signal delivery
to a thread is dependent on the thread signal mask,
the challenge is to elicit the correct program
behavior even though the kernel cannot make the
correct signalling decisions because it cannot see all
the masks.

The implementation has the additional goal of
providing cheap async safe synchronization primi-
tives. A function is said to be async safe if it is
reentrant with respect to signals, i.e., it is callable
from a signal handler invoked asynchronously. Low

overhead async safe synchronization primitives are
crucial for multi-threaded libraries containing inter-
nal critical sections, such as the threads library and
its clients, such as libc, etc. For example, consider a
call to the threads library, say mutex_lock(),
which is interrupted asynchronously while holding
an internal threads library lock, L. The asynchronous
handler could potentially call into mutex_lock()
also and try to acquire L again, resulting in a
deadlock. One way of making mutex_lock()
async safe is to mask signals while in L’s critical
section. Thus, efficient signal masking was an
important goal since it could provide efficient async
safe critical sections.
Signal Model Implementation

One implementation strategy would be for each
LWP that is running a thread to reflect the thread’s
signal mask. This allows the kernel to directly
choose a thread to signal from among the ACTIVE
threads within a process. The signals that a process
can receive changes as the threads in the application
cycle through the ACTIVE state.

This strategy has a problem with threads that
are rarely ACTIVE and are the only threads in the
application that have certain signals enabled. These
threads are essentially asleep waiting to be inter-
rupted by a signal which they will never receive. In
addition, a system call must be done whenever an
LWP switches between threads having different
masks or when an active thread adjusts its mask.

This problem can be solved if the LWP signal
masks and the ACTIVE thread signal masks are
treated more independently. The set of signals that a
process can receive is equal to the intersection of all
the thread signal masks. The library ensures that the
LWP signal mask is either equal to the thread mask
or it is less restrictive. This means occasionally sig-
nals are sent by the kernel to ACTIVE threads that
have the signal disabled.

When this occurs the threads library prevents
the signal from actually reaching the interrupted
thread by interposing its own signal handlers below
the application signal handlers. When a signal is
delivered, the global handler checks the current
thread’s signal mask to determine if the thread can
receive this signal. If the signal is masked, the glo-
bal handler sets the current LWP’s signal mask to
the current thread’s signal mask. Then the signal is
resent to the process if it is an undirected signal or
to its LWP if it is a directed signal. The kernel sig-
nal delivery mechanism provides information that
allows the signal handler to distinguish between
directed and undirected signals. If the signal is not
masked, the global handler calls the signal’s applica-
tion handler. If the signal is not appropriate for any
of the currently ACTIVE threads, the global handler
can cause one of the inactive threads to run if it has
the signal unmasked.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 7



Implementing Lightweight Threads D. Stein, D. Shah

Synchronously generated signals are simply
delivered by the kernel to the ACTIVE thread that
caused them.
Sending a directed signal

A thread can send a signal to another thread in
the same process using thr_kill(). The basic
means of sending a signal to a thread is to send it to
the LWP it runs on. If the target thread is not
ACTIVE, thr_kill() just posts the signal on the
thread in a pending signals mask. When the target
thread resumes execution, it receives the pending
signals10. If the target thread is ACTIVE,
thr_kill() sends the signal to the target thread’s
LWP via lwp_kill(). If the target LWP is
blocking the signal (which implies that the thread is
blocking it too), the signal stays pending on the
LWP, until the thread unblocks it. While the signal
is pending on the LWP, the thread is temporarily
bound to the LWP until the signals are delivered to
the thread.
Signal Safe Critical Sections

As stated previously, to prevent deadlock in the
presence of signals, critical sections that are reen-
tered in a signal handler in both multi-threaded
applications and the threads library should be safe
with respect to signals. All asynchronous signals
should be masked during such critical sections.

The threads library signals implementation
allows multi-threaded applications to make critical
sections safe as efficiently as possible via a low
overhead implementation of the
thr_sigsetmask() interface. If signals do not
occur, thr_sigsetmask() does not result in a
system call. In this case, it is as fast as just modify-
ing the user-level thread signal mask.

The threads library has an even faster means of
achieving signal safety for its internal critical sec-
tions. The threads library sets/clears a special flag in
the threads structure whenever it enter/exits an inter-
nal critical section. Effectively, this flag serves as a
signal mask to mask out all signals. If the flag is set
when a signal is delivered, the threads library global
signal handler will defer the signal as described in
the above section.

Debugging Threads

A debugger that can control library supported
threads requires access to information about the
threads inside the debugged process. The normal
kernel-supported debugging interfaces (/proc) are
insufficient. One could build complete knowledge of
the threads implementation into the debugger, but
that would force a re-release of the debugger when-
ever some internal threads library data structure

10The threads library context switch code ensures this by
sending the pending signals to the LWP that resumes the
thread.

changes. Instead the threads library provides a
separate dynamically linked thread debugging library
that the debugger links with via dlopen(). The
thread debugging library contains interfaces that
allow the debugger access to general thread informa-
tion, without the debugger itself containing
knowledge of the threads library implementation. All
the threads library specific knowledge is contained in
the thread debugging library. The interfaces in the
thread debugging library allow the debugger to for
example, enumerate the list of threads in the
debugged process, or get/set the state and/or registers
of each thread (ACTIVE or not).

We have a version of DBX with thread exten-
sions that dynamically links with this library. The
new features allow the programmer to debug a
multi-thread process. It will list all threads in the
process and their states, whether they are sleeping,
running, active, stopped or zombied. DBX can
change its focus to any thread so that its internal
state can be analyzed with the standard DBX com-
mands.

References

[Cooper 1990] E.C. Cooper, R.P. Draves, ‘‘C
Threads’’, Department of Computer Science,
Carnegie Mellon University, September 1990.

[Eykholt 1992] J.R. Eykholt, S.R. Kleiman, S. Bar-
ton, R. Faulkner, A. Shivalingiah, M. Smith, D.
Stein, J. Voll, M. Weeks, D. Williams,
‘‘Beyond Multiprocessing ... Multithreading the
System V Release 4 Kernel’’, Proc. 1992
USENIX Summer Conference.

[Faulkner 1991] R. Faulkner, R. Gomes, ‘‘The Pro-
cess File System and Process Model in UNIX
System V’’, Proc. 1991 USENIX Winter Confer-
ence.

[Golub 1990] D. Golub, R. Dean, A. Florin, R.
Rashid, ‘‘UNIX as an Application Program’’,
Proc. 1990 USENIX Summer Conference, pp 87-
95.

[Khanna 1992] Sandeep Khanna, Michael Sebrée,
John Zolnowsky, ‘‘Realtime Scheduling in
SunOS 5.0’’, Proc. 1992 USENIX Winter Confer-
ence.

[POSIX 1992] POSIX P1003.4a, ‘‘Threads Extension
for Portable Operating Systems’’, IEEE.

[Powell 1991] M.L. Powell, S.R. Kleiman, S. Bar-
ton, D. Shah, D. Stein, M. Weeks, ‘‘SunOS
Multi-thread Architecture’’, Proc. 1991 USENIX
Winter Conference.

[Sha 1990] Lui Sha, Ragunathan Rajkumar, John P.
Lehoczky, ‘‘Priority Inheritance Protocols: An
Approach to Realtime Synchronization’’, Vol
39, No 9, September 1990, IEEE Transactions
on Computers.

8 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX



D. Stein, D. Shah Implementing Lightweight Threads

[USO 1990] UNIX Software Operation, ‘‘System V
Application Binary Interface, SPARC Processor
Supplement’’, UNIX Press.

Author Information

Dan Stein is currently a member of technical
staff at SunSoft, Inc. where he is one of the
developers of the SunOS mult-thread Architecture.
He graduated from the University of Wisconsin in
1981 with a B.S. in Computer Science.

Devang Shah is currently a Member of Techni-
cal Staff at SunSoft, Inc. He received an M.A. in
Computer Science from the University of Texas at
Austin in 1989 and a B. Tech. in Electronics Engg.
from the Institute of Technology, B.H.U., India in
1985. At UT-Austin he extended SunOS 3.2 to pro-
vide lightweight processes. Prior to UT-Austin, he
worked at Tata Consultancy Services, Bombay.

Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX 9



10 Summer ’92 USENIX – June 8-June 12, 1992 – San Antonio, TX


